2

6
1

文字

分享

2
6
1

喂~真的不是機器人的耳朵!揭露人工電子耳的運作原理

雅文兒童聽語文教基金會_96
・2021/08/15 ・4279字 ・閱讀時間約 8 分鐘

  • 作者 / 張逸屏|雅文基金會聽語科學研究中心 研究員

聽到「人工電子耳」這五個字你會想到什麼呢?既是「人工」又是「電子」的耳朵,大概就像義肢或義眼吧,會有著與原器官相似的外型,若一不小心開啟妄想小宇宙,各種以機器人為題材的科幻電影馬上浮現……,先等一下!這誤會可大了!

幫助聽損者重拾聽力的高科技

 人工電子耳其實是聽力損失者在助聽器之外,可選擇使用的聽覺輔具之一。「聽見聲音」對一般聽力正常的人來說,是在出生前就已經開始累積的感官經驗,胎兒的聽覺系統在孕期 6 個月左右就發育完成(Graven & Browne, 2008),而聽覺也是人們離世時最後消失的感官功能(Blundon, Gallagher, & Ward, 2020),可說是在五感當中陪伴人一生最久的感官。然而,有許多人因為各種先天或後天的因素而有程度不同的聽力損失。隨著科技發達,要重拾聽覺已不再是遙不可及的事。

就像是大部分長輩因老化而造成的重聽,程度相對較輕,可以透過佩戴助聽器矯正聽力;但重度或極重度以上的聽損,採用助聽器這種放大聲音的方式很可能已無法滿足需求。這時,植入人工電子耳則是另一種可以恢復聽覺的選擇。

人工電子耳如何產生聽覺?

     

文件:人工耳蝸.png
人工電子耳構造示意圖。圖一/Wikipedia

人工電子耳的原文為 cochlear implant,也有人稱為「人工耳蝸」。從圖一中可以看到,醫生透過手術將電極(Electrode)植入到內耳的耳蝸當中,而佩戴在耳朵上的聲音處理器(Sound processor)將接收到的聲音訊號,依照音量和頻率分布做計算、並轉換為電訊號,再透過佩戴在頭上的線圈,經電磁感應傳送到植入體(Internal implant),越過受損的內耳,透過電極以電流刺激聽神經(Hearing nerve)而產生聽覺(Loizou, 1999)。所以人工電子耳的外型和耳朵並不相似,而是有一部份佩戴在耳朵上、一部份植入在頭部內的。近年更有一體成形機(可參考網頁),佩戴在外部的所有元件都組合在一起,佩戴起來更加輕巧。

當代人工電子耳的發展可回溯到 1960 年代,一開始發展時許多學者其實並不看好,認為只透過少數幾個電極,不可能將複雜的聲音訊號與特性真實地呈現,並傳遞給大腦詮釋為有意義的訊息。然而經過研發與臨床試驗,許多植入電子耳的聽損者可以有好的成效(Eshraghi et al., 2012),植入後一年時測驗句子聽辨,平均正確率可達到約 90%(Wilson & Dorman, 2008)。美國 FDA(U.S. Food and Drug Administration;相當於衛福部食藥署)也分別在 1980 年和 2000 年正式通過成人和 1 歲以上孩子植入電子耳,至 2019 年底全球登記在案的電子耳數量超過 73 萬(NIDCD, 2021)。

原來耳蝸就像鋼琴鍵盤

雖然電子耳確實能將重度聽損者帶回有聲世界,一開始不看好的學者,其實也對電子耳恢復聽覺的表現感到驚嘆。聲音的訊號十分複雜,究竟是如何只透過 16〜22 個電極,就完成了傳遞聲音訊號的任務呢?要回答這個問題,就要了解聲音的兩大特性、以及分別如何用電流來呈現。

聲音的兩大特性就是「音量大小」及「頻率高低」,在電子耳的訊號處理中,音量可用電流的大小來呈現,而頻率則可以利用電極在耳蝸中的位置來呈現,其原理是因為人的耳蝸原本就有「音調排列(tonotopic)」的特性。

人的耳蝸長度大約 3.5 公分,形狀有點像蝸牛殼(所以叫耳蝸嘛!),盤繞大約 2 圈半。所謂的音調排列,就如同圖二所示,若想像將耳蝸拉直後,耳蝸的底部負責高頻的聲音、頂端則負責低頻的聲音,就像是對應鋼琴鍵盤上按照聲音頻率高低而排列的琴鍵。因此,聲音訊號並不是全部一起送到所有的電極,而是聲音處理器會將聲音分解為數個不同的頻段,再分別送到對應的電極。

File:1408 Frequency Coding in The Cochlea.jpg
耳蝸的音調排列說明示意圖。若將耳蝸拉直來看,底部(Oval window base)負責高頻(high frequency)的聲音,而頂部(Apex)則對應低頻(low frequency)的聲音 。圖二/Wikipedia

在耳蝸植入的電極數量,決定聲音處理器會將輸入的聲音分解為幾個頻段。例如,澳洲電子耳大廠 Cochlear® 公司的 Neucleus 電子耳,一般來說會在耳蝸內植入 22 個電極,那麼聲音處理器就會將聲波分解為 22 個頻段,再以電流脈衝(pulses)進行編碼,並分別去刺激對應的電極。也就是說,大約在 100-300 Hz 這個頻率帶的聲音,在進行編碼後就會被傳送到植入在耳蝸最頂端的電極;而大約在 6000-8000 Hz 這個頻率帶的聲音,則會透過耳蝸最底端的電極來刺激聽神經[註1]

上述說明的是理論上最理想的狀況,然而在實際上,可能因組織構造、聽損本身造成的神經存活狀態、電極間電流的互相干擾(此為電流本身之特性)等種種原因,造成呈現特定聲音頻率帶的電脈衝並不是(只)刺激原本所設定、負責某頻段的聽神經,使得聲音有失真和扭曲的現象。所幸人類的大腦具有可塑性,在植入電子耳後,透過聽能訓練和日常不斷累積聆聽經驗,許多電子耳使用者都能逐漸適應、並提升聽辨的表現。

電極數越多、一定聽得越好?

那麼,透過電子耳的聲音聽起來到底是如何呢?在網路上有不少電子耳聲音模擬[註2]的影音可以參考,這裡介紹美國達拉斯大學提供的網頁(Loizou, n.d.)。其中提供了不同頻道數(channel = 頻道;概念上相當於電極數)、以及不同植入深度的聲音模擬。以頻道數來說,若逐個試聽,會發現愈多頻道時語音會愈清楚。不過受限於耳蝸體積、電極相近時會互相干擾等因素,植入的電極數能增加數量有限,如前述一般是植入 16 – 22 個電極。此外,雖然在理論上愈多頻道(電極)聲音會愈清晰,但由於各種複雜的影響因素[註3],實際上這樣的關係並不是絕對的,尤其不同的電子耳產品間、或不同個案間,不能直接以電極數來評斷聲音/聆聽品質的優劣。

植入深度也是影響因素

除了頻道數外,網站上還提供了不同植入深度的模擬。電子耳的植入手術中,是將電極從耳蝸的底端插入,理想的植入深度是大約 25 公釐。這樣的情況下,特定頻率帶的聲音就可以透過對應的電極,去刺激負責那段頻率的聽神經。如果植入的深度不夠,代表電極的位置是比較偏底端的,根據前面提到的音調排列特性,特定頻率帶的聲音就會被送往較接近底端、偏向較高頻率的電極和聽神經了。

Frequency allocations of analysis and carrier filter bands for 8-channel acoustic simulations of cochlear implant speech processing. 
植入深度不足對語音處理的影響示意圖。圖三/參考資料 7(Figure 1)

植入深度不足的情況可參考圖三,圖的上半部示意理想植入深度,因此聲音處理器的聲音分解(Analysis bands)和刺激電極在耳蝸的分布(Carrier bands)是能夠完全對應的。而圖三的下半部,則是植入深度極端不足(16 公釐)的示意圖。在這情況下,大約 200-360 Hz 這段頻率的聲音(Analysis bands最左邊的小方塊),會被傳送到負責大約 1000-1400 Hz 這段頻率帶的電極及聽神經(Carrier bands 最左邊的小方塊),因此聲音聽起來會變得很高、很尖很細,而有扭曲的現象。你可以在聲音模擬的網站試聽看看,植入深度愈淺(22 mm)時,聲音聽起來會愈尖。

透過訓練,讓大腦適應電子耳的聲音

除此之外,你可能也會發現,若先聽過原始的語音(original speech/original sentence)、再聽模擬的聲音,會發現聽起來變得容易理解得多,尤其是參數條件較好的模擬語音,也就是較多頻道、或植入深度較深的模擬語音。如果反覆再多聽幾次,甚至會發現,即使是頻道數較少、植入深度較淺的模擬語音,也不像第一次聽到時感覺那麼難以辨識了。這樣反覆練習聆聽的過程,可說是電子耳術後聽能復健的縮影。

聽損者在植入電子耳後,對於大腦來說,並無法馬上就能詮釋透過電刺激所傳送的訊號,而是要透過不斷地練習,包括正式的聽能復健、以及日常生活中持續累積聆聽經驗,才能將手術前透過聲波所理解的各種聲音,再重新與電刺激所呈現的聲音進行配對。

電子耳術後復健是關鍵

電子耳植入後是否能成功地透過聽理解日常對話,背後有許多的影響因素,其中關鍵的兩點,是植入前是否有聽能和語言的基礎,以及植入後的聽能復健與日常練習[註4]。若植入前有聽語基礎,像是學語後失聰的成人、或植入前有穩定佩戴助聽器的聆聽經驗等,因為已具備語言知識和語音聆聽經驗,大腦的聽覺區有持續地接收刺激,所以在植入後,可以在既有的聽語基礎上,去建構更好的聽能技巧。而植入後的聽能復健與日常練習更是至關重要,透過不斷地練習,並配合聽語專業人員的復健課程,讓大腦可塑性發揮作用,去辨識進而理解透過電子耳傳遞的語音。

2017 年電子耳納入健保給付後,許多醫生和家長都會積極地為聽損孩子植入電子耳。然而,這裡要提醒的是,雖然電子耳確實有許多成功的案例,但在決定手術之前,仍應審慎評估風險與成效,並了解術後復健所需投入的時間與心力,才能在植入後達到最好的聆聽成效。

註解

  • 註 1:本文所說明的聲音處理方式是經典的策略,隨著各家廠商研發新技術,聲音訊號處理的方式會有所變化,但在概念上大致相似。
  • 註 2:電子耳聲音模擬呈現的仍然是聲波,與電子耳透過電刺激所傳遞的方式有本質上的不同,所以並無法真實呈現電子耳使用者聆聽的感受。聲音模擬的真正用途是在學術研究與技術研發,讓學者和電子耳公司,能透過改變模擬的參數進行實驗,來找尋更好的電子耳聲音處理策略。
  • 註 3:影響因素包括:先天內耳構造、電極間的電流交互作用、耳蝸死區、聽神經存活率、電子耳調頻圖的各項參數……
  • 註 4:植入後的另一項關鍵因素是定期調頻(mapping;另一譯名為「調機」),即聽力師依個案需求,調整電子耳聲音處理策略的各項參數及電流量,一開始植入後需較密集地調頻,應配合聽力師建議定期進行,穩定後亦應每年調頻一次。受限於篇幅本文未深入說明。

參考資料:

  1. Blundon, E. G., Gallagher, R. E., & Ward, L. M. (2020). Electrophysiological evidence of preserved hearing at the end of life. Scientific reports10(1), 1-13.
  2. Eshraghi, A. A., Nazarian, R., Telischi, F. F., Rajguru, S. M., Truy, E., & Gupta, C. (2012). The cochlear implant: historical aspects and future prospects. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology295(11), 1967-1980.
  3. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews8(4), 187-193.
  4. Loizou, P. C. (n.d.). Cochlear implant audio demos. Retrieved from https://ecs.utdallas.edu/loizou/cimplants/cdemos.htm
  5. Loizou, P. C. (1999). Introduction to cochlear implants. IEEE Engineering in Medicine and Biology Magazine18(1), 32-42.
  6. NIDCD (National Institute on Deafness and Other Communication Disorders) (2021). Cochlear Implants. NIH Publication No. 00-4798. Retrieved from https://www.nidcd.nih.gov/health/cochlear-implants
  7. Nogaki, G., Fu, Q. J., & Galvin III, J. J. (2007). The effect of training rate on recognition of spectrally shifted speech. Ear and hearing, 28(2), 132.
  8. Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: a remarkable past and a brilliant future. Hearing research242(1-2), 3-21.

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
雅文兒童聽語文教基金會_96
34 篇文章 ・ 193 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。


0

0
0

文字

分享

0
0
0

一生可以聆聽的聲音總量是註定的?戴上你的聽力計算機!

雅文兒童聽語文教基金會_96
・2022/05/17 ・3915字 ・閱讀時間約 8 分鐘
  • 文/黃上維 聽力師|雅文兒童聽語文教基金會

「早上跑了五圈操場,晚上吃個雞排加珍奶應該還好吧……」、「昨天買了一雙限量版精品鞋,這個月就不吃晚餐了……」,生活中充滿算數題,來決定我們的生活習慣與行為,其實,在聽力學領域中,也有類似概念哦!聽的刺激不夠,聽覺系統解析的功能會逐漸衰退;聽的刺激太多,聽覺系統也會感到疲勞或損傷。到底聽多少,才能剛剛好?今天就帶你揭密聆聽的守則。

世界衛生組織(World Health Organization,WHO)統計全球已超過 5% 人口有失能性聽力損失。然而,多數聽力損失可被預防,調查發現將近 50% 的年輕人使用過高的音量聆聽個人音訊設備,約 40% 經常去娛樂場所的人(包括演唱會、運動賽事)則暴露在過久的高音量下[1]。 WHO 為此著手訂定「安全聆聽」的保健策略,如同醫師及藥師給藥時會算劑量,安全聆聽需要計算聲音暴露容許量(sound allowance)。

聽得「過久」或「過大聲」都會造成傷害

聲音是一種能量,基於相等能量原理(equal energy principle),無論能量在時間上的分佈如何,相同聲能的聲音會造成一樣的永久性聽力變化,表示「長時間聆聽較低的音量」會產生與「短時間聆聽非常的大音量」相同的影響。

WHO 提出兩種標準,均以七天作為一周期[2]。當聲音能量加倍(以 3 分貝為級距),容許的時間要減半,如下圖所示,健康成人適用一般標準;「兒童、耳毒性藥物服用史」等對噪音更為脆弱的族群則適用敏感標準,其將風險起始點下修至 75 分貝(dBA)的聲音每周聆聽 40 小時。此外,視障、認知困難者及老年人,考量聽力一旦損失,對其產生的負向影響將更大,也應選用較嚴謹的標準[3]

WHO 聲音暴露容許量。分貝越高,容許時間越少。圖/作者,製作自參考資料 2

聽起來不難嗎?生活中的聲音有多大聲

當我們在身處安靜室內,隔著一張桌子與朋友聊天時,說話音量的分貝就已經有 55-60 分貝(dBA);此時若環境變得吵雜,我們也會不自覺提高說話音量,分貝來到 65 分貝,如此可見生活中的大聲音是無所不在。美國 3M 公司團隊針對超過 1700 種職業、娛樂、社區等噪音源進行實際量測或整理文獻,發表了各項分貝數值[4],本文整理生活常見情境,並將分貝範圍達 75 分貝以上者,標為警示音量。

常見聲音音量分布。淺色底表示範圍,深色底表示平均值。圖/作者,製作自參考資料 4

現在我們來將分貝數對應 WHO 的「成人聲音暴露容許量」,以果汁攪拌機為例,平均音量是 82 分貝,一周應避免超過 25 小時的從旁聆聽,這似乎是件輕鬆的事!(除非你家開果汁店那就另當別論);然而交通機車噪音平均達到 98 分貝,一周應避免超過 40 分鐘的騎乘,對被譽為「機車王國」的台灣而言,似乎就沒有那麼容易。

隱形聽力殺手:環境噪音及娛樂噪音

交通機車噪音除了來自周遭車輛與自體引擎外,氣流吹向安全帽框所產生的風切聲(wind noise)也是一來源,因此噪音量與車速、安全帽種類都有關。早在 30 年前就有研究發現,當騎乘車速約莫每小時 50 公里,佩戴全罩式安全帽的耳邊噪音量較高,為 95 分貝、佩戴 3/4 罩安全帽的耳邊噪音量較低,為 89 分貝;隨著車速提高至約莫 80 公里,兩者分別上升至 103、98 分貝(Ross B.C. , 1989)。看來,機車族不僅要思考哪種安全帽可以保護頭部安全,還得思考該如何在騎車時也保護耳朵的健康。

騎個車也可能會讓自己過度暴露在噪音中?圖/pexels

此外,隨著 3C 產品與藍芽技術推層出新,聽穿戴科技(hearable tech)結合音樂通話、健康追蹤、導航等需求,已成為「人耳兩機」的時尚趨勢,但常見智慧型手機連接耳機的最大輸出音量高達 113.1 分貝[6],當我們使用耳機聆聽,更應當留意音量大小,特別是周遭環境較吵雜時,若為了蓋過捷運、鐵路等交通噪音而不自覺加大音量,結果恐怕得不償失。

「相等能量原理」不是算命神器,你的聽力也要靠自己努力

噪音性聽損實為多重致因、複雜表徵的疾病,不單與聲音大小有關,也不單只損害「察覺」聲音的能力。首先是個體的易感性(susceptibility),基因變異或高血脂將使個人對噪音的暴露更脆弱,而營養均衡的飲食或自體生成的熱休克蛋白(能維持細胞活性、幫助細胞修復的蛋白質)則可提高個人的保護力[7][8];再者是細胞損傷的針對性,噪音導致的暫時性聽損雖有機會恢復,但長期來看恐加速與老化相關的聽損,且噪音對聽覺神經結構的破壞,將使「分辨」聲音的能力也退步[9]。因此雖單靠相等能量原理難以完美詮釋終身的噪音危害,但作為基礎的估算仍有其價值。

善用工具!落實安全聆聽

為了盡可能減少噪音性聽損的風險,許多防音防護具(hearing protection devices)已經上市,除了一般通用的耳塞、耳罩,依照不同款式與材質、正確配戴與否,所能帶來的噪音衰減評比值(Noise Reduction Rating,NRR)在 0-35 分貝間[10];臺灣亦有不少助聽器公司,能由專業聽力師為我們取下專屬耳型(ear impression),再製作成客製化耳塞,更貼合個人的耳道以提高舒適。

在特殊製防音具中,分為基於音量水平(level-dependent)或基於頻率均等的衰減(uniform attenuation)。音量水平僅針對高音量衰減,而能保留安靜情境中較低音量的語音溝通需求,通常可應用在營造、紡織、航空等高噪職業。簡單來說,這樣的技術可以過濾機械運作時產生的大聲噪音,讓作業員較輕鬆聽到其他同事的說話聲。均等的衰減技術則考慮傳統耳塞對高頻率音的衰減大於低頻率音,因此在設計上利用聲學特性對高頻音產生額外共振,這樣就能留有貼近原音的清晰音質,可供音樂家、音響工程師,及講求高音質的大眾使用[11]

客製化防噪耳塞,結合內部音管做濾音功能,預期能達到頻率均等的衰減。圖/作者

人人在手的安全聆聽幫手

響應 WHO 與國際電信聯盟(International Telecommunication Union)在 2019 年提出的安全聆聽設備標準[2],許多手機與耳機製造商已開始著手在軟硬體端導入 WHO 的聆聽標準,可由「設定」內的「聲音與觸覺回饋/音效與震動」或下載應用程式做設定,功能雖因廠牌有異,但多涵蓋下述項目:

  1. 耳機高音量通知:當聆聽超過聲音累積允許量時發出通知提醒。
  2. 降低耳機高音量:選定設備最高音量限制,系統會分析耳機音訊並降低任何超出的音訊。
  3. 即刻檢視耳機音量:在聆聽音訊時,查看當前的音量變化。
  4. 個人化音訊調節:輸入專屬的聽力圖,系統能根據個人在不同頻率的聽力程度客製化調整音訊,使聆聽感受更清晰,或許你就能稍微調降整體音量,延長聆聽的允許時間。
  5. 累積耳機音量:部分根據耳道聲學,自動計算一段時間的耳內音量,標示使用狀況屬於正常或大聲;或將聲音暴露容許量以百分比告知每日/每周聆聽的餘額。
  6. 累積環境音量:自動計算一段時間的環境音量,標示正常或大聲;或將聲音暴露容許量以百分比告知每日/每周接觸的餘額。
為了一生的聽覺健康,記得落實安全聆聽的守則。圖/pexels

噪音對健康的影響不止於聽覺,也與睡眠障礙、新陳代謝與心血管疾病、兒童的認知表現下降有關[12]。因此不論先天的聽力基礎如何,聽力保健是人人都要關心的健康議題。大家不妨現在就拿起手機與耳機、開始設定,讓智慧 3C 發揮「智慧生活」的價值,協助你我「落實安全聆聽」吧!

參考資料

  1. World Health Organization. (2021). World Report on Hearing, 40,65. Available at:https://www.who.int/publications/i/item/world-report-on-hearing
  2. World Health Organization. (2019). Safe listening devices and systems: a WHO-ITU standard, 15-16. Available at:https://www.who.int/publications/i/item/9789241515276
  3. Berglund, Birgitta, Lindvall, Thomas, Schwela, Dietrich H & World Health Organization. Occupational and Environmental Health Team. (‎1999)‎. Guidelines for community noise, 35. Available at:https://apps.who.int/iris/handle/10665/66217
  4. Elliott H. Berger, Rick Neitzel, & Cynthia A. Kladden. 3M Personal Safety Division. (2015). Noise Navigator: Sound Level Database, 39-46 Available at:https://multimedia.3m.com/mws/media/888553O/noise-navigator-sound-level-hearing-protection-database.pdf
  5. Ross B. C. (1989). Noise exposure of motorcyclists. The Annals of occupational hygiene, 33(1), 123–127. https://doi.org/10.1093/annhyg/33.1.123
  6. Kim, G., & Han, W. (2018). Sound pressure levels generated at risk volume steps of portable listening devices: types of smartphone and genres of music. BMC public health, 18(1), 481. https://doi.org/10.1186/s12889-018-5399-4
  7. Le, T. N., Straatman, L. V., Lea, J., & Westerberg, B. (2017). Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. Journal of otolaryngology – head & neck surgery, 46(1), 41. https://doi.org/10.1186/s40463-017-0219-x 
  8. 張寧家(2011)。 影響台灣勞工噪音性聽力障礙易感性相關因子之研究。高雄醫學大學醫學研究所博士學位論文。 
  9. Wu, P. Z., O’Malley, J. T., de Gruttola, V., & Liberman, M. C. (2021). Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. The Journal of neuroscience, 41(20), 4439–4447. https://doi.org/10.1523/JNEUROSCI.3238-20.2021
  10. Centers for Disease Control and Prevention, USA. (December 11, 2018). How Do I Prevent Hearing Loss from Loud Noise? Retrieved from https://www.cdc.gov/nceh/hearing_loss/how_do_i_prevent_hearing_loss.html
  11. Patricia A. Niquette. (Mar 7, 2007). Uniform Attenuation Hearing Protection Devices. Retrieved from https://hearingreview.com/hearing-products/uniform-attenuation-hearing-protection-devices
  12. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. Lancet, 383(9925), 1325–1332. https://doi.org/10.1016/S0140-6736(13)61613-X

數感宇宙探索課程,現正募資中!

雅文兒童聽語文教基金會_96
9 篇文章 ・ 7 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。