0

3
2

文字

分享

0
3
2

噪音對小寶寶有什麼影響?——淺談胎兒的聽覺系統發展

雅文兒童聽語文教基金會_96
・2022/03/05 ・3191字 ・閱讀時間約 6 分鐘

  • 文/朱家瑩|雅文基金會聽語科學研究中心研究員

懷孕的準媽媽總是想要給寶寶最好的,讓肚子裡的胎兒贏在起跑點——市面上五花八門的胎教音樂,通通拿來給胎兒聽!據傳,莫札特的音樂能讓胎兒剛出生智力就高人一等[1],於是準媽媽選擇了莫札特的《小星星變奏曲》。為了讓肚裡的胎兒好好接收到音樂,準媽媽直接將耳機貼在肚皮上,讓聲音少些阻隔,能夠直達胎兒的耳邊。但是請小心,這樣的音量可能過大,很可能會造成胎兒的聽力損失。

準媽媽應避免「貼身」播放胎教音樂,免得音量過大,很可能會造成胎兒的聽力損失。圖/Freepik

從媽媽的肚子裡開始「聽」

在肚子裡的胎兒,因為隔著媽媽的肚皮、子宮、羊水和甩也甩不掉的脂肪,不僅聽到的音頻較不完整,且音量也小了許多。但,即便有宛如銅牆鐵壁般的保護,若讓胎兒長時間暴露在高於 60 分貝(dBA)的低頻噪音下,仍可能會造成寶寶的聽力損失[2]

什麼?胎兒也可能會有噪音性聽損?那什麼時候該開始注意周遭的聲音,避免讓胎兒還未出生就因噪音而聽損呢?在討論前,先讓我們瞭解一下胎兒的聽覺系統發展。

就像國道建設,聽覺系統也是一段一段接起來

讓我們聽到聲音的聽覺系統分為兩個部分:一個是接收聲音的耳朵構造,包含外耳、中耳及內耳中的耳蝸;另一個則是在大腦中處理聲音的訊號的聽覺皮質(auditory cortex)。

-----廣告,請繼續往下閱讀-----

耳朵構造的發展很早就開始了。從第一孕期(0-14 週)開始,大約在 15 週時就會發展完成,而內耳毛細胞則是在 10-12 週開始分化;大約在第二孕期開始,依序由內毛細胞發展到外毛細胞[2, 3]。當內毛細胞發展完成,可以將聲音訊號傳遞到腦幹及顳葉時,聽覺系統就可以開始運作了,這時候大約是 25 到 29 週[4]。內毛細胞是聲音的接收器,連結著聽神經,聲音刺激引發內毛細胞震動後,就可將聲音傳輸到可以處理聲音訊號的聽覺皮質。

因此,當內毛細胞發展完成後,也就是第三孕期(28-40 週)時,聽覺系統開始運作。這時胎兒可以藉由耳毛細胞傳遞訊號到大腦,進而聽到聲音。

當內外毛細胞發展完成後,聽覺刺激就能一路上傳到聽覺皮質,正式啟用聽覺系統。圖/修改自 Freepik,增加各孕期階段之聽覺系統發展內容

胎兒也需要聽覺刺激——沒刺激就沒發展

聽覺系統的發展仰賴聽覺刺激來訓練毛細胞傳達訊息到大腦。因此,當聽覺系統開工後,便需要有聲音刺激來訓練毛細胞。文獻指出,懷胎 7 月起到出生 1 個月內,是讓胎兒學習不同聲音頻率的最佳時機[5]!不管是父母的說話或哼唱聲、環境中的講話聲,或是音樂,都是很好的刺激來源。

揪兜媽爹!聲音不是「大」又「多」就好

不過,要特別注意音量以及給予的方式,因為胎兒的耳毛細胞還很脆弱,有可能會因為過大且持續的聲音刺激造成聽力損失,得不償失。

-----廣告,請繼續往下閱讀-----

我們大多是透過空氣傳遞的方式聽到聲音,但肚子裡的胎兒可不一樣。外界聲音要先穿透媽媽厚厚的肚皮、子宮跟羊水才能抵達(可以想像在水裡摀著耳朵聽聲音)。因為耳朵都被羊水塞住了,胎兒是透過骨頭傳遞的方式聽聲音,能聽到的僅限於低頻音域(500 Hz 以下),如此可以保護負責處理高頻聲音的耳毛細胞[2]。但是,超過 60 分貝(dBA)的低頻噪音還是應該要避免,否則就會造成還在學習傳導訊息的耳毛細胞受到傷害,進而造成不可逆的聽力損失。

動滋動滋,媽媽肚子自動強化重低音

低頻噪音可以輕易穿透媽媽的肚子,聲壓不僅不會減少,甚至可能會增加,容易造成胎兒的耳毛細胞受到傷害。相對地,高頻噪音(500 Hz 以上)則很難進到胎兒的內耳,而且一旦進入媽媽的肚子後,還會減少 20-30 dB 的聲壓[6],因此低頻噪音對於胎兒的影響遠大於高頻噪音。

除此之外,也要注意工作環境和生活環境中的噪音。研究指出,若準媽媽的工作場域暴露在 80 分貝(dBA)的噪音當中,除了會造成胎兒聽損外,也容易早產[7];而若生活環境吵雜,像是住家靠近機場,每天暴露在 60 到 65 分貝(dBA)的飛機噪音中,也容易造成胎兒出生體重過輕[8]。由此可見,噪音對於胎兒的影響不僅是聽力發展!

不同分貝(dBA)的聽覺感受、生活中的相關聲音範例,以及對於人的影響。但此表中所呈現的分貝數是包含全頻率的聲音,並非特定高頻或低頻。表/翻譯自參考資料 9

聲光玩具可以是最佳保姆,但也可能是聽力殺手

聽覺系統的發展在出生後仍然持續進行[10],因此仍然需要不同的聲音刺激。不過,市面上常見的聲光玩具,對於嬰幼兒的聽力有潛在的危險性,所以挑選玩具時也需多多留意。

-----廣告,請繼續往下閱讀-----

嬰幼兒的鼓膜對於噪音很敏感,因為他們的耳道比大人短,再加上嬰幼兒的手臂長度較短,在玩玩具時,玩具和耳朵的距離比大人近,音量也會相對大聲[11]。對於年紀更小的嬰幼兒,有些甚至還沒有能力將過大音量的聲光玩具移開,同時也沒有足夠的認知能力可以辨識什麼樣的聲音音量是屬於太大聲的噪音[12]

挑選嬰幼兒玩具時,需要多加留意玩具的音量。圖/Pexels

根據 Sight & Hearing Association 2021 年的調查報告[13],下圖舉例的玩具音量皆超過 100 分貝(dBA)。可以看到玩具的種類包含尖叫雞、電子樂器、聲光機器人,甚至是音效書。

選購玩具時,若音量對你來說有點大聲,那就不要猶豫,請把它放回架上。尚未拆封的玩具因有包裝阻隔,會再降低一些音量——要是你覺得大聲,那對嬰幼兒更是震耳欲聾[14]。若是手邊已經有聲光玩具,也不用急著丟掉,可以用膠帶貼住喇叭,降低音量[15],或者直接拔掉電池[16]

聽覺系統自胎兒時期開始發展,因此當寶寶開始聽得到聲音時,就要避免持續性的噪音可能造成的聽力損害,而噪音的來源可能就是身邊常見的聲源,包含胎教音樂跟聲光玩具等。這些被視為「好」的聲音,一旦超過可容忍的音量,就會變成「不好」的噪音了。

-----廣告,請繼續往下閱讀-----
音量超標的玩具品項,包含尖叫雞、電子樂器、聲光機器人,還有音效書。圖/Amazon

參考文獻

  1. Rauscher, F. H., Shaw, G. L., & Ky, C. N. (1993). Music and spatial task performanceNature365(6447), 611-611.
  2. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews, 8(4), 187-193.
  3. James, W. (2000). Development of the ear and hearingJournal of perinatology20(1), S12-S20.
  4. Moore, J. K., & Linthicum, F. H. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478. 
  5. Kisilevsky, B. S., Hains, S. M., Lee, K., Xie, X., Huang, H., Ye, H. H., … & Wang, Z. (2003). Effects of experience on fetal voice recognitionPsychological Science, 14(3), 220-224.
  6. Gerhardt, K. J., & Abrams, R. M. (2000). Fetal exposures to sound and vibroacoustic stimulationJournal of Perinatology20(1), S21-S30.
  7. Gupta, A., Gupta, A., Jain, K., & Gupta, S. (2018). Noise pollution and impact on children healthThe Indian Journal of Pediatrics85(4), 300-306.
  8. Knipschild, P., Meijer, H., & Sallé, H. (1981). Aircraft noise and birth weightInternational Archives of Occupational and Environmental Health48(2), 131-136.
  9. Committee on Environmental Health. (1997). Noise: a hazard for the fetus and newbornPediatrics100(4), 724-727.
  10. Litovsky, R. (2015). Development of the auditory systemHandbook of clinical neurology129, 55-72.
  11. Hellstrom, P. A., Dengerink, H. A., & Axelsson, A. (1992). Noise levels from toys and recreational articles for children and teenagersBritish journal of audiology26(5), 267-270.
  12. Axelsson, A. (1996). The risk of sensorineural hearing loss from noisy toys and recreational activities in children and teenagersInternational Journal for Consumer and Product Safety3(3), 137-146.
  13. Sight & Hearing Association (2021). Sight & Hearing Association Releases 2021 Annual Noisy Toys List.
  14. Jabbour, N., Weinreich, H. M., Owusu, J., Lehn, M., Yueh, B., & Levine, S. (2019). Hazardous noise exposure from noisy toys may increase after purchase and removal from packaging: A call for advocacy. International Journal of Pediatric Otorhinolaryngology, 116, 84-87.
  15. Weinreich, H. M., Jabbour, N., Levine, S., & Yueh, B. (2013). Limiting hazardous noise exposure from noisy toys: simple, sticky solutionsThe Laryngoscope, 123(9), 2240-2244.
  16. Zappi, R. E. (2021). Watch for Holiday Toys That Can Pose a Hearing Hazard.
文章難易度
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

2
2

文字

分享

0
2
2
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 54 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
這個塵世太喧囂~噪音對我們造成什麼影響?——專訪中研院人文社會科學研究中心詹大千研究員
研之有物│中央研究院_96
・2023/09/17 ・5137字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|呂慧穎
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

你有沒有聽到什麼聲音?隱藏在鬧市的噪音汙染

你有留意過生活周遭的聲音嗎?無論是雞犬桑麻的鄉村,或是車水馬龍的都市,都縈繞著各種聲音,這些你可能早已習慣的聲響,卻可能在無形間影響我們的身心健康!中央研究院「研之有物」專訪院內人文社會科學研究中心詹大千研究員,其研究團隊針對臺北市的交通噪音分布特性進行研究,運用 2D 及 3D 噪音地圖呈現 24 小時的實時變化。更透過舉辦公民科學活動,邀請民眾用手機測量並感知生活中的聲音變化。究竟噪音會造成哪些身心疾患?臺北市的噪音曝露情形如何?我們又該怎麼防範噪音汙染呢?

臺北市 2D 噪音地圖
圖|中研院地理資訊科學研究專題中心

太吵了我睡不著!聲音也會影響你的健康?

車輛呼嘯而過的引擎聲令人心驚膽戰,公園此起彼落的蟲鳴鳥叫則讓人心曠神怡。仔細聆聽將發現,每種聲音都帶給人不同的感受,長久下來不僅影響心境、更關乎健康。若我們能掌握周遭環境潛在的噪音汙染,即多了一分守護自身健康的能力。

中研院人文社會科學研究中心詹大千研究員兼副主任,同時也是地理資訊科學研究專題中心執行長,擅長地理資訊科學結合流行病學研究。因 2018 年參與中研院健康雲計畫至英國開會,因緣際會下得知,歐洲對於汙染與健康因子的討論早已包含「噪音」,但當時的臺灣尚無系統性的科學研究。

翌年正巧陽明交通大學公共衛生研究所在繪製「噪音地圖」(noise map)時遭遇難題,而中國醫藥大學附設醫院則想透過聲音監測改善加護病房的噪音問題,再加上中研院資訊科學研究所陳伶志研究員帶領研發的「聲音盒子」(SoundBox)技術支持。在多方開啟合作意願下,一趟監測都市噪音的奇妙旅程就此展開!

-----廣告,請繼續往下閱讀-----

目前世界衛生組織以均能音量 55 分貝作為住宅區戶外的音量建議標準,詹大千進一步提到:「過去進行噪音與代謝症候群研究時,曾分析健檢民眾的自填健康問卷,再比對各地環保局的噪音監測站資料後發現,民眾普遍覺得超過 75 至 80 分貝會覺得吵雜不適,而 50 至 55 分貝以下會感到安靜舒適,就感受性而言與世衛的建議標準相近。」

事實上,有關噪音影響健康的探討由來已久,最初主要關注職業環境的噪音暴露問題,而後擴及生活中的噪音汙染對民眾身心的危害。根據世界衛生組織的研究:

噪音除了會損害聽力,還會導致憂鬱焦慮、睡眠障礙、注意力下降,提高內分泌系統及心血管疾病的發生率,甚至因聽覺刺激降低而增加罹患失智症的風險,影響不容小覷!

中研院人文社會科學研究中心詹大千研究員,與學術及非營利組織展開一趟監測都市噪音的奇妙旅程!
圖|研之有物

是誰那麼吵?用噪音地圖看一看

生活中噪音的來源百百款,常見的包括交通噪音、工程噪音、近鄰噪音、娛樂噪音等,位列行政院環境保護署(今環境部)公害陳情數第一名。

其中,車輛、飛機產生的「交通噪音」動輒飆破 80 分貝,是日常生活中影響範圍最廣,也最容易被忽視的公害。

詹大千參與的研究團隊特別針對臺北市的交通噪音分布特性進行研究,運用 2D 及 3D 噪音地圖呈現 24 小時的實時變化。

-----廣告,請繼續往下閱讀-----

自 2017 至 2019 年進行的交通噪音數據蒐集並非一帆風順。目前臺北市政府環境保護局僅有 12 個環境噪音監測點、12 個道路交通噪音監測點,根據《噪音管制法》規定,每季只須進行 2 次、每次 24 小時的連續監測,而且只在晴天才會測量,導致研究團隊能獲取的資料量相當有限。

但研究團隊並不氣餒,轉而應用交通管制工程處在臺北市內設置的 7 百多組「交通流量偵測器」(Vehicle Detector,簡稱 VD)所測到的即時車流量及車速數據,來輔助噪音地圖的建置分析。

首先,將研究區域進行 500 x 500 公尺的網格分割,臺北市全區共分出 1,032 個網格,網格內具有 VD 測點者共 303 格,無 VD 測點者共 729 格。接著,比對噪音監測站數據與 VD 數據,建立統計模型關係,據此推估出 303 個具有 VD 測點網格的噪音值。

至於其他 729 個無 VD 測點網格,則運用諸如人口密度、土地利用類型、道路特性等環境條件,與前述 303 個具有 VD 測站的網格進行相似度比對,藉以推估其噪音值。

-----廣告,請繼續往下閱讀-----

除了道路交通噪音,臺北市最明顯的噪音來源非松山機場莫屬。研究團隊蒐集臺北航空站 13 處自動監測設備(3 處位於松山機場、10 處位於機場周圍)測到的每小時平均噪音值,依據航空噪音防制區的範圍,將航空噪音值疊加在相對應的網格內。

至於環保局僅有晴天監測的噪音資料,研究團隊也沒忘記補強,透過模型考慮中央氣象局的降雨資料參數,將降雨造成的環境音加入噪音總量中,試圖更貼近真實的噪音狀況。

最後,為了驗證用 VD 偵測資料進行噪音值推估的可信度,研究團隊也實地架設中研院資訊所研發的「聲音盒子」收錄現場噪音值,驗證推估數值的準確度。

圖|研之有物(資料來源|詹大千)
聲音盒子是在「空氣盒子」(AirBox)的基礎上,增加感測聲音分貝數的儀器。每分鐘會提供一組感測值,含至少 30 次取樣的聲音最大值、最小值、中位數和均能音量,大幅提升傳統環境感測的時間解析度,提供尺度更細微的環境變化資訊。
圖|研之有物

研究團隊更進一步運用 3D 建模呈現噪音在不同高度的衰減變化。在假設每棟建築暴露的交通噪音來自最近道路的條件下,將道路到建築物的水平距離、所在樓層的垂直高度(假設每層樓高度為 3 公尺)等資料納入衰減模式。

-----廣告,請繼續往下閱讀-----

計算結果顯示,每上升一層樓大約下降 0.4 分貝,再將模式推估值與不同樓層測量到的實際噪音值進行比較驗證,最終在 3D 地圖上以分層填色的色塊顯示不同樓層的噪音值。

圖|研之有物(資料來源|詹大千)
中午 12 點的大安森林公園周遭,從 3D 噪音地圖可以看到每一樓層的噪音值,因低樓層靠近馬路,接收到的噪音比高樓層多。
圖|研之有物(資料來源|中研院地理資訊科學研究專題中心

程式設定每 5 分鐘抓取一次 VD 數據(數據的精度為每分鐘一筆),並運用建置在國家高速電腦中心的運算平台來視覺化大量的噪音數據,如此就能在 2D 與 3D 臺北市噪音地圖上,以不同網格色塊即時查看每小時的噪音值。

2D 或 3D 地圖除了可用在噪音監測,對於其他空間流行病學的分析也很有幫助,但詹大千提醒,雖然 3D 地圖的資料可精確得知不同樓層的差異,但基於對居民隱私權的保障,仍建議以 2D 地圖進行相關研究分析,當流行病統計資料模糊化至鄉鎮鄰里等級時,就能避免個人資料的暴露。

找到噪音來源,才可以對症下藥!

以世界衛生組織的交通噪音曝露建議標準來看,如想防範交通噪音影響身心健康,最好控制在整日噪音曝露不超過 53 分貝,夜間噪音曝露不超過 45 分貝。根據詹大千團隊的研究結果顯示:

-----廣告,請繼續往下閱讀-----

臺北市日間有 32.80%、夜間有 27.69% 的居民暴露在超過上述標準的交通噪音中,顯然我們還有改善的空間。

詹大千表示,本次研究採用比較嚴格的檢視標準,若是根據臺北市環保局的監測數據來看,臺北市的整天均能音量約在 56 分貝,代表在都市中仍能找到安靜的戶外空間。

此外,仔細觀察會發現,噪音地圖在一天的不同時段會產生不同變化。上午 7 點通勤時間,松山機場周遭的松山區、中山區、內湖區一帶,噪音值高達 70 分貝以上。晚上 6 點下班時間,堤頂大道、建國高架、市民高架、重慶北路開始出現車潮,連帶噪音值也提高到 55 分貝以上。到了午夜 12 點,除了大安區、中正區、中山區、大同區、信義區等住宅與路網較密集處有 50 分貝左右,其他地區幾乎都在 45 分貝以下。

2D 噪音地圖不同時段噪音值與平均車速變化
圖|研之有物(資料來源|中研院地理資訊科學研究專題中心

想降低環境噪音傷害其實並不困難,聯合國環境署在 2022 年最新報告《Frontiers 2022》就提供許多降噪方法,包括規劃植栽綠帶、更換電動車、安裝隔音設備(如氣密窗)、臨路建築向內退縮、更改道路鋪面材質等,皆被證實能有效降噪,但前提是必須先掌握噪音的組成、來源及分布樣貌,才能準確擬定防治方案。

為了對症下藥處理噪音問題,目前可努力的地方在於增加噪音監測點。詹大千談到,未來或許可結合智慧電桿裝置,整合交通、噪音、空氣汙染等監測功能,同時提供更穩定的實時資料傳輸品質,打造守護全民健康的基礎資料收集網絡。

-----廣告,請繼續往下閱讀-----

鬧中取靜——隨手記錄生活中寧靜的角落

詹大千與臺灣聲景協會合作,在 2023 年 5 月至 7 月推出「尋找 55 分貝靜土」活動,邀請民眾用手機測量戶外分貝數,尋找臺北市戶外聲音平均 55 分貝的地方。
圖|臺灣聲景協會

除了監測技術與硬體設施的精進,詹大千也提出自我保護聽力的重要性,首要任務在於提升民眾對聲音的敏感度,意識到生活周遭存在哪些會傷害聽力的噪音?哪些地方是喧囂都市中難得的寧靜避風港?

詹大千與理念相同的臺灣聲景協會合作,在 2023 年 5 月至 7 月推出「尋找 55 分貝靜土」公民科學活動,邀請民眾擔任「寧靜追蹤師」,尋找臺北市戶外聲音平均 55 分貝的地方,察覺都市中的聲音變化對居民身心的影響。

活動期間共有 25 名受訓民眾投入記錄工作,貢獻了 182 個位在臺北市不同地區的採樣資料。民眾運用 NIOSH(iOS 適用)、Noise Capture(Android 適用)兩款 APP 測量戶外聲音的分貝數,並在詹大千研究團隊開發的聊天機器人平台 LINE 官方帳號「尋找 55 分貝靜土」記錄平均分貝數、最高分貝數、地點類型、地點位置、寧靜度與舒適度評分,並拍下當地照片、錄下環境音、寫下對聲音的感受。

記錄成果顯示,大於 55 分貝與小於 55 分貝的音量大約各佔一半,臺北市南港、內湖、北投、文山等靠山的行政區較為寧靜。最常被捕獲的靜土位於公園、巷弄、住宅區等地。蟲鳴鳥叫等自然聲音是靜土中的重要元素,人為聲音、道路交通相關聲音則是使戶外聲音大於 55 分貝的主因。

-----廣告,請繼續往下閱讀-----
大於 55 分貝(紅點)與小於 55 分貝(藍點)的音量大約各佔一半,最常被捕獲的靜土位於公園、巷弄、住宅區等地。
圖|尋找 55 分貝靜土官網

民眾普遍認為,這次的活動讓自己對環境中的聲音變化更加敏感,原本只有 45 分貝的環境,因車輛或人群經過,瞬間飆到 70 分貝。也有民眾察覺,自家孩子每天幾乎在 70 分貝左右的環境上課,讓他對都市噪音問題更有警覺!

此外,當你對聲音變得敏感後,將發現每個人對聲音的承受度都不同,不同的聲音特徵與情境也會帶來不同感受。例如夏天雄蟬的鳴叫聲可高達 80 分貝,但因為是來自大自然的聲音,人們的感覺通常是舒服的。而個性活潑外向的人可能經常出入熱鬧的場合,對於音量的容忍度也相對較高。

尋找 55 分貝靜土活動,透過問卷蒐集民眾隨手記錄的照片、聲音、心得等質性資料,最終在地圖上呈現,帶領眾人感受散布在都市各個角落的靜土。
圖|尋找 55 分貝靜土官網

這些對聲音的多元感受在量化研究中較難呈現,但搭配公民科學活動的質性問卷、照片與錄音的相互對照,將可以發掘更多有趣的聲景現象,也為改變民眾行為、創造更多都市靜土盡一份心力!

研之有物│中央研究院_96
296 篇文章 ・ 3558 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
1

文字

分享

0
3
1
軍機操演太吵,蜥蜴狂吃紓壓
胡中行_96
・2023/05/01 ・1935字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

軍機操演保衛國家,噪音卻會干擾周遭社區。[1]人類的聽力範圍,約在 20 至 20,000 赫茲之間;與蜥蜴的 100 到 5,000 赫茲,部份重疊。[2]所以別只想到自己,請多關懷鄰居──此處不堪其擾的,可能還包括蜥蜴。學名 Aspidoscelis neotesselatus 的科羅拉多格紋鞭尾蜥蜴(Colorado checkered whiptail),列屬美國科羅拉多州的特別關注物種(species of special concern),[3]並被美軍視為瀕危物種(species at risk)。[2]由於其棲地涵蓋美國陸軍卡森堡軍事基地(US Army Fort Carson Military Base),科學家想知道軍機航道下的噪音壓力,是否會影響牠們的健康和生育。[3]

科羅拉多格紋鞭尾蜥蜴。圖/Koopasteve on Wikimedia Commons(CC BY-SA 4.0)

孤雌生殖

Aspidoscelis屬之下,某些種的蜥蜴只有雌性,採行孤雌生殖(又稱單性生殖;parthenogenesis),[4]卵不用受精就能長成胚胎。這種方法一般會使物種幾無變異,遇上疾病或環境變化,便容易被一舉殲滅。[5]比較特別的是,牠們過去有的曾與同屬不同種的雄性雜交,多少豐富了基因,混血產生的科羅拉多格紋鞭尾蜥蜴,還因此擁有三套染色體。[4, 5, 6]孤雌生殖的 Aspidoscelis 屬蜥蜴,例如:科羅拉多格紋鞭尾蜥蜴,[4]製造卵子時,比有性生殖(sexual reproduction)多複製一次染色體,才進行分裂。如此一來,無需精子湊對,依然能發展出正常胚胎。[5, 7]

噪音的影響

研究團隊於 2021 年進入繁殖季的一個月後,也就是 6 月期間,跑去卡森堡軍事基地一帶,測量飛航範圍的地面噪音:[3]軍機演練時,33.9 到 112.2 分貝;其他時候,則為 30.1 至 55.8 分貝。科學家也觀察科羅拉多格紋鞭尾蜥蜴,在這兩種情況下的行為,並幫牠們抽血、秤重、量身長、照婦科超音波等。[2, 3]最後,將所有蒐集到的數據,依照設定的指標逐項分析:[3]

  • 皮質酮(corticosterone):當壓力來襲,腎上腺會分泌皮質酮,來調節能量供給。軍機劃過天際的日子,科羅拉多格紋鞭尾蜥蜴的皮質酮,一如預期地上升。[3]
  • 血糖(plasma glucose):歐洲海鱸(European sea bass;學名:Dicentrarchus labrax)遇到人為噪音時,血糖會提高,以應付壓力下所需的耗能。儘管這種現象聽起來相當合理,但是科羅拉多格紋鞭尾蜥蜴的血糖卻無動於衷。[3]不曾飆高以因應外界刺激,也沒有消耗過頭而直直下墜。
  • 反應性氧代謝物(reactive oxygen metabolites):人為噪音會使歐洲濱蟹(shore crabs;學名:Carcinus maenas),加速代謝,而提高耗氧。科學家原本覺得,科羅拉多格紋鞭尾蜥蜴也會這樣。誰知道牠們血液中的反應性氧代謝物,出乎意料地於軍機操演時下降,懷孕者濃度又比其他個體更低。[3]
  • 補償性進食(compensatory eating):壓力暴食不是人類的專利,認識科羅拉多格紋鞭尾蜥蜴後,有沒有倍感欣慰?牠們受軍機的噪音干擾,有時原地進食,有時邊走邊吃。整體來說,在壓力下吃多動少。[3]
  • 酮體(ketone bodies):當血糖供不應求,身體會代謝脂肪,產出酮作為能量來源,[3, 8]此即生酮飲食(ketogenic diet)的減肥原理。奇妙的是,人類努力控制飲食,才能達到的狀態,[8][註]科羅拉多格紋鞭尾蜥蜴竟得來全不費工夫。在軍機的噪音下,牠們的血糖明明沒有變化,脂肪就直接開始代謝。體型小的個體,酮體濃度較高。[3]

共存共榮

綜合以上,由上升的皮質酮,可以確定軍機飛行的噪音,會給科羅拉多格紋鞭尾蜥蜴帶來壓力。科學家認為,牠們一方面狂吃,所以血糖沒有下降,反應性氧代謝物甚至減少;另方面不等血糖耗盡,就搶先燃脂製造酮體當補給。在這個機制的調節下,儘管居住環境不太理想,抗壓消耗很多能量,但是科羅拉多格紋鞭尾蜥蜴適應得還算可以。當然,如果願意體貼孕婦,科學家建議軍機最好於繁殖季節期間,避開蜥蜴數量密集的地區,或是飛高讓地面噪音低於 50 分貝。[3]以後當美軍飛航演練,維護人類社會的和平與穩定;期望科羅拉多格紋鞭尾蜥蜴也能安心增產,拓展成繁榮昌盛的族群。

-----廣告,請繼續往下閱讀-----

  

備註

生酮飲食有痛風、腎結石和營養失調等潛在副作用,[8]嘗試前請找醫師評估。

參考資料

  1. Kirk A. (10 APR 2023) ‘What’s that noise? Colorado Air National Guard to fly F-16s at night’. 9News.
  2. Dijkstra M. (29 MAR 2023) ‘Lizards at US Army installation are stress eating during flyovers’. Frontiers Science News.
  3. Kepas ME, Sermersheim LO, Hudson SB, et al. (2023) ‘Behavior, stress and metabolism of a parthenogenic lizard in response to flyover noise’. Frontiers in Amphibian and Reptile Science, 1:1129253.
  4. Walker JM, Montgomery CE, Cordes JE, et al. (2019) ‘Morphological Variation, Habitat, and Conservation Status of arthenogenetic Aspidoscelis tesselatus Pattern Class C in the Canyonlands of Southeastern Colorado, USA’. Herpetological Conservation and Biology 14(1):119–131.
  5. How an Asexual Lizard Procreates Alone’. (02 JUN 2022) National Geographic.
  6. Parthenogenesis’. Britannica. (Accessed on 20 APR 2023)
  7. Newton AA, Schnittker RR, Yu Z, et al. (2016) ‘Widespread failure to complete meiosis does not impair fecundity in parthenogenetic whiptail lizards’. Development, 143(23):4486-4494.
  8. Diet Review: Ketogenic Diet for Weight Loss’. Harvard T.H. Chan School of Public Health. (Accessed on 19 APR 2023)

0

3
2

文字

分享

0
3
2
噪音對小寶寶有什麼影響?——淺談胎兒的聽覺系統發展
雅文兒童聽語文教基金會_96
・2022/03/05 ・3191字 ・閱讀時間約 6 分鐘

  • 文/朱家瑩|雅文基金會聽語科學研究中心研究員

懷孕的準媽媽總是想要給寶寶最好的,讓肚子裡的胎兒贏在起跑點——市面上五花八門的胎教音樂,通通拿來給胎兒聽!據傳,莫札特的音樂能讓胎兒剛出生智力就高人一等[1],於是準媽媽選擇了莫札特的《小星星變奏曲》。為了讓肚裡的胎兒好好接收到音樂,準媽媽直接將耳機貼在肚皮上,讓聲音少些阻隔,能夠直達胎兒的耳邊。但是請小心,這樣的音量可能過大,很可能會造成胎兒的聽力損失。

準媽媽應避免「貼身」播放胎教音樂,免得音量過大,很可能會造成胎兒的聽力損失。圖/Freepik

從媽媽的肚子裡開始「聽」

在肚子裡的胎兒,因為隔著媽媽的肚皮、子宮、羊水和甩也甩不掉的脂肪,不僅聽到的音頻較不完整,且音量也小了許多。但,即便有宛如銅牆鐵壁般的保護,若讓胎兒長時間暴露在高於 60 分貝(dBA)的低頻噪音下,仍可能會造成寶寶的聽力損失[2]

什麼?胎兒也可能會有噪音性聽損?那什麼時候該開始注意周遭的聲音,避免讓胎兒還未出生就因噪音而聽損呢?在討論前,先讓我們瞭解一下胎兒的聽覺系統發展。

就像國道建設,聽覺系統也是一段一段接起來

讓我們聽到聲音的聽覺系統分為兩個部分:一個是接收聲音的耳朵構造,包含外耳、中耳及內耳中的耳蝸;另一個則是在大腦中處理聲音的訊號的聽覺皮質(auditory cortex)。

-----廣告,請繼續往下閱讀-----

耳朵構造的發展很早就開始了。從第一孕期(0-14 週)開始,大約在 15 週時就會發展完成,而內耳毛細胞則是在 10-12 週開始分化;大約在第二孕期開始,依序由內毛細胞發展到外毛細胞[2, 3]。當內毛細胞發展完成,可以將聲音訊號傳遞到腦幹及顳葉時,聽覺系統就可以開始運作了,這時候大約是 25 到 29 週[4]。內毛細胞是聲音的接收器,連結著聽神經,聲音刺激引發內毛細胞震動後,就可將聲音傳輸到可以處理聲音訊號的聽覺皮質。

因此,當內毛細胞發展完成後,也就是第三孕期(28-40 週)時,聽覺系統開始運作。這時胎兒可以藉由耳毛細胞傳遞訊號到大腦,進而聽到聲音。

當內外毛細胞發展完成後,聽覺刺激就能一路上傳到聽覺皮質,正式啟用聽覺系統。圖/修改自 Freepik,增加各孕期階段之聽覺系統發展內容

胎兒也需要聽覺刺激——沒刺激就沒發展

聽覺系統的發展仰賴聽覺刺激來訓練毛細胞傳達訊息到大腦。因此,當聽覺系統開工後,便需要有聲音刺激來訓練毛細胞。文獻指出,懷胎 7 月起到出生 1 個月內,是讓胎兒學習不同聲音頻率的最佳時機[5]!不管是父母的說話或哼唱聲、環境中的講話聲,或是音樂,都是很好的刺激來源。

揪兜媽爹!聲音不是「大」又「多」就好

不過,要特別注意音量以及給予的方式,因為胎兒的耳毛細胞還很脆弱,有可能會因為過大且持續的聲音刺激造成聽力損失,得不償失。

-----廣告,請繼續往下閱讀-----

我們大多是透過空氣傳遞的方式聽到聲音,但肚子裡的胎兒可不一樣。外界聲音要先穿透媽媽厚厚的肚皮、子宮跟羊水才能抵達(可以想像在水裡摀著耳朵聽聲音)。因為耳朵都被羊水塞住了,胎兒是透過骨頭傳遞的方式聽聲音,能聽到的僅限於低頻音域(500 Hz 以下),如此可以保護負責處理高頻聲音的耳毛細胞[2]。但是,超過 60 分貝(dBA)的低頻噪音還是應該要避免,否則就會造成還在學習傳導訊息的耳毛細胞受到傷害,進而造成不可逆的聽力損失。

動滋動滋,媽媽肚子自動強化重低音

低頻噪音可以輕易穿透媽媽的肚子,聲壓不僅不會減少,甚至可能會增加,容易造成胎兒的耳毛細胞受到傷害。相對地,高頻噪音(500 Hz 以上)則很難進到胎兒的內耳,而且一旦進入媽媽的肚子後,還會減少 20-30 dB 的聲壓[6],因此低頻噪音對於胎兒的影響遠大於高頻噪音。

除此之外,也要注意工作環境和生活環境中的噪音。研究指出,若準媽媽的工作場域暴露在 80 分貝(dBA)的噪音當中,除了會造成胎兒聽損外,也容易早產[7];而若生活環境吵雜,像是住家靠近機場,每天暴露在 60 到 65 分貝(dBA)的飛機噪音中,也容易造成胎兒出生體重過輕[8]。由此可見,噪音對於胎兒的影響不僅是聽力發展!

不同分貝(dBA)的聽覺感受、生活中的相關聲音範例,以及對於人的影響。但此表中所呈現的分貝數是包含全頻率的聲音,並非特定高頻或低頻。表/翻譯自參考資料 9

聲光玩具可以是最佳保姆,但也可能是聽力殺手

聽覺系統的發展在出生後仍然持續進行[10],因此仍然需要不同的聲音刺激。不過,市面上常見的聲光玩具,對於嬰幼兒的聽力有潛在的危險性,所以挑選玩具時也需多多留意。

-----廣告,請繼續往下閱讀-----

嬰幼兒的鼓膜對於噪音很敏感,因為他們的耳道比大人短,再加上嬰幼兒的手臂長度較短,在玩玩具時,玩具和耳朵的距離比大人近,音量也會相對大聲[11]。對於年紀更小的嬰幼兒,有些甚至還沒有能力將過大音量的聲光玩具移開,同時也沒有足夠的認知能力可以辨識什麼樣的聲音音量是屬於太大聲的噪音[12]

挑選嬰幼兒玩具時,需要多加留意玩具的音量。圖/Pexels

根據 Sight & Hearing Association 2021 年的調查報告[13],下圖舉例的玩具音量皆超過 100 分貝(dBA)。可以看到玩具的種類包含尖叫雞、電子樂器、聲光機器人,甚至是音效書。

選購玩具時,若音量對你來說有點大聲,那就不要猶豫,請把它放回架上。尚未拆封的玩具因有包裝阻隔,會再降低一些音量——要是你覺得大聲,那對嬰幼兒更是震耳欲聾[14]。若是手邊已經有聲光玩具,也不用急著丟掉,可以用膠帶貼住喇叭,降低音量[15],或者直接拔掉電池[16]

聽覺系統自胎兒時期開始發展,因此當寶寶開始聽得到聲音時,就要避免持續性的噪音可能造成的聽力損害,而噪音的來源可能就是身邊常見的聲源,包含胎教音樂跟聲光玩具等。這些被視為「好」的聲音,一旦超過可容忍的音量,就會變成「不好」的噪音了。

-----廣告,請繼續往下閱讀-----
音量超標的玩具品項,包含尖叫雞、電子樂器、聲光機器人,還有音效書。圖/Amazon

參考文獻

  1. Rauscher, F. H., Shaw, G. L., & Ky, C. N. (1993). Music and spatial task performanceNature365(6447), 611-611.
  2. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews, 8(4), 187-193.
  3. James, W. (2000). Development of the ear and hearingJournal of perinatology20(1), S12-S20.
  4. Moore, J. K., & Linthicum, F. H. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478. 
  5. Kisilevsky, B. S., Hains, S. M., Lee, K., Xie, X., Huang, H., Ye, H. H., … & Wang, Z. (2003). Effects of experience on fetal voice recognitionPsychological Science, 14(3), 220-224.
  6. Gerhardt, K. J., & Abrams, R. M. (2000). Fetal exposures to sound and vibroacoustic stimulationJournal of Perinatology20(1), S21-S30.
  7. Gupta, A., Gupta, A., Jain, K., & Gupta, S. (2018). Noise pollution and impact on children healthThe Indian Journal of Pediatrics85(4), 300-306.
  8. Knipschild, P., Meijer, H., & Sallé, H. (1981). Aircraft noise and birth weightInternational Archives of Occupational and Environmental Health48(2), 131-136.
  9. Committee on Environmental Health. (1997). Noise: a hazard for the fetus and newbornPediatrics100(4), 724-727.
  10. Litovsky, R. (2015). Development of the auditory systemHandbook of clinical neurology129, 55-72.
  11. Hellstrom, P. A., Dengerink, H. A., & Axelsson, A. (1992). Noise levels from toys and recreational articles for children and teenagersBritish journal of audiology26(5), 267-270.
  12. Axelsson, A. (1996). The risk of sensorineural hearing loss from noisy toys and recreational activities in children and teenagersInternational Journal for Consumer and Product Safety3(3), 137-146.
  13. Sight & Hearing Association (2021). Sight & Hearing Association Releases 2021 Annual Noisy Toys List.
  14. Jabbour, N., Weinreich, H. M., Owusu, J., Lehn, M., Yueh, B., & Levine, S. (2019). Hazardous noise exposure from noisy toys may increase after purchase and removal from packaging: A call for advocacy. International Journal of Pediatric Otorhinolaryngology, 116, 84-87.
  15. Weinreich, H. M., Jabbour, N., Levine, S., & Yueh, B. (2013). Limiting hazardous noise exposure from noisy toys: simple, sticky solutionsThe Laryngoscope, 123(9), 2240-2244.
  16. Zappi, R. E. (2021). Watch for Holiday Toys That Can Pose a Hearing Hazard.
文章難易度
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。