0

5
1

文字

分享

0
5
1

常戴耳機聽音樂,感覺聽力未老先衰?你不可不知的隱形聽力損失

雅文兒童聽語文教基金會_96
・2017/09/17 ・3791字 ・閱讀時間約 7 分鐘 ・SR值 515 ・六年級

國小高年級科普文,素養閱讀就從今天就開始!!

文/楊又臻|雅文兒童聽語文教基金會研究助理

由於行動裝置的普及,通勤時身邊的人戴著耳機聽音樂或追劇儼然成為習以為常的風景。圖/ @ Pxhere

6月的時候,歌手彭佳慧透露,演出時她都會戴著入耳式耳機麥克風,拿下後會感到暈眩,但只要稍作休息就會好轉。她也表示,現在和朋友一起聽音樂,當她覺得音量剛好時,朋友卻會覺得音量太大(李志展,2017)。聽到他這麼說你也心有戚戚焉嗎?那你可能也要小心「隱性聽力損失」了!

耳機族小心!你不可不知的聽力損失風險

在日常生活裡,哪些事情其實是聽力退化的幕後黑手呢?

除了常被提及的職業性噪音之外,由於行動裝置的普及,通勤時身邊的人戴著耳機聽音樂或追劇儼然成為習以為常的風景。也因為耳機的不當使用,近年來娛樂性活動產生的噪音亦成為影響聽力的一大主因。許多人都輕忽了過大音量對耳朵可能產生的傷害,直到有一天突然發現聽得不太清楚時,聽力變化早已悄悄發生……我們普遍以為後天聽力損失(或簡稱聽損)是年長者的特徵,然而世界衛生組織(WHO)估計,全球約有 11 億的年輕族群因不當使用個人音樂裝置(含智慧手機)而面臨聽損的風險(WHO,2015)。

圖/ BY Myriams-Fotos @ Pixabay

根據衛生福利部統計資料顯示,台灣 18–65 歲的勞動人口中,輕至中度聽損者有 151,579 人[註1],佔總聽損人口的四分之一(衛生福利部,2015)。另外WHO 也提醒,應透過提高對聽損風險的認識,以減少過大音量帶來的影響;並鼓勵使用個人防護裝置,例如隔音耳罩、耳塞等,來保護自己的聽力(WHO, 2015)。

在聽力損失前,我們的身體發生了什麼事?

美國致力於噪音與聽損研究的學者 Sharon Kujawa 和她的研究團隊也在 2009 年發現(Kujawa & Liberman,2009),早在明顯的聽損發生之前,有一個隱密的變化正在發生,那就是──耳朵裡的毛細胞和聽覺神經纖維中間傳遞資訊到大腦的通訊悄悄中斷了。因為路徑中斷不會立刻在聽力檢查時被檢測出來,所以這樣的情況被稱為「隱性聽力損失(Hidden Hearing Loss)」。

關於聲音傳遞路徑中斷形成「隱性聽損」的原因,目前研究提供了兩項可知的原因:

  1. 神經突觸(synapses)的損失。
  2. 神經髓鞘(myelin)的損失。
提高對聽損風險的認識,以減少過大音量帶來的影響;並鼓勵使用個人防護裝置,例如隔音耳罩、耳塞等,來保護自己的聽力。圖/BY alags @Pixabay

隱形殺手一號:神經突觸損失

關於突觸損失的研究:2009 年時,Kujawa 和她的團隊在實驗中將 16 週大的公小鼠暴露在 8,000–16,000 赫茲、100 分貝的噪音之中 2 小時,結果發現公小鼠的聽力閾值[註2]輕微升高,其後完全回復。然而再過 24 小時之後,儘管內耳中的聽覺接收器──毛細胞,都仍存在且恢復正常功能,但可以看到快速、廣泛且不可逆的突觸損失。研究者後續觀察這批公小鼠 2 年,也發現牠們的耳蝸神經元在隨後的 2 年之間呈現累加性的喪失(Kujawa & Liberman,2009)。

這也就是說,一旦突觸損失,就會像變了心的女朋友,回不來了……而且即使目前聽力回復正常,耳蝸神經元損失會也在突觸損失後數年內發生。

 

突觸與髓鞘示意圖(修改:雪旺氏細胞修改為許旺細胞、郎飛氏結修改為蘭氏結)。 圖/作者修改自 wikimedia commons

那麼,突觸究竟是什麼呢?突觸是神經信息傳遞的關鍵部位。在內耳毛細胞將聲波震動轉換成化學訊號後,會使聽神經的突觸端釋放神經傳遞物質麩胺酸(glutamate),而麩胺酸會繼續與聽神經纖維末梢上的受體結合,引發電生理訊號,並經由聽神經進入腦幹,最後抵達大腦聽覺皮質,使我們聽到聲音。在這個訊號傳遞的過程中,只要突觸遭到破壞,與之連接的聽神經纖維也將不再對聲音刺激做出反應。

研究者也指出,過量的噪音會讓突觸受損。神經末梢的腫大和破裂,可能是由於突觸受到過度刺激,釋放過量的麩胺酸所致(Liberman, 2015),而過量的麩胺酸釋放會導致興奮毒性(excitetoxicity),引起興奮性神經細胞死亡,進而導致隱性聽力損失。

隱形殺手二號:神經髓鞘損失

另一個可能造成隱性聽力損失的原因則是:今年密西根大學研究人員利用小鼠實驗發現了髓鞘損失與隱性聽損的關係(Wan & Corfas,2017)。

什麼是髓鞘呢?髓鞘是包裹在神經軸突外部的物質,由許旺細胞(Schwann cell)層層包覆所組成,髓鞘與髓鞘中間由蘭氏結(nodes of Ranvier)隔開。這樣講好像很抽象,但或許你可以把許旺細胞想像成保鮮膜,神經軸突則是它的紙筒,那麼被捲了很多層的保鮮膜就是髓鞘。髓鞘富含脂質,有修復、支持、保護神經元及絕緣的作用。由於這層絕緣層阻止電流通過細胞膜,神經傳導必須由蘭氏結跳到另一個蘭氏結,形成跳躍式傳遞。因為跳躍式傳遞速度每秒約 120 公尺,較無髓鞘的神經元傳遞速度(每秒 0.5-2 公尺)快很多,讓我們可以很快聽到聲音作出反應。

因此,當 Wan & Corfas(2017)使小鼠聽覺神經中的髓鞘受損,便會造成急性去髓鞘性疾病。他們發現,儘管髓鞘在幾週之內再生,但神經末梢的結構依然受損;也就是小鼠仍發生永久性的隱性聽力損失。

吵雜環境自我檢測,讓隱性聽力損失現形吧!

 

使用個人音樂設備時,應避免將音量調整至最大音量的 60% 以上,且一段時間後也需要讓耳朵休息一下。圖/BY kaboompics @Pixabay

隱性聽力損失,有一個特別的外顯特徵,就是「在吵雜環境中會聽不清楚」。先前說過連接毛細胞和聽神經的突觸損失後,緊接著聽神經就會逐漸喪失。Liberman(2015)指出先行研究也顯示,一直到聽神經喪失達 80% 以上,才會影響到聽力檢查的結果。所以研究者推測,聽神經纖維損失不一定會影響偵測聲音的能力,卻很容易讓人在吵雜的環境裡無法聽清楚別人在說什麼。

舉例來說,與朋友在熱炒店聚會時,發現朋友間都聽得清楚彼此的說話內容,只有自己聽得不太清楚,有時還要朋友不斷重複說過的話,可能就是隱性聽損的徵兆。

無論多老也想聽到你說話

無論多老也想聽到你說話。圖/ @ Pxhere

發生在聽損之前的突觸損失會隨著年齡逐漸發生,也會在接觸高分貝聲音之後突然發生。在耳朵沒有防護的情況下,直接暴露在140 分貝以上的聲音環境時,音壓所產生的能量會對耳朵產生永久性的撕裂傷害,造成聽力損失。雖然一般人通常不太可能直接暴露於這麼高音量的噪音,然而要注意的是,有研究指出即使是較小的音量(75-110 分貝),只要是長時間暴露,10 年後聽力損失最高可超過45分貝(中華民國環境職業醫學會,1996)。

依據 5 分貝規則(又稱 5 分貝減半率),音量每增加 5 分貝,容許暴露時間需減半(職業安全衛生設施規則,2014)。因此,使用者便能按照這個原則推估使用時間。例如,在 90 分貝的音強下,暴露時間不得超過 8 小時;而 95 分貝的音強時,暴露時間不能超過 4 小時,否則將對聽力產生不可逆的負面影響。

回想一下,當你在環境噪音較大的地方使用耳機,是否會調高音量來蓋過環境音?搭乘捷運或公車時環境的噪音約在 80 分貝,為了把音樂聽清楚,使用者常不自覺地把音量加大,長期下來將讓我們耳內的毛細胞與突觸逐漸損傷,形成噪音性的聽力損失。

WHO 提醒,使用個人音樂設備時,應避免將音量調整至最大音量的 60% 以上,且一段時間後也需要讓耳朵休息一下。聽力研究者 Owen Brimijoin 也建議,使用較高品質的耳機可以保護耳朵,因為廉價的耳機低頻音傳輸功率不足,當為了聽清楚音樂而把音量轉高時,同時也會增加高頻音的音量,而這也是摧毀聽力的危險因子(Luisa Dillner, 2014)。有些人認為使用隔音效果較佳或是具有降噪功能的耳機便是萬無一失,但還是要時刻提醒自己避免無意識地把聲音開得太大聲,才能真正降低聽力損傷的可能。

其實,我們的耳朵約在 45 歲之後會開始慢慢老去,為了在老去之後仍能聽到彼此的喁喁細語,日常使用耳機時更該注意上述的保健措施,留意聽損發生的前兆,才能有效避免老化以外的噪音性聽損。

圖/BY fbhk @ Pixabay

 

註釋

  • [註1]:噪音引起的聽損,較少直接造成重度至極重度的聽力損失,通常低音頻約在40分貝以下;高音頻則在70分貝以下。(中華民國環境職業醫學會,1996)另外,由於衛生福利部的統計資料並未細分出中重度聽損,故本文僅計算至中度聽損之勞動人口。
  • [註2]:「聽力閾值」(hearing threshold)是在聽力檢測時,所能聽取之最小音量。聽力閾值愈低,表示能聽到的音量愈小,也就是聽力愈好。

文獻來源

  1. 100-104年障礙人口調查(2015)。台北市:衛生福利部。
  2. 李志展(2017年06月01日)。彭佳慧關懷聽障自曝聽力受損多年暈眩。蘋果日報。
  3. 潘震澤(譯)(2015)。隱性失聰(原作者:Liberman, M. C.)。科學人雜誌(62-67)。台北市:遠流。(原著出版年:2015)
  4. 職業安全衛生設施規則(2014)。台北市:勞動部。
  5. 職業性聽力損失診斷認定參考指引(1996)。高雄市:中華民國環境職業醫學會。
  6. Dillner, L. (2014). Will headphones damage my hearing?
  7. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077-14085.
  8. Wan, G., & Corfas, G. (2017). Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nature Communications, 8.
  9. WHO. (2015). 1.1 billion people at risk of hearing loss.
文章難易度
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

1
0

文字

分享

0
1
0
寵物過敏原有很多種,避免飲食過敏困擾,可選擇單一/特殊肉種寵物飼料
鳥苷三磷酸 (PanSci Promo)_96
・2023/06/06 ・2173字 ・閱讀時間約 4 分鐘

本文由 新萃 Nutri Source 委託,泛科學企劃執行。

你有發現家裡的狗狗經常舔自己四肢,或是身上出現不明紅疹?當心這可能是過敏反應。寵物和人類一樣,也會有過敏反應,過敏可依照「來源」分為三種:吸入性過敏、接觸性過敏和食物性過敏。

寵物的過敏源有哪些?

不管是哪一種過敏反應,在人的身上都比較容易發現和排除。但狗狗的過敏卻很難處理,如果是接觸性或吸入性過敏,即使你把家裡打掃得很乾淨,還是無法排除帶狗出去散步時可能接觸到的環境過敏原。因此,對飼主來說,最容易控制的是食物性過敏。

食物性過敏是怎麼發生的呢?其實,「食物過敏」這個詞並不太準確。正確的臨床醫學用詞是「食物不良反應」(Adverse Food Reaction, 簡稱AFR)(Jackson, H. , 2009),指的是吃下食物後身體產生各種不良反應。並進一步分為食物過敏(Food Allergy)和食物不耐受(Food Intolerances)兩種。

如果你看過動漫作品《工作細胞》,你就會知道過敏其實只是免疫系統對特定成分產生的過度反應,因此全名為「過分敏感」;而食物不耐受則並非免疫性反應,而是消化系統無法代謝或對該生物體有毒,例如狗不能吃洋蔥或巧克力,否則會致死等等。

由於寵物沒有選擇權,只能吃飼主提供的食物,如果飼料中恰好有會造成牠 AFR 的成分,就可能產生各種症狀。除了腸胃發炎和拉肚子外,最明顯的外在症狀就是皮膚問題,包括搔癢、脫毛和紅疹等。後者容易被誤判為皮膚性疾病,讓許多飼主狂跑獸醫院的同時,獸醫也難以對症下藥。

雖然曾有研究透過讓醫師用血液或唾液是否檢測出 IgE 抗體來判斷狗是否過敏(Ermel, R et al.,1997),但最新的研究卻發現,無論使用無論血清的 IgE 抗原或是唾液裡的 IgM 或 IgA 抗原都無法有效檢測出狗狗的過敏來源(Udraite Vovk Let al., 2019 & Lam ATH et al., 2019),甚至會造成偽陽性誤判。因此,目前學界公認唯一能識別食物過敏原的方法就是「食物排除法」(Food Elimination Method)。

以食物排除法,找出毛孩的食物過敏原!

食物排除法的原理相當簡單粗暴,類似我們過去在學校做的實驗一樣,抓出「控制組與對照組」。首先,將狗狗的食物換成牠沒吃過、單一來源且易消化的高蛋白質或水解蛋白質;同時嚴格限制牠對其他食物接觸,包括其他人餵食或路上亂吃等可能性都要注意,此為「對照組」,如此持續 8~12 週,觀察皮膚是否有改善。如果確實有改善,那就證明了確實是 AFR 而非皮膚病。

下一步我們可以進行「食物挑戰」,在每餐食物中逐一嘗試可能的過敏原(例如常見的牛肉、雞蛋等),有如「控制組」,等到症狀又出現,就可以確認哪種食物成分是過敏原,未來就可以在飼料中排除,讓狗狗健康快樂地成長。

這個方法需要飼主的大力配合和耐心紀錄,不僅要在漫長的試驗期,更需要在控制期一一排除所有不可能之後,才能找到答案。而其中最困難的部分,也是實驗的基礎可能是第一步:「提供狗狗牠從未吃過,且肉品單一的蛋白質」,這點對多數飼主來說幾乎是不可能的任務,因為大部分的寵物飼料成分都很複雜。不要說狗狗了,搞不好你連自己沒吃過什麼恐怕都不知道。

飼料成分多而雜,可選單一肉種飼料降低過敏。

那該怎麼進行食物排除法呢?別擔心,沒有找不到的肉品,只有勇敢的狗狗。市面上已經有了針對過敏狗狗的低敏飼料,新萃推出了一系列低敏肉,包含單一肉種的袋鼠肉、鹿肉以及野豬等相比牛豬羊等較不容易取得的肉類,是進行食物排除法第一步測試的首選。

此外,新萃牌無論哪種飼料都有美國專利 Good 4 Life® 奧特奇專利保健元素,能促進飼料中的營養都被狗狗完整吸收。不僅過敏的狗狗能吃,有消化不良症的狗狗也適用。

新萃商品選擇的是單一/特殊肉種的成分,低敏感肉品讓寵物吃了更安心。

參考資料

  1. Thus for the purpose of this discussion, although the term food allergy is used throughout, it should be recognized that this term is a presumptive clinical diagnosis and adverse food reaction is a more accurate term for these canine cases. – Consensus
  2. Jackson, H. (2009). Food allergy in dogs – clinical signs and diagnosis.. Companion Animal Practice.
  3. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease – PubMed (nih.gov)
  4. Lam ATH, Johnson LN, Heinze CR. Assessment of the clinical accuracy of serum and saliva assays for identification of adverse food reaction in dogs without clinical signs of disease. J Am Vet Med Assoc. 2019 Oct 1;255(7):812-816. doi: 10.2460/javma.255.7.812. PMID: 31517577.
  5. Direct mucosal challenge with food extracts confirmed the clinical and immunologic evidence of food allergy in these immunized dogs and suggests the usefulness of the atopic dog as a model for food allergy. – Consensus
  6. Ermel, R., Kock, M., Griffey, S., Reinhart, G., & Frick, O. (1997). The atopic dog: a model for food allergy.. Laboratory animal science.
  7. https://www.moreson.com.tw/moreson/blog-detail/furkid-knowledge/pet-knowledge/dog-food-allergen-TOP10/
  8. 狗狗因為食物過敏而搔癢不舒服,為什麼做「過敏原檢測」沒什麼用?
  9. 【獸醫診間小教室】狗狗皮膚搔癢難改善?小心食物過敏! – 汪喵星球 (dogcatstar.com)
  10. 寵物知識+/毛孩對什麼食物過敏?獸醫:驗血完全不準!診斷法只有一個 | 動物星球 | 生活 | 聯合新聞網 (udn.com)
  11. Is there a gold-standard test for adverse food reactions? – Veterinary Practice News
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
171 篇文章 ・ 276 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
噪音對小寶寶有什麼影響?——淺談胎兒的聽覺系統發展
雅文兒童聽語文教基金會_96
・2022/03/05 ・3191字 ・閱讀時間約 6 分鐘

  • 文/朱家瑩|雅文基金會聽語科學研究中心研究員

懷孕的準媽媽總是想要給寶寶最好的,讓肚子裡的胎兒贏在起跑點——市面上五花八門的胎教音樂,通通拿來給胎兒聽!據傳,莫札特的音樂能讓胎兒剛出生智力就高人一等[1],於是準媽媽選擇了莫札特的《小星星變奏曲》。為了讓肚裡的胎兒好好接收到音樂,準媽媽直接將耳機貼在肚皮上,讓聲音少些阻隔,能夠直達胎兒的耳邊。但是請小心,這樣的音量可能過大,很可能會造成胎兒的聽力損失。

準媽媽應避免「貼身」播放胎教音樂,免得音量過大,很可能會造成胎兒的聽力損失。圖/Freepik

從媽媽的肚子裡開始「聽」

在肚子裡的胎兒,因為隔著媽媽的肚皮、子宮、羊水和甩也甩不掉的脂肪,不僅聽到的音頻較不完整,且音量也小了許多。但,即便有宛如銅牆鐵壁般的保護,若讓胎兒長時間暴露在高於 60 分貝(dBA)的低頻噪音下,仍可能會造成寶寶的聽力損失[2]

什麼?胎兒也可能會有噪音性聽損?那什麼時候該開始注意周遭的聲音,避免讓胎兒還未出生就因噪音而聽損呢?在討論前,先讓我們瞭解一下胎兒的聽覺系統發展。

就像國道建設,聽覺系統也是一段一段接起來

讓我們聽到聲音的聽覺系統分為兩個部分:一個是接收聲音的耳朵構造,包含外耳、中耳及內耳中的耳蝸;另一個則是在大腦中處理聲音的訊號的聽覺皮質(auditory cortex)。

耳朵構造的發展很早就開始了。從第一孕期(0-14 週)開始,大約在 15 週時就會發展完成,而內耳毛細胞則是在 10-12 週開始分化;大約在第二孕期開始,依序由內毛細胞發展到外毛細胞[2, 3]。當內毛細胞發展完成,可以將聲音訊號傳遞到腦幹及顳葉時,聽覺系統就可以開始運作了,這時候大約是 25 到 29 週[4]。內毛細胞是聲音的接收器,連結著聽神經,聲音刺激引發內毛細胞震動後,就可將聲音傳輸到可以處理聲音訊號的聽覺皮質。

因此,當內毛細胞發展完成後,也就是第三孕期(28-40 週)時,聽覺系統開始運作。這時胎兒可以藉由耳毛細胞傳遞訊號到大腦,進而聽到聲音。

當內外毛細胞發展完成後,聽覺刺激就能一路上傳到聽覺皮質,正式啟用聽覺系統。圖/修改自 Freepik,增加各孕期階段之聽覺系統發展內容

胎兒也需要聽覺刺激——沒刺激就沒發展

聽覺系統的發展仰賴聽覺刺激來訓練毛細胞傳達訊息到大腦。因此,當聽覺系統開工後,便需要有聲音刺激來訓練毛細胞。文獻指出,懷胎 7 月起到出生 1 個月內,是讓胎兒學習不同聲音頻率的最佳時機[5]!不管是父母的說話或哼唱聲、環境中的講話聲,或是音樂,都是很好的刺激來源。

揪兜媽爹!聲音不是「大」又「多」就好

不過,要特別注意音量以及給予的方式,因為胎兒的耳毛細胞還很脆弱,有可能會因為過大且持續的聲音刺激造成聽力損失,得不償失。

我們大多是透過空氣傳遞的方式聽到聲音,但肚子裡的胎兒可不一樣。外界聲音要先穿透媽媽厚厚的肚皮、子宮跟羊水才能抵達(可以想像在水裡摀著耳朵聽聲音)。因為耳朵都被羊水塞住了,胎兒是透過骨頭傳遞的方式聽聲音,能聽到的僅限於低頻音域(500 Hz 以下),如此可以保護負責處理高頻聲音的耳毛細胞[2]。但是,超過 60 分貝(dBA)的低頻噪音還是應該要避免,否則就會造成還在學習傳導訊息的耳毛細胞受到傷害,進而造成不可逆的聽力損失。

動滋動滋,媽媽肚子自動強化重低音

低頻噪音可以輕易穿透媽媽的肚子,聲壓不僅不會減少,甚至可能會增加,容易造成胎兒的耳毛細胞受到傷害。相對地,高頻噪音(500 Hz 以上)則很難進到胎兒的內耳,而且一旦進入媽媽的肚子後,還會減少 20-30 dB 的聲壓[6],因此低頻噪音對於胎兒的影響遠大於高頻噪音。

除此之外,也要注意工作環境和生活環境中的噪音。研究指出,若準媽媽的工作場域暴露在 80 分貝(dBA)的噪音當中,除了會造成胎兒聽損外,也容易早產[7];而若生活環境吵雜,像是住家靠近機場,每天暴露在 60 到 65 分貝(dBA)的飛機噪音中,也容易造成胎兒出生體重過輕[8]。由此可見,噪音對於胎兒的影響不僅是聽力發展!

不同分貝(dBA)的聽覺感受、生活中的相關聲音範例,以及對於人的影響。但此表中所呈現的分貝數是包含全頻率的聲音,並非特定高頻或低頻。表/翻譯自參考資料 9

聲光玩具可以是最佳保姆,但也可能是聽力殺手

聽覺系統的發展在出生後仍然持續進行[10],因此仍然需要不同的聲音刺激。不過,市面上常見的聲光玩具,對於嬰幼兒的聽力有潛在的危險性,所以挑選玩具時也需多多留意。

嬰幼兒的鼓膜對於噪音很敏感,因為他們的耳道比大人短,再加上嬰幼兒的手臂長度較短,在玩玩具時,玩具和耳朵的距離比大人近,音量也會相對大聲[11]。對於年紀更小的嬰幼兒,有些甚至還沒有能力將過大音量的聲光玩具移開,同時也沒有足夠的認知能力可以辨識什麼樣的聲音音量是屬於太大聲的噪音[12]

挑選嬰幼兒玩具時,需要多加留意玩具的音量。圖/Pexels

根據 Sight & Hearing Association 2021 年的調查報告[13],下圖舉例的玩具音量皆超過 100 分貝(dBA)。可以看到玩具的種類包含尖叫雞、電子樂器、聲光機器人,甚至是音效書。

選購玩具時,若音量對你來說有點大聲,那就不要猶豫,請把它放回架上。尚未拆封的玩具因有包裝阻隔,會再降低一些音量——要是你覺得大聲,那對嬰幼兒更是震耳欲聾[14]。若是手邊已經有聲光玩具,也不用急著丟掉,可以用膠帶貼住喇叭,降低音量[15],或者直接拔掉電池[16]

聽覺系統自胎兒時期開始發展,因此當寶寶開始聽得到聲音時,就要避免持續性的噪音可能造成的聽力損害,而噪音的來源可能就是身邊常見的聲源,包含胎教音樂跟聲光玩具等。這些被視為「好」的聲音,一旦超過可容忍的音量,就會變成「不好」的噪音了。

音量超標的玩具品項,包含尖叫雞、電子樂器、聲光機器人,還有音效書。圖/Amazon

參考文獻

  1. Rauscher, F. H., Shaw, G. L., & Ky, C. N. (1993). Music and spatial task performanceNature365(6447), 611-611.
  2. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews, 8(4), 187-193.
  3. James, W. (2000). Development of the ear and hearingJournal of perinatology20(1), S12-S20.
  4. Moore, J. K., & Linthicum, F. H. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478. 
  5. Kisilevsky, B. S., Hains, S. M., Lee, K., Xie, X., Huang, H., Ye, H. H., … & Wang, Z. (2003). Effects of experience on fetal voice recognitionPsychological Science, 14(3), 220-224.
  6. Gerhardt, K. J., & Abrams, R. M. (2000). Fetal exposures to sound and vibroacoustic stimulationJournal of Perinatology20(1), S21-S30.
  7. Gupta, A., Gupta, A., Jain, K., & Gupta, S. (2018). Noise pollution and impact on children healthThe Indian Journal of Pediatrics85(4), 300-306.
  8. Knipschild, P., Meijer, H., & Sallé, H. (1981). Aircraft noise and birth weightInternational Archives of Occupational and Environmental Health48(2), 131-136.
  9. Committee on Environmental Health. (1997). Noise: a hazard for the fetus and newbornPediatrics100(4), 724-727.
  10. Litovsky, R. (2015). Development of the auditory systemHandbook of clinical neurology129, 55-72.
  11. Hellstrom, P. A., Dengerink, H. A., & Axelsson, A. (1992). Noise levels from toys and recreational articles for children and teenagersBritish journal of audiology26(5), 267-270.
  12. Axelsson, A. (1996). The risk of sensorineural hearing loss from noisy toys and recreational activities in children and teenagersInternational Journal for Consumer and Product Safety3(3), 137-146.
  13. Sight & Hearing Association (2021). Sight & Hearing Association Releases 2021 Annual Noisy Toys List.
  14. Jabbour, N., Weinreich, H. M., Owusu, J., Lehn, M., Yueh, B., & Levine, S. (2019). Hazardous noise exposure from noisy toys may increase after purchase and removal from packaging: A call for advocacy. International Journal of Pediatric Otorhinolaryngology, 116, 84-87.
  15. Weinreich, H. M., Jabbour, N., Levine, S., & Yueh, B. (2013). Limiting hazardous noise exposure from noisy toys: simple, sticky solutionsThe Laryngoscope, 123(9), 2240-2244.
  16. Zappi, R. E. (2021). Watch for Holiday Toys That Can Pose a Hearing Hazard.
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

10
1

文字

分享

0
10
1
降噪耳機沒你的耳朵厲害!——人的雙耳如何「聽聲辨位」及「擴音抗噪」?
雅文兒童聽語文教基金會_96
・2021/12/13 ・2356字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者/洪右真|雅文基金會聽語科學研究中心研究員
專業的耳機不僅能降低環境噪音、擴大音訊,還能呈現出聲音的方位感。圖/Pexels

除了令人屏息的視覺畫面,沉浸式的電玩讓玩家戴上耳機就能藉由聽覺體驗一場驚心動魄的冒險旅程。從《地獄之刃:賽奴雅的獻祭》中環繞耳邊忽遠忽近、似有若無的神祕低語,到《惡靈古堡 8》裡得繃緊神經、豎起耳朵辨識吸血鬼女士的高跟鞋腳步聲以躲避攻擊,遊戲開發商皆在音效處理上,下足了工夫來強化故事的代入感。要知道如何重現真實的聲音感受,讓玩家閉眼徒聽就能在腦海裡建構三維世界,就得從人類「聽聲辨位」的能力說起。

就像透過雙眼定焦才能創造視覺立體感知,定位物品位置;我們會運用雙耳接收到聲音的時間、音量差別,和耳廓效應來感受聲音的三維特性並定位聲源。因此,武俠小說中的人物之所以能忽聽一聲響,側身接住後方擲來之暗器,並非身懷絕技,其實單靠的就是兩隻耳朵罷了。

時間和音量,就是定位聲音的座標值

聲音抵達兩耳的時間差別有助於聲源定位。圖\雅文基金會

碰到廟會有人在你左邊點燃鞭炮,炮竹聲會先透過空氣抵達你的左耳再到右耳,而聲音抵達兩耳的時間差異就稱為雙耳時間差(interaural timing difference, ITD),是我們用來判斷聲音左右方位的線索之一。若聲音直接從左側傳來,抵達左耳的時間比右耳大概早了 0.6 到 0.8 毫秒,相當於 0.0006 到 0.0008 秒[1]。雖然超乎想像的短暫,但也足夠讓大腦分辨聲音的水平方向了。

不僅如此,當鞭炮在左側炸開時,你是否也會下意識用手壓住左耳?這就跟雙耳強度差(interaural level difference, ILD)有關了。因為左右耳之間相隔了一顆頭,所以比較靠近鞭炮聲的左耳所接受到的聲音強度(音量)會比右耳來的大。這種頭部阻隔聲音的現象被稱為頭影效應(head shadow effect)。

高頻聲音較容易受到頭影效應的影響。圖\雅文基金會

當聲音越高頻時,代表能量在空氣裡每秒鐘振動的次數越多,波長越短,因此受到頭影效應的影響也越明顯。相反的,因為低頻聲音的波形較長,甚至超過頭的寬度,所以雙耳強度差通常會偏小。研究顯示我們通常會倚賴雙耳強度差來判斷 2,000Hz 以上聲音的方位,而雙耳接收到的高頻聲音量差最高可達 20 分貝[2]

再加上耳廓的幫忙,讓聲音定位三維化

大腦整合聲音抵達雙耳的時間差異和強度差異就能讓我們掌握聲音的水平位置,然而垂直定位則須靠雙耳的耳廓(俗稱耳殼)來幫忙,才能分清楚聲音是來自前方、後方、上方或下方。

耳廓能幫助收集聲音,還能幫助大腦判斷聲音的來向。圖/Pexels

就像指紋一樣,每個人的耳廓樣貌也都是獨一無二。當聲波抵達到耳朵時會依據耳廓的凹凸形狀產生不同的反射,隨著到達角度的不同產生各種獨特的音質,最後匯集進入耳道,我們的大腦就藉由這些聲音特質定位聲源,稱為耳廓效應(pinna effect)[3]。每個人從出生起就不斷累積運用耳廓辨識聲源的經驗來讓定位能力更好。下次你可以把耳廓揉捏成不同形狀,就會發現自己在垂直定位聲源的精準度變差。

聽聲辨位需要兩隻耳朵協同努力,因此對於單側聽力受損的人而言,雖然平常聽別人說話可以靠好耳幫忙,但碰到得要定位聲源的時候就頭大了,因為所有的聲音聽起來都像是從好耳那邊傳過來的。也就是無法使用雙耳的關係,單側聽損者常會左右轉頭、利用視覺輔助去尋找聲音的來源,

除了定位,擴音降噪也難不倒你的雙耳

既然說明了雙耳在聲源定位上的用處,就不能不順帶提到兩個雙耳聆聽的優勢:雙耳加成(binaural summation)與雙耳靜噪(binaural squelch)。由左耳進入的聲音會先交由右腦處理,右耳聲則先交給左側腦,但最後兩側腦會共同處理和詮釋聲音。許多研究就發現,雙耳聆聽可以提升語音理解的能力[4]

比起雙耳,只用單耳偷聽別人講八卦其實更辛苦,你得要更靠近說話者才能聽得清楚。雖然聲源的音強一樣,但聽話者用雙耳聆聽時,大腦感知到響度會比單耳來的大聲,而這樣的感受差異可小至 2~3 分貝,大則可到 6~10 分貝。這樣雙耳加成的效果來自於當信息傳送到聽覺皮層前,左右兩條聽神經已相互交錯數百次擴大聲音,讓輕柔的聲音也能聽得更清楚[5]

雙耳聆聽讓噪音干擾降低,讓你在朋友聚會聊得更盡興。圖/Pexels

而雙耳聆聽的另一個優勢則是雙耳靜噪,除了整合兩邊聲音提高音量外,雙耳也能讓大腦有效發揮選擇性聽覺注意力,讓我們在吵雜環境能聽得不費力,更專注於別人說話。這是因為當信號和噪音從不同位置產生時,聽覺中樞可以在整合兩耳接收聲音的時間和強度差異來分離訊息和噪音,進而提升訊噪比(signal-to-noise ratio, SNR),讓訊息聽起來就更清楚[6]

在讀了這些雙耳的功用後,你是否也對自己的兩隻耳朵肅然起敬,並不得不讚嘆身體奧妙的運作機制?未來在享受虛擬世界磅礡音效的同時,也別忘了定時拿下耳機讓耳朵喘個氣,別讓雙耳過度操勞而受了永不可逆的損傷。

參考文獻

  1. Hale, K. S., & Stanney, K. M. (Eds.). (2014). Handbook of virtual environments: Design, implementation, and applications. CRC Press.
  2. Moore, B. C. (2012). An introduction to the psychology of hearing. Brill.
  3. Batteau, D. W. (1967). The role of the pinna in human localization. Proceedings of the Royal Society of London. Series B. Biological Sciences, 168(1011), 158-180.
  4. Ibrahim, I., Parsa, V., Macpherson, E., & Cheesman, M. (2013). Evaluation of speech intelligibility and sound localization abilities with hearing aids using binaural wireless technology. Audiology Research, 3(1), 1-9.
  5. Gelfand, S. (2010). Essentials of audiology.
  6. Litovsky, R., Parkinson, A., Arcaroli, J., & Sammeth, C. (2006). Simultaneous bilateral cochlear implantation in adults: a multicenter clinical study. Ear and hearing, 27(6), 714.
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。