0

3
1

文字

分享

0
3
1

音叉「噹」一聲,就知有沒有?那些你不知道的聽力篩檢

雅文兒童聽語文教基金會_96
・2021/05/17 ・2880字 ・閱讀時間約 6 分鐘 ・SR值 559 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!
  • 文 / 張晏銘、謝耀文 | 雅文基金會聽力師

還記得以前唸國小和幼兒園時,學期初老師會叫一班又一班的同學,排排站在保健室外頭等候體檢嗎?保健室護理師會幫大家量身高、體重、看看牙齒,以及會拿出一個像是叉子一樣的東西,在左邊敲一下、右邊噹一聲,請我們聽到就舉手,通過的打勾,沒通過的打叉;又或者在考汽車駕照檢測時,除了看著佈滿紅綠點的數字外,檢查人員也會在我們耳邊敲擊音叉,確認有沒有聽到聲音。你是不是也有同樣的疑問:為什麼「噹」一聲就能知道聽力有沒有問題?

那些年我們經歷過的音叉測試

音叉是在 1711 年由英國一位宮廷小號手,約翰·朔爾 (John Shore) 所發明,原本是為了替魯特琴調音校正使用;而後因為人體生理構造的獨特性及音叉的方便攜帶性,衍生出一系列的檢查方法進行聽力篩檢,多數的檢測用音叉以五個不同頻率為一組,其中又以 256 Hz 與 512 Hz 最為常見。測試時除可以敲擊不同頻率的音叉,確認受測者有沒有聽到該頻率的聲音外,還可以透過音叉擺放位置的不同組合,來瞭解聽損者的聽損型態:聽損型態概分為三種,傳導性聽損為聲音經由外耳或中耳傳遞時受阻,感音神經性聽損表示內耳或聽神經區域受損,混合性聽損則表示兼具傳導性聽損及感音神經性聽損特徵。

圖一:不同頻率的音叉樣式。圖/Tuning Fork Tests – Evoked Potential

韋伯測試 (Weber Test)〔1〕:將振動音叉置於額頭,正常聽力者會感覺聲音在正中間沒有偏向;若是單側傳導性聽損者,會感覺聲音偏向聽力受損耳,但若是單側感音神經性聽損者,則會感覺聲音偏向聽力正常耳。

圖二:韋伯測試 (Weber Test) 與林內測試 (Rinne Test) 音叉擺放位置示意圖。圖/Weber and Rinne tests – UpToDate

林內測試 (Rinne Test)〔2〕:將音叉底基部置於耳後乳突骨處,待受測者聽不到聲音時,將音叉移到耳朵耳道口旁,詢問是否有聽到聲音,若是可聽到聲音(即Rinne Test陽性,R+),代表聽力正常或感音神經性聽損,但若移到耳旁後沒聽到聲音(即 Rinne Test 陰性,R-),則判斷可能為傳導性聽力受損(尚有其他反應結果,本文未一一列舉)。

音叉檢測法看似簡單,但其實在「噹」一聲之前,不論是敲擊力道、放置位置距離等皆有詳細規範。雖然無法由此得知完整的聽力健康狀態,但由於流程快速簡單,因此也成為部分學校聽力篩檢的檢測方式。當然,聽力篩檢的方式並不只有這一種,接下來介紹幾種不同的聽篩方法!

動動手指也能知道聽力好壞!?

一般聽力篩檢用的儀器,因為價錢昂貴又非生活中唾手可得,施測時的環境條件和執行門檻也比較高,需要受過訓練的專業人員來操作,因此不少的簡易聽篩方式因應而生,其中像「手指摩擦測試法」〔3〕,便不需要複雜的設備就能執行。測試時站在受測者的後方,將雙手懸空在受測者兩耳旁約 5 公分的距離,分別用左手或右手輕輕搓動手指,並詢問對方是否有聽到聲音,只要不到 30 秒的時間就能得知有沒有通過篩檢!這背後的原理其實是當我們輕輕摩擦手指時,產生的音量大約是 25 分貝 (dB A),且摩擦時的聲音能量主要分布在高頻,而年齡導致的聽力退化多由高頻開始,也因此目前多應用於老年人聽力篩檢〔4.5.6〕

然而這樣的方法雖然容易操作,並不具有頻率特定性,且操作上需避免視覺線索的提示,受到人為因素影響的機率也較高,所以無法完全取代標準的聽力篩檢工具。

圖三:手指摩擦測試法示意圖。圖/9 Simple Medical Tests to Check Your Health Right Now

你問我答的聽力問卷調查

現實生活中人們可能偶會沒接收到細微的聲音卻不自知,但當與人溝通交談時常需要對方重述,或者頻繁的聽錯對話內容,那便會是個不可忽視的「紅色警訊 (Red Flag)。為能客觀瞭解生活中的實際傾聽狀態,學者設計出了問卷或聽覺行為量表測驗,只需回答幾個簡單的問題,可以使受測者去留心到不同環境下自己的聆聽表現,例如年長者聽障問卷 (Hearing Handicap Inventory for Elderly-Screening; HHIE-S) 〔7〕;而對於無法自主表達的嬰幼兒或兒童,則可透過主要照顧者或學校老師的生活照護與觀察,來留意其表現,例如:雅文基金會整理的微聽損警示量表嬰幼兒聽力簡易居家行為量表等都能便捷、迅速的觀察身邊的人是否存在聽力健康疑慮。

與時代潮流接軌的「聽力管家」

隨著網路科技的發達,聽力測驗工具也可以線上化,只要透過網路下載 App 便可進行聽力追蹤。這類型的測驗模式大概可分三種;第一種是模擬標準的聽力檢測,給予不同頻率的聲音,找出受測者在各頻率能聽到最小聲的聲音,如此一來在家也能取得自己的聽力圖;第二種模式則是找出可以聽見的最高頻率,雖然人耳理論上可以接收 20-20000 Hz 頻率的聲音,但隨著年齡增長,高頻聲音察覺能力會漸漸退化,藉此特徵去換算出耳朵的年齡;第三種模式則是噪音中的語詞聽辨測驗,多是讓受測者在有背景噪音的情況下,聽取一小段數字後跟著輸入,輸入正確語音會變得更小聲,但當輸入錯誤語音音量就會變大聲,最終找出受測者能回答正確時的語音和噪音的音量比,藉此做為是否需進一步追蹤聽力的參考依據。

表格:聽力篩檢APP〔8.9.10〕

線上聽檢十分便捷,但在選擇聽力測驗時,仍須留意測驗是否有提供完整操作說明、耳機校正程序或明確的檢查結果(如:聽力圖、聽力年齡等),以及是否能針對結果給予後續適當的建議〔8.9.10〕

聽篩種類百百款,仍然不是萬靈丹

不論是甚麼類型的篩檢測驗,都會有其限制,無法完整的全面瞭解聽力健康狀況,因此在察覺聽力健康出現問題後,仍應回診進行完整的聽力評估,確認是否需進一步介入。聽力也是我們身體機能的一種,隨年齡增長便有退化的可能,因此唯有定期檢查與追蹤,方能即時掌握聽力健康狀態,切勿輕忽怠慢唷!

參考資料

  1. Wahid, N., Hogan,C., & Attia M.(2021).Weber Test.
  2. Kong, E. L., & Fowler, J. B. (2017). Rinne Test.
  3. Torres-Russotto, D., Landau, W. M., Harding, G. W., Bohne, B. A., Sun, K., & Sinatra, P. M. (2009). Calibrated finger rub auditory screening test (CALFRAST). Neurology72(18), 1595-1600.
  4. Strawbridge, W. J., & Wallhagen, M. I. (2017). Simple tests compare well with a hand‐held audiometer for hearing loss screening in primary care. Journal of the American Geriatrics Society65(10), 2282-2284.
  5. Jin, J. (2021). Screening for Hearing Loss in Older Adults. JAMA325(12), 1234-1234.
  6. Ramdoo, K., Bowen, J., Dale, O. T., Corbridge, R., Chatterjee, A., & Gosney, M. A. (2014). Opportunistic hearing screening in elderly inpatients. SAGE open medicine2, 2050312114528171.
  7. 齊凡翔、陳建宏、楊宗翰、劉殿楨(2015)年長者聽障問卷-篩檢版得分與純音及語音聽力檢查結果之相關性。臺灣耳鼻喉頭頸外科雜誌50(4), 257-265
  8. 張晏銘、馬英娟、林淑芬(2016年12月29日)。數位時代中的聽能管理智慧工具
  9. 馬英娟(2018年7月28日)。APP玩科技,聽力保健真容易。取自:https://www.chfn.org.tw/publication/article/2/hearing_app
  10. 唐佩君(2019年3月2日)。世衛推免費App 不同音量3數字測聽力。中央通訊社。
文章難易度
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

3
2

文字

分享

0
3
2
噪音對小寶寶有什麼影響?——淺談胎兒的聽覺系統發展
雅文兒童聽語文教基金會_96
・2022/03/05 ・3191字 ・閱讀時間約 6 分鐘

  • 文/朱家瑩|雅文基金會聽語科學研究中心研究員

懷孕的準媽媽總是想要給寶寶最好的,讓肚子裡的胎兒贏在起跑點——市面上五花八門的胎教音樂,通通拿來給胎兒聽!據傳,莫札特的音樂能讓胎兒剛出生智力就高人一等[1],於是準媽媽選擇了莫札特的《小星星變奏曲》。為了讓肚裡的胎兒好好接收到音樂,準媽媽直接將耳機貼在肚皮上,讓聲音少些阻隔,能夠直達胎兒的耳邊。但是請小心,這樣的音量可能過大,很可能會造成胎兒的聽力損失。

準媽媽應避免「貼身」播放胎教音樂,免得音量過大,很可能會造成胎兒的聽力損失。圖/Freepik

從媽媽的肚子裡開始「聽」

在肚子裡的胎兒,因為隔著媽媽的肚皮、子宮、羊水和甩也甩不掉的脂肪,不僅聽到的音頻較不完整,且音量也小了許多。但,即便有宛如銅牆鐵壁般的保護,若讓胎兒長時間暴露在高於 60 分貝(dBA)的低頻噪音下,仍可能會造成寶寶的聽力損失[2]

什麼?胎兒也可能會有噪音性聽損?那什麼時候該開始注意周遭的聲音,避免讓胎兒還未出生就因噪音而聽損呢?在討論前,先讓我們瞭解一下胎兒的聽覺系統發展。

就像國道建設,聽覺系統也是一段一段接起來

讓我們聽到聲音的聽覺系統分為兩個部分:一個是接收聲音的耳朵構造,包含外耳、中耳及內耳中的耳蝸;另一個則是在大腦中處理聲音的訊號的聽覺皮質(auditory cortex)。

耳朵構造的發展很早就開始了。從第一孕期(0-14 週)開始,大約在 15 週時就會發展完成,而內耳毛細胞則是在 10-12 週開始分化;大約在第二孕期開始,依序由內毛細胞發展到外毛細胞[2, 3]。當內毛細胞發展完成,可以將聲音訊號傳遞到腦幹及顳葉時,聽覺系統就可以開始運作了,這時候大約是 25 到 29 週[4]。內毛細胞是聲音的接收器,連結著聽神經,聲音刺激引發內毛細胞震動後,就可將聲音傳輸到可以處理聲音訊號的聽覺皮質。

因此,當內毛細胞發展完成後,也就是第三孕期(28-40 週)時,聽覺系統開始運作。這時胎兒可以藉由耳毛細胞傳遞訊號到大腦,進而聽到聲音。

當內外毛細胞發展完成後,聽覺刺激就能一路上傳到聽覺皮質,正式啟用聽覺系統。圖/修改自 Freepik,增加各孕期階段之聽覺系統發展內容

胎兒也需要聽覺刺激——沒刺激就沒發展

聽覺系統的發展仰賴聽覺刺激來訓練毛細胞傳達訊息到大腦。因此,當聽覺系統開工後,便需要有聲音刺激來訓練毛細胞。文獻指出,懷胎 7 月起到出生 1 個月內,是讓胎兒學習不同聲音頻率的最佳時機[5]!不管是父母的說話或哼唱聲、環境中的講話聲,或是音樂,都是很好的刺激來源。

揪兜媽爹!聲音不是「大」又「多」就好

不過,要特別注意音量以及給予的方式,因為胎兒的耳毛細胞還很脆弱,有可能會因為過大且持續的聲音刺激造成聽力損失,得不償失。

我們大多是透過空氣傳遞的方式聽到聲音,但肚子裡的胎兒可不一樣。外界聲音要先穿透媽媽厚厚的肚皮、子宮跟羊水才能抵達(可以想像在水裡摀著耳朵聽聲音)。因為耳朵都被羊水塞住了,胎兒是透過骨頭傳遞的方式聽聲音,能聽到的僅限於低頻音域(500 Hz 以下),如此可以保護負責處理高頻聲音的耳毛細胞[2]。但是,超過 60 分貝(dBA)的低頻噪音還是應該要避免,否則就會造成還在學習傳導訊息的耳毛細胞受到傷害,進而造成不可逆的聽力損失。

動滋動滋,媽媽肚子自動強化重低音

低頻噪音可以輕易穿透媽媽的肚子,聲壓不僅不會減少,甚至可能會增加,容易造成胎兒的耳毛細胞受到傷害。相對地,高頻噪音(500 Hz 以上)則很難進到胎兒的內耳,而且一旦進入媽媽的肚子後,還會減少 20-30 dB 的聲壓[6],因此低頻噪音對於胎兒的影響遠大於高頻噪音。

除此之外,也要注意工作環境和生活環境中的噪音。研究指出,若準媽媽的工作場域暴露在 80 分貝(dBA)的噪音當中,除了會造成胎兒聽損外,也容易早產[7];而若生活環境吵雜,像是住家靠近機場,每天暴露在 60 到 65 分貝(dBA)的飛機噪音中,也容易造成胎兒出生體重過輕[8]。由此可見,噪音對於胎兒的影響不僅是聽力發展!

不同分貝(dBA)的聽覺感受、生活中的相關聲音範例,以及對於人的影響。但此表中所呈現的分貝數是包含全頻率的聲音,並非特定高頻或低頻。表/翻譯自參考資料 9

聲光玩具可以是最佳保姆,但也可能是聽力殺手

聽覺系統的發展在出生後仍然持續進行[10],因此仍然需要不同的聲音刺激。不過,市面上常見的聲光玩具,對於嬰幼兒的聽力有潛在的危險性,所以挑選玩具時也需多多留意。

嬰幼兒的鼓膜對於噪音很敏感,因為他們的耳道比大人短,再加上嬰幼兒的手臂長度較短,在玩玩具時,玩具和耳朵的距離比大人近,音量也會相對大聲[11]。對於年紀更小的嬰幼兒,有些甚至還沒有能力將過大音量的聲光玩具移開,同時也沒有足夠的認知能力可以辨識什麼樣的聲音音量是屬於太大聲的噪音[12]

挑選嬰幼兒玩具時,需要多加留意玩具的音量。圖/Pexels

根據 Sight & Hearing Association 2021 年的調查報告[13],下圖舉例的玩具音量皆超過 100 分貝(dBA)。可以看到玩具的種類包含尖叫雞、電子樂器、聲光機器人,甚至是音效書。

選購玩具時,若音量對你來說有點大聲,那就不要猶豫,請把它放回架上。尚未拆封的玩具因有包裝阻隔,會再降低一些音量——要是你覺得大聲,那對嬰幼兒更是震耳欲聾[14]。若是手邊已經有聲光玩具,也不用急著丟掉,可以用膠帶貼住喇叭,降低音量[15],或者直接拔掉電池[16]

聽覺系統自胎兒時期開始發展,因此當寶寶開始聽得到聲音時,就要避免持續性的噪音可能造成的聽力損害,而噪音的來源可能就是身邊常見的聲源,包含胎教音樂跟聲光玩具等。這些被視為「好」的聲音,一旦超過可容忍的音量,就會變成「不好」的噪音了。

音量超標的玩具品項,包含尖叫雞、電子樂器、聲光機器人,還有音效書。圖/Amazon

參考文獻

  1. Rauscher, F. H., Shaw, G. L., & Ky, C. N. (1993). Music and spatial task performanceNature365(6447), 611-611.
  2. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews, 8(4), 187-193.
  3. James, W. (2000). Development of the ear and hearingJournal of perinatology20(1), S12-S20.
  4. Moore, J. K., & Linthicum, F. H. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478. 
  5. Kisilevsky, B. S., Hains, S. M., Lee, K., Xie, X., Huang, H., Ye, H. H., … & Wang, Z. (2003). Effects of experience on fetal voice recognitionPsychological Science, 14(3), 220-224.
  6. Gerhardt, K. J., & Abrams, R. M. (2000). Fetal exposures to sound and vibroacoustic stimulationJournal of Perinatology20(1), S21-S30.
  7. Gupta, A., Gupta, A., Jain, K., & Gupta, S. (2018). Noise pollution and impact on children healthThe Indian Journal of Pediatrics85(4), 300-306.
  8. Knipschild, P., Meijer, H., & Sallé, H. (1981). Aircraft noise and birth weightInternational Archives of Occupational and Environmental Health48(2), 131-136.
  9. Committee on Environmental Health. (1997). Noise: a hazard for the fetus and newbornPediatrics100(4), 724-727.
  10. Litovsky, R. (2015). Development of the auditory systemHandbook of clinical neurology129, 55-72.
  11. Hellstrom, P. A., Dengerink, H. A., & Axelsson, A. (1992). Noise levels from toys and recreational articles for children and teenagersBritish journal of audiology26(5), 267-270.
  12. Axelsson, A. (1996). The risk of sensorineural hearing loss from noisy toys and recreational activities in children and teenagersInternational Journal for Consumer and Product Safety3(3), 137-146.
  13. Sight & Hearing Association (2021). Sight & Hearing Association Releases 2021 Annual Noisy Toys List.
  14. Jabbour, N., Weinreich, H. M., Owusu, J., Lehn, M., Yueh, B., & Levine, S. (2019). Hazardous noise exposure from noisy toys may increase after purchase and removal from packaging: A call for advocacy. International Journal of Pediatric Otorhinolaryngology, 116, 84-87.
  15. Weinreich, H. M., Jabbour, N., Levine, S., & Yueh, B. (2013). Limiting hazardous noise exposure from noisy toys: simple, sticky solutionsThe Laryngoscope, 123(9), 2240-2244.
  16. Zappi, R. E. (2021). Watch for Holiday Toys That Can Pose a Hearing Hazard.
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

5
1

文字

分享

0
5
1
分貝越高聽起來就越大聲?——淺談「等響曲線」,揭開聽覺感知的神秘面紗!
雅文兒童聽語文教基金會_96
・2021/10/13 ・2964字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 文/邱彥哲|雅文基金會聽語科學研究中心助理

馬路旁停著一台沒有熄火、引擎正在運轉的車,另一側站著一位警察,正在吹哨指揮交通。你覺得哪個聲音「聽起來」比較清楚呢?你會發現,高亢的哨音比較大聲,而且清楚;而低沉的引擎聲,似乎又小聲又模糊。雖然這只是舉例,卻也是我們的生活經歷。想知道背後的原因嗎?請繼續看下去,讓我們一起揭開聽覺感知的神秘面紗。

街道上充斥各種聲音,有些聲音特別清楚,有些則十分模糊。圖/GoodFon

你真的知道「聲音」是什麼嗎?

在認識聽覺感知之前,我們要先從聲音本質講起。我們都知道,以物理的角度來說,聲音是一種振動能量。物體藉由重複性的移動產生振動,振動影響周圍介質(一般來說是空氣),介質粒子會因疏密變化而產生壓力,最後形成波的型態,將能量傳遞出去。聲波振動有兩種性質:一個是頻率(Frequency),也就是一秒內振動的次數,以赫茲(Hertz, Hz)作為單位;另一個是音強(Intensity),與聲波的振幅有關,也可以說是振動產生的氣壓大小,專業上會以「力」的單位「每平方公尺多少牛頓(Newton, N; N/m2)」來標示。

然而,直接使用牛頓標示音強,數值範圍會過大,也較不直觀,所以通常會將此數值轉換為我們常見的「分貝」(decibels, dB)來表示。在這裡,我們只要知道分貝數大小表示聲音物理上的強度就可以了。讀到這行,強烈的睡意是否已經襲來?先等等!聲音還有你不為人知的一面。

分貝比較大,聽起來卻比較小聲?

換個角度,從人類感知的面向來講,上述物理現象,其實可以對應到我們常說的「音高」跟「音量」:頻率對應音高,通常頻率越高,音高越高;音強對應音量,通常音強越大,音量越大。但是,上面說的只是「通常」的情況。實際上,事情不是我們想的那麼簡單。

我們可以把人類的感知能力當作一面濾鏡,當外界刺激進入感知範圍後,事物的邏輯就可能會產生新的樣貌。拿前面的「音量」來說,並不是在所有情況下,音強大的聲音,聽起來就真的比較大聲;因為聲音還同時有頻率的性質,所以在感知音量時,也會受到頻率的影響。

咦?也就是說,一個音強比較大的聲音,聽起來可能會比較小聲嗎?沒錯!同樣音強,但不同頻率的聲音,就聽覺感受來說,音量聽起來確實可能會不一樣。那麼,人類感知音量的全貌,究竟是什麼樣子呢?

音量感知的秘密──等響曲線

首次針對這類議題探討的,是物理學家 Fletcher 及 Munson (1993)。他們研究的背景是在 1933 年。當時,對於音量大小的描述,還停留在使用樂理強弱符號(如:p, piano, 表示「弱」; f, forte, 表示「強」)的相對概念。他們意識到,即使都用「強」來描述某個聲音,大家的感受卻不盡相同。於是他們進行實驗,運用數學方法,繪製出一張曲線圖,被後人稱為弗萊徹–蒙森曲線(Fletcher–Munson Curves),也就是「等響曲線(Equal-Loudness Curves)」的概念原型。

這張圖被後來的研究者不斷修正,直到 2003 年,國際標準化組織(International Organization for Standardization, 簡稱 ISO)發表最新版本「ISO 226:2003」。有了這張圖,音量感知的秘密就昭然若揭了──等響曲線堪稱人類音量感知的「鳥瞰圖」!

ISO 226:2003 等響曲線圖。橫軸為頻率(K 表示千倍),縱軸為分貝數。藍色曲線為舊版本之 40 方曲線,紅色曲線為最新修正版本。圖/ Wikipedia

心理感受的「音量」 ≠ 物理實際的「音強」

看不懂這張圖嗎?沒關係,且讓我娓娓道來。在此之前,我們要先了解「響度」的概念。在心理聲學領域,研究者會使用響度來表示我們一般所說的音量,並以方(Phon)」作為響度的單位。方是什麼呢?簡單來講,就是一個聲音以 1,000 赫茲純音為參考音的主觀音量大小(Howard & Angus, 2017)。舉例來說,40 方表示 1,000 赫茲的純音,以音強 40 分貝播放時,所聽起來的音量大小;若是 60 方的話,則是 1,000 赫茲純音,以音強 60 分貝播放時,所聽起來的音量大小。

有了響度的概念,我們回頭看圖,會發現在等響曲線圖中,40 方的曲線從 1,000 赫茲往低頻區間延伸時,分貝數會逐漸上升。這就是說,如果兩個聲音要聽起來一樣大聲(響度/音量),100 赫茲聲音的分貝數(音強)需要比 1,000 赫茲來得大才有辦法。換個角度解釋,物理上同樣是 60 分貝(音強)的聲音,在 100 赫茲上,我們聽起來差不多僅是 40 方響度(音量)的聲音大小,但在 1,000 赫茲時,聽起來卻會更大聲。

聽起來是不是有點複雜呢?其實,你只要記住以下兩點即可:

  1. 等響曲線圖中,同一曲線所經之處,聲音響度/音量(聽起來)都是相等的。
  2. 人類音量感知對 1,000 赫茲附近的頻率特別敏感(聽起來特別大聲)。

現在,你知道為什麼低頻引擎聲會聽起來那麼模糊了吧?這時候你可能會說:「喔,我知道了。但這跟我有什麼關係呢?」有的,這和你荷包的關係可大了!

等響曲線的日常應用──聲音照相

你知道政府已經在 2021 年開始進行「聲音照相」(張雄風,2020)執法了嗎?所謂「聲音照相」,是指行經規定路段的車輛,如果超過指定分貝,就會被裝有噪音計的「聲音照相機」紀錄下來,進行開罰。你可能想問:「蛤?用噪音計量一量就要罰我,有沒有道理啊?」有呢!噪音計可是為我們量身訂做的喔!

所謂「聲音照相」,是指行經規定路段的車輛,如果超過指定分貝,就會被裝有噪音計的「聲音照相機」紀錄下來,進行開罰。

圖/臺北市環保局

根據《噪音管制法》訂定之《噪音管制標準》第二條之二(2013),「音量:以分貝(dB(A))為單位,括號中 A 指在噪音計上 A 權位置之測量值。」也就是說,噪音計在量測到噪音時,要以「分貝(A)」為單位。我相信你聽過分貝,但沒想到分貝還有分 A、B、C?

其實,所謂的分貝(A)指的是「針對原始分貝值進行 A 加權」後的結果,而「A 加權」其實就是模擬等響曲線中的 40 方曲線。進行 A 加權的過程,是將噪音低頻區間的分貝數減少,再少量增加中高頻區間的分貝數(王栢村,2018)。因為噪音計最後呈現的數值,是所有頻率區間的平均結果,若是不經過 A 加權,低頻區間的數值會使整體分貝數過度膨脹,這樣「測起來」就會跟「聽起來」不一樣了。可見噪音不是隨意測量,要罰人民的錢也不是那麼容易的呢!

閱讀至此,我們了解到,人類對於不同頻率的聲音,有著不同的音量敏感度,而且聲音也能從心理感知的角度來觀察。再者,等響曲線除了揭露音量感知的神秘面紗,還實際在社會秩序中發揮作用,可見等響曲線是多麼重要的發現啊! 

參考文獻

雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

2

10
1

文字

分享

2
10
1
喂~真的不是機器人的耳朵!揭露人工電子耳的運作原理
雅文兒童聽語文教基金會_96
・2021/08/15 ・4279字 ・閱讀時間約 8 分鐘

  • 作者 / 張逸屏|雅文基金會聽語科學研究中心 研究員

聽到「人工電子耳」這五個字你會想到什麼呢?既是「人工」又是「電子」的耳朵,大概就像義肢或義眼吧,會有著與原器官相似的外型,若一不小心開啟妄想小宇宙,各種以機器人為題材的科幻電影馬上浮現……,先等一下!這誤會可大了!

幫助聽損者重拾聽力的高科技

 人工電子耳其實是聽力損失者在助聽器之外,可選擇使用的聽覺輔具之一。「聽見聲音」對一般聽力正常的人來說,是在出生前就已經開始累積的感官經驗,胎兒的聽覺系統在孕期 6 個月左右就發育完成(Graven & Browne, 2008),而聽覺也是人們離世時最後消失的感官功能(Blundon, Gallagher, & Ward, 2020),可說是在五感當中陪伴人一生最久的感官。然而,有許多人因為各種先天或後天的因素而有程度不同的聽力損失。隨著科技發達,要重拾聽覺已不再是遙不可及的事。

就像是大部分長輩因老化而造成的重聽,程度相對較輕,可以透過佩戴助聽器矯正聽力;但重度或極重度以上的聽損,採用助聽器這種放大聲音的方式很可能已無法滿足需求。這時,植入人工電子耳則是另一種可以恢復聽覺的選擇。

人工電子耳如何產生聽覺?

     

文件:人工耳蝸.png
人工電子耳構造示意圖。圖一/Wikipedia

人工電子耳的原文為 cochlear implant,也有人稱為「人工耳蝸」。從圖一中可以看到,醫生透過手術將電極(Electrode)植入到內耳的耳蝸當中,而佩戴在耳朵上的聲音處理器(Sound processor)將接收到的聲音訊號,依照音量和頻率分布做計算、並轉換為電訊號,再透過佩戴在頭上的線圈,經電磁感應傳送到植入體(Internal implant),越過受損的內耳,透過電極以電流刺激聽神經(Hearing nerve)而產生聽覺(Loizou, 1999)。所以人工電子耳的外型和耳朵並不相似,而是有一部份佩戴在耳朵上、一部份植入在頭部內的。近年更有一體成形機(可參考網頁),佩戴在外部的所有元件都組合在一起,佩戴起來更加輕巧。

當代人工電子耳的發展可回溯到 1960 年代,一開始發展時許多學者其實並不看好,認為只透過少數幾個電極,不可能將複雜的聲音訊號與特性真實地呈現,並傳遞給大腦詮釋為有意義的訊息。然而經過研發與臨床試驗,許多植入電子耳的聽損者可以有好的成效(Eshraghi et al., 2012),植入後一年時測驗句子聽辨,平均正確率可達到約 90%(Wilson & Dorman, 2008)。美國 FDA(U.S. Food and Drug Administration;相當於衛福部食藥署)也分別在 1980 年和 2000 年正式通過成人和 1 歲以上孩子植入電子耳,至 2019 年底全球登記在案的電子耳數量超過 73 萬(NIDCD, 2021)。

原來耳蝸就像鋼琴鍵盤

雖然電子耳確實能將重度聽損者帶回有聲世界,一開始不看好的學者,其實也對電子耳恢復聽覺的表現感到驚嘆。聲音的訊號十分複雜,究竟是如何只透過 16〜22 個電極,就完成了傳遞聲音訊號的任務呢?要回答這個問題,就要了解聲音的兩大特性、以及分別如何用電流來呈現。

聲音的兩大特性就是「音量大小」及「頻率高低」,在電子耳的訊號處理中,音量可用電流的大小來呈現,而頻率則可以利用電極在耳蝸中的位置來呈現,其原理是因為人的耳蝸原本就有「音調排列(tonotopic)」的特性。

人的耳蝸長度大約 3.5 公分,形狀有點像蝸牛殼(所以叫耳蝸嘛!),盤繞大約 2 圈半。所謂的音調排列,就如同圖二所示,若想像將耳蝸拉直後,耳蝸的底部負責高頻的聲音、頂端則負責低頻的聲音,就像是對應鋼琴鍵盤上按照聲音頻率高低而排列的琴鍵。因此,聲音訊號並不是全部一起送到所有的電極,而是聲音處理器會將聲音分解為數個不同的頻段,再分別送到對應的電極。

File:1408 Frequency Coding in The Cochlea.jpg
耳蝸的音調排列說明示意圖。若將耳蝸拉直來看,底部(Oval window base)負責高頻(high frequency)的聲音,而頂部(Apex)則對應低頻(low frequency)的聲音 。圖二/Wikipedia

在耳蝸植入的電極數量,決定聲音處理器會將輸入的聲音分解為幾個頻段。例如,澳洲電子耳大廠 Cochlear® 公司的 Neucleus 電子耳,一般來說會在耳蝸內植入 22 個電極,那麼聲音處理器就會將聲波分解為 22 個頻段,再以電流脈衝(pulses)進行編碼,並分別去刺激對應的電極。也就是說,大約在 100-300 Hz 這個頻率帶的聲音,在進行編碼後就會被傳送到植入在耳蝸最頂端的電極;而大約在 6000-8000 Hz 這個頻率帶的聲音,則會透過耳蝸最底端的電極來刺激聽神經[註1]

上述說明的是理論上最理想的狀況,然而在實際上,可能因組織構造、聽損本身造成的神經存活狀態、電極間電流的互相干擾(此為電流本身之特性)等種種原因,造成呈現特定聲音頻率帶的電脈衝並不是(只)刺激原本所設定、負責某頻段的聽神經,使得聲音有失真和扭曲的現象。所幸人類的大腦具有可塑性,在植入電子耳後,透過聽能訓練和日常不斷累積聆聽經驗,許多電子耳使用者都能逐漸適應、並提升聽辨的表現。

電極數越多、一定聽得越好?

那麼,透過電子耳的聲音聽起來到底是如何呢?在網路上有不少電子耳聲音模擬[註2]的影音可以參考,這裡介紹美國達拉斯大學提供的網頁(Loizou, n.d.)。其中提供了不同頻道數(channel = 頻道;概念上相當於電極數)、以及不同植入深度的聲音模擬。以頻道數來說,若逐個試聽,會發現愈多頻道時語音會愈清楚。不過受限於耳蝸體積、電極相近時會互相干擾等因素,植入的電極數能增加數量有限,如前述一般是植入 16 – 22 個電極。此外,雖然在理論上愈多頻道(電極)聲音會愈清晰,但由於各種複雜的影響因素[註3],實際上這樣的關係並不是絕對的,尤其不同的電子耳產品間、或不同個案間,不能直接以電極數來評斷聲音/聆聽品質的優劣。

植入深度也是影響因素

除了頻道數外,網站上還提供了不同植入深度的模擬。電子耳的植入手術中,是將電極從耳蝸的底端插入,理想的植入深度是大約 25 公釐。這樣的情況下,特定頻率帶的聲音就可以透過對應的電極,去刺激負責那段頻率的聽神經。如果植入的深度不夠,代表電極的位置是比較偏底端的,根據前面提到的音調排列特性,特定頻率帶的聲音就會被送往較接近底端、偏向較高頻率的電極和聽神經了。

Frequency allocations of analysis and carrier filter bands for 8-channel acoustic simulations of cochlear implant speech processing. 
植入深度不足對語音處理的影響示意圖。圖三/參考資料 7(Figure 1)

植入深度不足的情況可參考圖三,圖的上半部示意理想植入深度,因此聲音處理器的聲音分解(Analysis bands)和刺激電極在耳蝸的分布(Carrier bands)是能夠完全對應的。而圖三的下半部,則是植入深度極端不足(16 公釐)的示意圖。在這情況下,大約 200-360 Hz 這段頻率的聲音(Analysis bands最左邊的小方塊),會被傳送到負責大約 1000-1400 Hz 這段頻率帶的電極及聽神經(Carrier bands 最左邊的小方塊),因此聲音聽起來會變得很高、很尖很細,而有扭曲的現象。你可以在聲音模擬的網站試聽看看,植入深度愈淺(22 mm)時,聲音聽起來會愈尖。

透過訓練,讓大腦適應電子耳的聲音

除此之外,你可能也會發現,若先聽過原始的語音(original speech/original sentence)、再聽模擬的聲音,會發現聽起來變得容易理解得多,尤其是參數條件較好的模擬語音,也就是較多頻道、或植入深度較深的模擬語音。如果反覆再多聽幾次,甚至會發現,即使是頻道數較少、植入深度較淺的模擬語音,也不像第一次聽到時感覺那麼難以辨識了。這樣反覆練習聆聽的過程,可說是電子耳術後聽能復健的縮影。

聽損者在植入電子耳後,對於大腦來說,並無法馬上就能詮釋透過電刺激所傳送的訊號,而是要透過不斷地練習,包括正式的聽能復健、以及日常生活中持續累積聆聽經驗,才能將手術前透過聲波所理解的各種聲音,再重新與電刺激所呈現的聲音進行配對。

電子耳術後復健是關鍵

電子耳植入後是否能成功地透過聽理解日常對話,背後有許多的影響因素,其中關鍵的兩點,是植入前是否有聽能和語言的基礎,以及植入後的聽能復健與日常練習[註4]。若植入前有聽語基礎,像是學語後失聰的成人、或植入前有穩定佩戴助聽器的聆聽經驗等,因為已具備語言知識和語音聆聽經驗,大腦的聽覺區有持續地接收刺激,所以在植入後,可以在既有的聽語基礎上,去建構更好的聽能技巧。而植入後的聽能復健與日常練習更是至關重要,透過不斷地練習,並配合聽語專業人員的復健課程,讓大腦可塑性發揮作用,去辨識進而理解透過電子耳傳遞的語音。

2017 年電子耳納入健保給付後,許多醫生和家長都會積極地為聽損孩子植入電子耳。然而,這裡要提醒的是,雖然電子耳確實有許多成功的案例,但在決定手術之前,仍應審慎評估風險與成效,並了解術後復健所需投入的時間與心力,才能在植入後達到最好的聆聽成效。

註解

  • 註 1:本文所說明的聲音處理方式是經典的策略,隨著各家廠商研發新技術,聲音訊號處理的方式會有所變化,但在概念上大致相似。
  • 註 2:電子耳聲音模擬呈現的仍然是聲波,與電子耳透過電刺激所傳遞的方式有本質上的不同,所以並無法真實呈現電子耳使用者聆聽的感受。聲音模擬的真正用途是在學術研究與技術研發,讓學者和電子耳公司,能透過改變模擬的參數進行實驗,來找尋更好的電子耳聲音處理策略。
  • 註 3:影響因素包括:先天內耳構造、電極間的電流交互作用、耳蝸死區、聽神經存活率、電子耳調頻圖的各項參數……
  • 註 4:植入後的另一項關鍵因素是定期調頻(mapping;另一譯名為「調機」),即聽力師依個案需求,調整電子耳聲音處理策略的各項參數及電流量,一開始植入後需較密集地調頻,應配合聽力師建議定期進行,穩定後亦應每年調頻一次。受限於篇幅本文未深入說明。

參考資料:

  1. Blundon, E. G., Gallagher, R. E., & Ward, L. M. (2020). Electrophysiological evidence of preserved hearing at the end of life. Scientific reports10(1), 1-13.
  2. Eshraghi, A. A., Nazarian, R., Telischi, F. F., Rajguru, S. M., Truy, E., & Gupta, C. (2012). The cochlear implant: historical aspects and future prospects. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology295(11), 1967-1980.
  3. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews8(4), 187-193.
  4. Loizou, P. C. (n.d.). Cochlear implant audio demos. Retrieved from https://ecs.utdallas.edu/loizou/cimplants/cdemos.htm
  5. Loizou, P. C. (1999). Introduction to cochlear implants. IEEE Engineering in Medicine and Biology Magazine18(1), 32-42.
  6. NIDCD (National Institute on Deafness and Other Communication Disorders) (2021). Cochlear Implants. NIH Publication No. 00-4798. Retrieved from https://www.nidcd.nih.gov/health/cochlear-implants
  7. Nogaki, G., Fu, Q. J., & Galvin III, J. J. (2007). The effect of training rate on recognition of spectrally shifted speech. Ear and hearing, 28(2), 132.
  8. Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: a remarkable past and a brilliant future. Hearing research242(1-2), 3-21.
所有討論 2
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。