Loading [MathJax]/extensions/tex2jax.js

2

12
3

文字

分享

2
12
3

松樹上的不速之客:松材線蟲與天牛——解析松樹萎凋病的成因

iGEM NTHU_96
・2021/09/12 ・2566字 ・閱讀時間約 5 分鐘

松樹萎凋病是一種因為天牛傳播松材線蟲進而導致松樹枯死的疾病。這種植物疾病在台灣以及世界上許多地區都造成了嚴重的危害以及龐大的經濟損失。松材線蟲是常見的松樹寄生蟲,最開始的蹤跡出現在北美洲,之後逐漸擴散至各地,並於 1980 年代由日本傳入台灣,對台灣的森林造成十分嚴重的危害。

松材線蟲主要存活於松脂導、形成層、維管束這些植物部位,因此無法藉由風力傳播,需借助媒介昆蟲天牛進行傳播。松材線蟲與天牛的結合,大大助長了線蟲族群的擴散,至目前為止仍未出現有效的方法來防堵此植物疾病的蔓延,只能盡量控制其危害面積。

目前防治方式大多是在人工判斷松樹染病之後,以化學藥劑灌入松樹內,也就是俗稱幫樹木「吊點滴」,此方法每隔幾年都須重新灌入化學藥劑確保松樹能被徹底治療,由此可知,松樹萎凋病是個十分棘手的問題。

松材線蟲的媒介昆蟲松墨天牛 。圖/WIKIPEDIA

松材線蟲如何寄宿天牛?

要了解松樹萎凋病,必須先知道他的致病原因:松材線蟲的傳染方式。他們的傳播路徑橫跨了線蟲本身、天牛與宿主松樹,為了方便理解,我們拆解成這三部分各自進行研究,再如同拼拼圖,將完整的傳播路徑拼湊在一起。

-----廣告,請繼續往下閱讀-----

首先是松材線蟲,蟲的一生可以分為四階段年少時期:J1、J2、J3、J4,以及成年時期,到成年時期線蟲才有公母之分。他們的食物包含松脂管的上皮細胞、侵入枯萎松樹並聚在天牛蛹室附近的真菌。

再來是媒介昆蟲,天牛會產卵在枯萎的松樹上,卵在樹上孵化,進入幼蟲時期然後結蛹。結蛹後,真菌會被蛹室所分泌的氣體吸引並在附近聚集。豐富的真菌吸引松材線蟲前往,當天牛從蛹當中羽化時,線蟲便伺機進入天牛體內。

松材線蟲。圖/WIKIPEDIA

松材線蟲如何擊破松樹的禦敵機制?

當松樹被攜帶線蟲的天牛咬了之後,究竟會發生什麼事?一棵健康的松樹被帶源天牛啃食之後,約三到四週會開始出現枯萎的症狀。松樹為了避免枯萎會有下列反應:超氧化合物的產生、過氧化的脂質增加、多酚的累積和氣體的揮發。

當松樹被松材線蟲感染時,會出現以下症狀:首先,和許多植物病害一樣,松樹會產生超氧陰離子,接下來植物內過氧化脂質的量急劇增加。線蟲感染後過氧化脂質和離子滲出並擴散到周圍的木質部,會導致坑膜功能障礙。在植物受傷的同時,導致組織褐變的多酚物質會在受傷或被病原體感染的植物組織中積累。

-----廣告,請繼續往下閱讀-----

最後,還會導致揮發性氣體的排放。上述作用原本是要防止線蟲在植物體內擴散,但由於線蟲移動的速度較快,因此植物不但圍堵不到線蟲,反而還傷害自己的組織。由此可知,線蟲感染會引起無法保護植物的植物反應。 

上述的現象會影響到線蟲,但現象發生的同時線蟲也會移動前往樹木的不同區域。

每當線蟲抵達新的地方,樹木會在線蟲出現的部分給予反應。為了抵抗線蟲的入侵,樹木不斷如此重複這個循環,並且整棵樹都會有上述的反應,但其實這樣的反應不僅僅線蟲受到傷害,對於樹木也造成了一定程度的影響,上述反應會造成堵塞進而讓樹木死亡

在針葉樹種中,管胞為主要木質細胞,負責運送水分。管胞兩側具有許多邊緣坑 (borded pit),扮演水閘的功能,能夠控制水分進出細胞,水分便藉由邊緣坑運輸至鄰近的其他管胞。當松材線蟲感染松樹時,松樹木質部會開始出現空腔,若管胞之中存在氣泡,邊緣坑不會繼續將此管胞中的水分輸送出去,避免氣泡向鄰近管胞擴散。植物抵禦機制啟動後所分泌的物質會層層覆蓋邊緣坑,藉由破壞邊緣坑結構阻斷水分運輸,導致樹木枯萎。然而,死亡的樹木會釋放出氣體吸引天牛來產卵在自己身上,開始新的循環。

-----廣告,請繼續往下閱讀-----
松材線蟲引起的松樹凋萎病。圖/WIKIPEDIA

殺死松樹的「死亡循環」

最後我們將線蟲、天牛、松樹三個環節串聯起來,一開始枯死的松樹上出現帶有 J4 階段線蟲的天牛,當天牛取食健康的松樹時,部分的松材線蟲藉由天牛造成的傷口被轉移到松樹上。一旦進入植物體內,線蟲將會在松樹體內度過少年階段,進入成年階段並繁殖產下新一代線蟲。

在線蟲繁殖以及成長的同時,松樹就會漸漸出現枯萎的症狀,天牛受到枯萎的松樹散發出的氣體吸引前來產卵在松樹中。天牛的卵孵化成幼蟲並在枯萎的松樹中成長直到蛹室的形成,同時附近會聚集因為蛹室分泌的氣體而受吸引的真菌,真菌則是線蟲的食物之一,因此有不少的 J3 階段的線蟲也會聚集在這附近。

天牛幼蟲破蛹而出之時,轉變成 J4 階段的線蟲可以從天牛的氣管進入天牛體內,在這之後的松材線蟲與天牛建立起乘客與運輸工具的關係,藉著天牛的移動繼續進行傳播。

殺死松樹的「死亡循環」。圖/國立清華大學iGEM團隊

如何防治松材線蟲擴散?

松材線蟲危害松科植物種類超過 50 種,台灣以琉球松、黑松、台灣二葉松為主,在十年間造成低海拔杉林消失,目前已損失六千多公頃松木林。

-----廣告,請繼續往下閱讀-----

現有防治松材線蟲的方式可以從三個方面著手。最直接的就是剷除感染源,將患病的樹木砍伐,並且以物理絞碎枝條、化學藥劑燻蒸方式殺死病木體內的線蟲及天牛,阻斷感染練。

另一方面,可以藉由不同方式防止媒介昆蟲的傳播,例如:以丁基加保扶 (Carbosulfan) 藥劑注射樹幹,使藥劑能夠運行整棵松樹殺死線蟲以及誘殺天牛等。

生物防治則有肉食性蟎類可以捕食松材線蟲,或是以天牛的天敵寄生蜂來降低媒介昆蟲的數量。不同的樹種對松材線蟲有不同程度強弱的抵抗能力,也可以選擇種植或育種對線蟲有較高抵抗力的松樹品系,增強松樹的抗病性。

參考資料

1. Chaires-Grijalva, M.P., et al., Trophic habits of mesostigmatid mites associated with bark beetles in Mexico. Journal of the Acarological Society of Japan, 2016. 25(Supplement1): p. S161-S167.

-----廣告,請繼續往下閱讀-----

2. Kazuyoshi Futai, Pine Wood Nematode, Bursaphelenchus xylophilus

3. 行政院農業委員會動植物防疫檢疫局 植物疫病蟲害介紹

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
iGEM NTHU_96
1 篇文章 ・ 3 位粉絲
We are the team of National Tsing Hua University (NTHU) for the iGEM competition (international genetic engineering machine).

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
全球暖化導致山松甲蟲(Dendroctonus ponderosae)的嬰兒潮
葉綠舒
・2012/03/22 ・667字 ・閱讀時間約 1 分鐘 ・SR值 485 ・五年級

分佈在北美洲(從墨西哥北部到加拿大)的山松甲蟲(Dendroctonus ponderosae)是美洲海灘松(lodgepole pine, Pinus contorta)的害蟲。雌蟲在夏天的尾聲時在松樹樹幹上挖洞產卵,同時也將一種真菌接種在樹洞裡;幼蟲孵化後以松樹以及真菌為食,直到明年八月時成蟲離開樹洞,尋找下一個目標。由於他們在樹幹上挖洞,對樹木造成相當大的損害;接種在樹洞裡的真菌也會感染樹木,造成樹木死亡。最近這十年來山松甲蟲的危害更大。科羅拉多大學教授Jeffery Milton發現,光是在英屬加拿大(British Canada)地區,十年來有一千三百萬英畝的森林被山松甲蟲消滅。一千三百萬英畝有多大呢?Milton教授說,如果搭小飛機在裡面飛,一整小時都看不到一棵活的樹。

松樹死亡不只是造成可以幫我們減碳的樹木變少了而已;這些松樹死亡以後,細菌跟真菌就會來分解他們。分解的過程中會產生二氧化碳,也就是說,原本我們有一千三百萬英畝的二氧化碳吸收機,現在變成一千三百萬英畝的二氧化碳產生機….這一消一長,造成的災害更是難以想像。更不要提原本可以居住在這些樹林的大小動物、以及未來枯乾的樹木是否會引發森林火災…等等問題。為什麼最近這些年山松甲蟲如此猖狂?Milton教授跟他的研究生發現,由於全球暖化,原本應該在八月才離開樹洞的山松甲蟲,卻在六月中旬(甚至更早)就出現了;而這些甲蟲一離開樹洞馬上就攻擊附近的松樹,並在短短兩個月的時間裡長大成熟,在八月離開樹洞感染另一批松樹。所以,因為氣候變得溫暖,使得這些山松甲蟲每年多繁殖了一代,造成大量的松樹死亡!

參考資料:

Climate Change Sends Beetles Into Overdrive – ScienceNOW

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
黑紋蒼藍天牛(斯文豪氏天牛)影片
賴鵬智
・2011/08/26 ・248字 ・閱讀時間少於 1 分鐘 ・SR值 514 ・六年級

-----廣告,請繼續往下閱讀-----

黑紋蒼藍天牛(斯文豪氏天牛)屬昆蟲綱鞘翅目天牛科,台灣特有種,廣泛分佈於全島平地至1600公尺左右的山區。

學名:Paraglenea swinhoei Bates, 1866

同種異名:Paraglenea swinhoei posticeapertaParaglenea swinhoei swinhoei,

影片與相片攝於2011年7月12日嘉義縣竹崎鄉仁壽村圓潭生態園區

-----廣告,請繼續往下閱讀-----

下列相片由影片擷取而得:

參考資料:周文一(2004),「台灣天牛圖鑑」,貓頭鷹出版社,台北市。

原發表於 賴鵬智的野FUN特區

-----廣告,請繼續往下閱讀-----