2

10
1

文字

分享

2
10
1

喂~真的不是機器人的耳朵!揭露人工電子耳的運作原理

雅文兒童聽語文教基金會_96
・2021/08/15 ・4279字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 作者 / 張逸屏|雅文基金會聽語科學研究中心 研究員

聽到「人工電子耳」這五個字你會想到什麼呢?既是「人工」又是「電子」的耳朵,大概就像義肢或義眼吧,會有著與原器官相似的外型,若一不小心開啟妄想小宇宙,各種以機器人為題材的科幻電影馬上浮現……,先等一下!這誤會可大了!

幫助聽損者重拾聽力的高科技

 人工電子耳其實是聽力損失者在助聽器之外,可選擇使用的聽覺輔具之一。「聽見聲音」對一般聽力正常的人來說,是在出生前就已經開始累積的感官經驗,胎兒的聽覺系統在孕期 6 個月左右就發育完成(Graven & Browne, 2008),而聽覺也是人們離世時最後消失的感官功能(Blundon, Gallagher, & Ward, 2020),可說是在五感當中陪伴人一生最久的感官。然而,有許多人因為各種先天或後天的因素而有程度不同的聽力損失。隨著科技發達,要重拾聽覺已不再是遙不可及的事。

就像是大部分長輩因老化而造成的重聽,程度相對較輕,可以透過佩戴助聽器矯正聽力;但重度或極重度以上的聽損,採用助聽器這種放大聲音的方式很可能已無法滿足需求。這時,植入人工電子耳則是另一種可以恢復聽覺的選擇。

人工電子耳如何產生聽覺?

     

文件:人工耳蝸.png
人工電子耳構造示意圖。圖一/Wikipedia

人工電子耳的原文為 cochlear implant,也有人稱為「人工耳蝸」。從圖一中可以看到,醫生透過手術將電極(Electrode)植入到內耳的耳蝸當中,而佩戴在耳朵上的聲音處理器(Sound processor)將接收到的聲音訊號,依照音量和頻率分布做計算、並轉換為電訊號,再透過佩戴在頭上的線圈,經電磁感應傳送到植入體(Internal implant),越過受損的內耳,透過電極以電流刺激聽神經(Hearing nerve)而產生聽覺(Loizou, 1999)。所以人工電子耳的外型和耳朵並不相似,而是有一部份佩戴在耳朵上、一部份植入在頭部內的。近年更有一體成形機(可參考網頁),佩戴在外部的所有元件都組合在一起,佩戴起來更加輕巧。

當代人工電子耳的發展可回溯到 1960 年代,一開始發展時許多學者其實並不看好,認為只透過少數幾個電極,不可能將複雜的聲音訊號與特性真實地呈現,並傳遞給大腦詮釋為有意義的訊息。然而經過研發與臨床試驗,許多植入電子耳的聽損者可以有好的成效(Eshraghi et al., 2012),植入後一年時測驗句子聽辨,平均正確率可達到約 90%(Wilson & Dorman, 2008)。美國 FDA(U.S. Food and Drug Administration;相當於衛福部食藥署)也分別在 1980 年和 2000 年正式通過成人和 1 歲以上孩子植入電子耳,至 2019 年底全球登記在案的電子耳數量超過 73 萬(NIDCD, 2021)。

原來耳蝸就像鋼琴鍵盤

雖然電子耳確實能將重度聽損者帶回有聲世界,一開始不看好的學者,其實也對電子耳恢復聽覺的表現感到驚嘆。聲音的訊號十分複雜,究竟是如何只透過 16〜22 個電極,就完成了傳遞聲音訊號的任務呢?要回答這個問題,就要了解聲音的兩大特性、以及分別如何用電流來呈現。

聲音的兩大特性就是「音量大小」及「頻率高低」,在電子耳的訊號處理中,音量可用電流的大小來呈現,而頻率則可以利用電極在耳蝸中的位置來呈現,其原理是因為人的耳蝸原本就有「音調排列(tonotopic)」的特性。

人的耳蝸長度大約 3.5 公分,形狀有點像蝸牛殼(所以叫耳蝸嘛!),盤繞大約 2 圈半。所謂的音調排列,就如同圖二所示,若想像將耳蝸拉直後,耳蝸的底部負責高頻的聲音、頂端則負責低頻的聲音,就像是對應鋼琴鍵盤上按照聲音頻率高低而排列的琴鍵。因此,聲音訊號並不是全部一起送到所有的電極,而是聲音處理器會將聲音分解為數個不同的頻段,再分別送到對應的電極。

File:1408 Frequency Coding in The Cochlea.jpg
耳蝸的音調排列說明示意圖。若將耳蝸拉直來看,底部(Oval window base)負責高頻(high frequency)的聲音,而頂部(Apex)則對應低頻(low frequency)的聲音 。圖二/Wikipedia

在耳蝸植入的電極數量,決定聲音處理器會將輸入的聲音分解為幾個頻段。例如,澳洲電子耳大廠 Cochlear® 公司的 Neucleus 電子耳,一般來說會在耳蝸內植入 22 個電極,那麼聲音處理器就會將聲波分解為 22 個頻段,再以電流脈衝(pulses)進行編碼,並分別去刺激對應的電極。也就是說,大約在 100-300 Hz 這個頻率帶的聲音,在進行編碼後就會被傳送到植入在耳蝸最頂端的電極;而大約在 6000-8000 Hz 這個頻率帶的聲音,則會透過耳蝸最底端的電極來刺激聽神經[註1]

上述說明的是理論上最理想的狀況,然而在實際上,可能因組織構造、聽損本身造成的神經存活狀態、電極間電流的互相干擾(此為電流本身之特性)等種種原因,造成呈現特定聲音頻率帶的電脈衝並不是(只)刺激原本所設定、負責某頻段的聽神經,使得聲音有失真和扭曲的現象。所幸人類的大腦具有可塑性,在植入電子耳後,透過聽能訓練和日常不斷累積聆聽經驗,許多電子耳使用者都能逐漸適應、並提升聽辨的表現。

電極數越多、一定聽得越好?

那麼,透過電子耳的聲音聽起來到底是如何呢?在網路上有不少電子耳聲音模擬[註2]的影音可以參考,這裡介紹美國達拉斯大學提供的網頁(Loizou, n.d.)。其中提供了不同頻道數(channel = 頻道;概念上相當於電極數)、以及不同植入深度的聲音模擬。以頻道數來說,若逐個試聽,會發現愈多頻道時語音會愈清楚。不過受限於耳蝸體積、電極相近時會互相干擾等因素,植入的電極數能增加數量有限,如前述一般是植入 16 – 22 個電極。此外,雖然在理論上愈多頻道(電極)聲音會愈清晰,但由於各種複雜的影響因素[註3],實際上這樣的關係並不是絕對的,尤其不同的電子耳產品間、或不同個案間,不能直接以電極數來評斷聲音/聆聽品質的優劣。

植入深度也是影響因素

除了頻道數外,網站上還提供了不同植入深度的模擬。電子耳的植入手術中,是將電極從耳蝸的底端插入,理想的植入深度是大約 25 公釐。這樣的情況下,特定頻率帶的聲音就可以透過對應的電極,去刺激負責那段頻率的聽神經。如果植入的深度不夠,代表電極的位置是比較偏底端的,根據前面提到的音調排列特性,特定頻率帶的聲音就會被送往較接近底端、偏向較高頻率的電極和聽神經了。

Frequency allocations of analysis and carrier filter bands for 8-channel acoustic simulations of cochlear implant speech processing. 
植入深度不足對語音處理的影響示意圖。圖三/參考資料 7(Figure 1)

植入深度不足的情況可參考圖三,圖的上半部示意理想植入深度,因此聲音處理器的聲音分解(Analysis bands)和刺激電極在耳蝸的分布(Carrier bands)是能夠完全對應的。而圖三的下半部,則是植入深度極端不足(16 公釐)的示意圖。在這情況下,大約 200-360 Hz 這段頻率的聲音(Analysis bands最左邊的小方塊),會被傳送到負責大約 1000-1400 Hz 這段頻率帶的電極及聽神經(Carrier bands 最左邊的小方塊),因此聲音聽起來會變得很高、很尖很細,而有扭曲的現象。你可以在聲音模擬的網站試聽看看,植入深度愈淺(22 mm)時,聲音聽起來會愈尖。

透過訓練,讓大腦適應電子耳的聲音

除此之外,你可能也會發現,若先聽過原始的語音(original speech/original sentence)、再聽模擬的聲音,會發現聽起來變得容易理解得多,尤其是參數條件較好的模擬語音,也就是較多頻道、或植入深度較深的模擬語音。如果反覆再多聽幾次,甚至會發現,即使是頻道數較少、植入深度較淺的模擬語音,也不像第一次聽到時感覺那麼難以辨識了。這樣反覆練習聆聽的過程,可說是電子耳術後聽能復健的縮影。

聽損者在植入電子耳後,對於大腦來說,並無法馬上就能詮釋透過電刺激所傳送的訊號,而是要透過不斷地練習,包括正式的聽能復健、以及日常生活中持續累積聆聽經驗,才能將手術前透過聲波所理解的各種聲音,再重新與電刺激所呈現的聲音進行配對。

電子耳術後復健是關鍵

電子耳植入後是否能成功地透過聽理解日常對話,背後有許多的影響因素,其中關鍵的兩點,是植入前是否有聽能和語言的基礎,以及植入後的聽能復健與日常練習[註4]。若植入前有聽語基礎,像是學語後失聰的成人、或植入前有穩定佩戴助聽器的聆聽經驗等,因為已具備語言知識和語音聆聽經驗,大腦的聽覺區有持續地接收刺激,所以在植入後,可以在既有的聽語基礎上,去建構更好的聽能技巧。而植入後的聽能復健與日常練習更是至關重要,透過不斷地練習,並配合聽語專業人員的復健課程,讓大腦可塑性發揮作用,去辨識進而理解透過電子耳傳遞的語音。

2017 年電子耳納入健保給付後,許多醫生和家長都會積極地為聽損孩子植入電子耳。然而,這裡要提醒的是,雖然電子耳確實有許多成功的案例,但在決定手術之前,仍應審慎評估風險與成效,並了解術後復健所需投入的時間與心力,才能在植入後達到最好的聆聽成效。

註解

  • 註 1:本文所說明的聲音處理方式是經典的策略,隨著各家廠商研發新技術,聲音訊號處理的方式會有所變化,但在概念上大致相似。
  • 註 2:電子耳聲音模擬呈現的仍然是聲波,與電子耳透過電刺激所傳遞的方式有本質上的不同,所以並無法真實呈現電子耳使用者聆聽的感受。聲音模擬的真正用途是在學術研究與技術研發,讓學者和電子耳公司,能透過改變模擬的參數進行實驗,來找尋更好的電子耳聲音處理策略。
  • 註 3:影響因素包括:先天內耳構造、電極間的電流交互作用、耳蝸死區、聽神經存活率、電子耳調頻圖的各項參數……
  • 註 4:植入後的另一項關鍵因素是定期調頻(mapping;另一譯名為「調機」),即聽力師依個案需求,調整電子耳聲音處理策略的各項參數及電流量,一開始植入後需較密集地調頻,應配合聽力師建議定期進行,穩定後亦應每年調頻一次。受限於篇幅本文未深入說明。

參考資料:

  1. Blundon, E. G., Gallagher, R. E., & Ward, L. M. (2020). Electrophysiological evidence of preserved hearing at the end of life. Scientific reports10(1), 1-13.
  2. Eshraghi, A. A., Nazarian, R., Telischi, F. F., Rajguru, S. M., Truy, E., & Gupta, C. (2012). The cochlear implant: historical aspects and future prospects. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology295(11), 1967-1980.
  3. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews8(4), 187-193.
  4. Loizou, P. C. (n.d.). Cochlear implant audio demos. Retrieved from https://ecs.utdallas.edu/loizou/cimplants/cdemos.htm
  5. Loizou, P. C. (1999). Introduction to cochlear implants. IEEE Engineering in Medicine and Biology Magazine18(1), 32-42.
  6. NIDCD (National Institute on Deafness and Other Communication Disorders) (2021). Cochlear Implants. NIH Publication No. 00-4798. Retrieved from https://www.nidcd.nih.gov/health/cochlear-implants
  7. Nogaki, G., Fu, Q. J., & Galvin III, J. J. (2007). The effect of training rate on recognition of spectrally shifted speech. Ear and hearing, 28(2), 132.
  8. Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: a remarkable past and a brilliant future. Hearing research242(1-2), 3-21.
文章難易度
所有討論 2
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

1

2
2

文字

分享

1
2
2
貝多芬頭髮保存 DNA,讓台灣人肝同身受
寒波_96
・2023/04/26 ・2722字 ・閱讀時間約 5 分鐘

貝多芬,是歷史上最知名的音樂家之一。2023 年問世的論文報告貝多芬的基因組,得知他有肝硬化的遺傳高風險,另外還感染 B 型肝炎病毒,令台灣人肝同身受。

符合一般人心目中貝多芬形象的畫像。圖/GL Archive/Alamy

貝多芬留下很多頭髮,哪些是真的?

貝多芬在公元 1770 年 12 月 16 日出生,1827 年 3 月 26 日去世。他在生前就非常知名,去世後名聲歷久不衰,相關研究很多,這項研究從遺傳學切入,獲得寶貴的新觀點。

貝多芬去世後留下一些遺物,但是不見得是真品。這項研究由 8 份獨立收藏的頭髮抽取 DNA,據說源自貝多芬不同年紀留下的頭髮。

8 份樣本,有 1 份「Kessler」的 DNA 含量不足,其餘 7 份足夠分析。5 份長期由不同人保存,遺傳訊息卻完全一致,應該就是貝多芬本人的。其餘 2 份看來分屬沒有關係的 2 個人,顯然不是貝多芬的頭毛。

很可能來自貝多芬的 5 份頭髮。圖/參考資料1

值得一提的是,「Hiller」頭毛之前檢驗出重金屬,有人藉此提出貝多芬去世前健康惡化,和重金屬中毒有關。但是這回得知這根本不是貝多芬的頭髮,推翻此一論點。

貝多芬的Y染色體,有點謎

從 5 個獨立來源獲得的古代 DNA,能拼湊出完整的基因組,覆蓋率高達 24。遺傳上看來是一位歐洲中部的男生,血緣上沒有特殊之處。Y 染色體型號為 I1a-Z139,也是歐洲的常見型號。

由不同頭髮中取樣拼湊而成的基因組,幾乎可以確認來自貝多芬本人。然而,和貝多芬家族如今的親戚比對,Y 染色體卻不一樣。

貝多芬整個基因組看來,與如今歐洲中部的人群最相似。圖/參考資料1

音樂家貝多芬在 1770 年出生,名字為 Ludwig van Beethoven。歷史可考有一位 1535 年出生、1609 年去世的祖先 Aert van Beethoven,比他更早好幾代,並且有男性後裔流傳至今。

歐洲的姓是父系傳承,Y 染色體也是;所以同姓的人 Y 染色體應該類似,只有歷代突變累積的少數差異。然而比對發現,如今五位貝多芬的 Y 染色體皆為 R-FT446200,和音樂家貝多芬不同。

如果歷史記載正確,這五位應該都是 Aert 的直系後裔。論文推測,從 Aert 到音樂家貝多芬的兩百多年間,或許發生過某些缺乏紀錄的事。

另一方面,貝多芬類似款式的 Y 染色體,如今依然存在,而且在歐洲人資料庫中可以搜尋到 5 款,估計共同祖先能追溯到一千年前。奇妙的是,五群人的姓氏都不一樣,而且都沒有人姓貝多芬。

如今姓貝多芬的人,Y 染色體都和音樂家貝多芬不一樣。Y 染色體和音樂家貝多芬一樣的人,都不姓貝多芬。圖/參考資料1

爆肝的遺傳風險

有很明確的記載指出,貝多芬 56 歲去世前便長期健康欠佳,有腸道和肝的毛病。另外聽力問題也很出名,身為史上一流音樂家,貝多芬的聽覺竟然從 20 多歲起逐漸退化,去世前聽力極差,原因成謎。

這些問題和遺傳有關嗎?人類遺傳學研究已經找到不少與疾病、健康有關的風險因子,檢查發現,聽力與腸道方面的毛病,貝多芬沒有配備哪些 DNA 變異明顯有關,後天因素的影響也許更大。

貝多芬的肝實際上大有問題,遺傳上看來,幾處基因上也具備高風險的變異。純以 DNA 來說有酗酒傾向,而他晚年確實會酗酒。

不過風險最明確的是 PNPLA3 基因,貝多芬在此基因 rs738409 位置,配備的一對變異與「肝硬化」高度相關,也就是先天上,肝硬化的機率更高。

貝多芬去世前留下的「Stumpff」頭髮,其中存在 B 型肝炎病毒的 DNA 片段。頭毛中竟然可以抓到 B 型肝炎病毒,奇怪的知識增加惹!圖/參考資料1

最終命運:肝硬化×酗酒×B型肝炎?

另一很難想像的發現是,貝多芬去世前不久留下的「Stumpff」頭髮中,偵測到 B 型肝炎病毒的 DNA 片段。

儘管出乎意料,最近確實有研究報告,在病患的頭髮中檢驗到 B 肝病毒。因此頭髮中的病毒 DNA 或許不是後人汙染,而真的是曾經感染貝多芬的病毒。

B 肝病毒有很多款,貝多芬感染的型號是歐洲常見款式 D2。他在 1827 年 3 月去世,留下這些頭髮的日期則早於 1826 年冬天,由此可知去世前幾個月,貝多芬正在感染 B 型肝炎。

即使體內有 B 肝病毒,也不見得能在頭髮中偵測到,所以更早留下的頭髮中沒有病毒,不等於他當時沒有感染。貝多芬也有可能是長期感染的慢性帶原者。

無人不知的貝多芬,我們懷念他。圖/小賈斯汀 VS 貝多芬 – 經典饒舌爭霸戰 #6(正體中文)

貝多芬中年起健康明顯走下坡,去世前幾年或許同時受到肝硬化、酗酒、B 型肝炎的夾擊,才會導致嚴重的肝病問題。

歷史記載 1826 年 12 月時,貝多芬出現黃疸、四肢腫脹,很像肝功能衰竭的症狀。他就此臥床,直到長眠。

貝多芬,我們懷念他。大家也要注意健康,小心肝。

延伸閱讀

參考資料

  1. Begg, T. J. A., Schmidt, A., Kocher, A., Larmuseau, M. H., Runfeldt, G., Maier, P. A., … & Krause, J. (2023). Genomic analyses of hair from Ludwig van Beethoven. Current Biology.
  2. Beethoven’s cause of death revealed from locks of hair

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
184 篇文章 ・ 798 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

3
3

文字

分享

0
3
3
當壓力比山大,你需要安靜的力量!
雅文兒童聽語文教基金會_96
・2023/04/24 ・2200字 ・閱讀時間約 4 分鐘

  • 文/王冠雅(雅文基金會聽語科學研究中心 助理研究員)

翻開行事曆,總有開不完的會、做不完的報告,真的是壓力山大。雖然身旁的人都輕聲說話,周遭的環境也沒有過度喧鬧,但不知為何,就是什麼聲音都不想聽到!

沒錯,當我們身心充滿壓力、腦袋滿載的狀態下,腦中的思緒(或是雜訊)總喋喋不休,即便是平時熱愛的旋律都會聽不下去。在無法緩和壓力的狀況下,身心壓力就持續拉高。此刻,或許可以問問自己:

「今天,你累了嗎?」

不過咖啡或能量飲料可能都不是正解,你需要的,是去感受「安靜的力量」。

靜不下來,有時是周遭的聲音,有時可能是腦海中喧囂的壓力。
圖/freepik

壓力來襲,全身心都要一起扛

首先,讓我們先來一起認識「壓力」究竟為何物!

壓力其實是生理或心理受到脅迫的狀況下所引發的個體狀態。任何的壓力對我們的身體來說都可能是一種威脅。當接收到「壓力」的訊息,大腦就如同一個中央指揮中心,會本能地激發身體激素,開啟戰鬥或逃跑的生存機制。

像是在開車時,路邊的小巷子突然衝出一台疾駛的摩托車,我們能隨即透過身體調適壓力的本能,而瞬間激發出一連串的荷爾蒙,迅速地做出迴閃的反應行為,並敏捷地應對突如其來的意外威脅。

除了係關生命安全的壓力,那些會對我們日常生活、工作有所影響的壓力也會被身體視為一種威脅。特別是在數位科技的黃金時代,在過度追求速度、效率、產值,或是在處理家庭和人際關係、工作及課業問題所積累出的情緒,都容易成為長期的慢性壓力。

想耳根清靜,多半是聆聽也成了一種壓力

當我們備感壓力時,哪怕是冷氣的滴水聲,或是慣常的風扇運轉聲,都可能變得難以忍受,更別說是有點大聲的說話音量,更容易讓人倍感刺耳。

事實上,壓力與聽覺是密切關聯。

長期研究壓力的科學家 Dan Hasson 和他的研究夥伴,對具有慢性情緒衰竭(Emotional Exhaustion,意指在長期壓力下身心俱疲的精神狀態)的受試者進行誘發壓力的實驗,包括 208 名女性和 140 名男性(年齡區間為 23-71 歲,分別具有低、中、高的情緒疲憊程度)。

試驗過程會讓受試者承受短期的壓力實驗,並從中了解他們是否對聲音更加敏感。結果發現,身心俱疲程度較高的女性經過誘發壓力後,對聲音會更加無法忍受(男性受試者雖有類似的反應,但在統計上並不顯著)。有一些受試者甚至聽到正常談話的音量(約 60 分貝),便開始覺得聲音太大,而感到不適。

此外,當壓力襲來,身體會非常有感,是因為大腦與身體會企圖去平衡、調適我們所感受到的壓力。

倘若大腦一直對壓力保持警覺,身體則需要長時間維持高度戒備,且繼續啟動調控壓力代謝的荷爾蒙系統。如果長期處於慢性壓力的狀態,身體便會像空轉的馬達般虛耗運作,並產生過量的腎上腺素到血液,讓耳朵內的血液循環變差。然而,耳朵中脆弱的內毛細胞(Inner hair cells),仰賴充分的血液循環來接收足夠的氧氣與養分,若因日復一日地高壓讓血液循環長期受阻,以至於內耳的毛細胞供血不足,嚴重的話,將會導致聽力受損。


因此,若是身處在壓力風暴中,即便是聆聽一般的說話聲、用腳踩踏的節奏或是空調的低頻聲,都能令人感到煩躁與不耐。這可能是壓力所導致的焦慮及疲憊已經讓感官過載,才無法良好地調整自己,更失去了與他人對話的能量。

走出戶外、接近大自然,可以有效地洗滌日常生活中所積累的壓力與情緒。圖/freepik

心靜自然涼,用六分半分鐘補充「靜能量」

許多研究證實,待在安靜的環境,將有助於恢復我們的神經系統、提升能量並調節身心狀態。不論是待在室內或戶外綠意盎然處,只要安靜地待上六分半鐘,便能有效放鬆身心。在靜謐的自然環境中,我們的身心與意識會出現類似冥想時的泰然,因此在戶外的綠地放鬆,會有更顯著的效果!

在忙碌的現代生活,壓力難免罩頂,若能經由自我的良好覺察,辨識內心的喧囂,進一步理解哪一種外在刺激、內在情緒成了壓力來源,並適時地自我關照、調養,定期放鬆及運動,將能讓身心保持安寧與健康。

參考文獻

  1. 鄧夙舫。(2008,9月19日)。壓力是什麼?衛生福利部桃園療養院。https://www.typc.mohw.gov.tw/?aid=509&pid=44&page_name=detail&iid=100
  2. Harvard Health Publishing. (2020, July 6th). Understanding the stress response. Harvard Health Publishing. https://www.health.harvard.edu/staying-healthy/understanding-the-stress-response
  3. Hasson, D., Theorell, T., Bergquist, J., & Canlon, B. (2013). Acute stress induces hyperacusis in women with high levels of emotional exhaustion. PloS one, 8(1), e52945. https://doi.org/10.1371/journal.pone.0052945
  4. Teague, T. (2019, May 20th). A Link Between Stress and Hearing Loss. Hearing Consultants. https://hearingconsultants.com/a-link-between-stress-and-hearing-loss/#:~:text=Stress%20can%20Cause%20Hearing%20Loss,of%20oxygen%20and%20other%20nutrients
  5. 簡婉曦。(2021,1月27日)。【焦慮腦學】有一種恐懼,害怕聲音可能存在。VOCUS。https://vocus.cc/article/6011126efd89780001410d53
  6. Zorn, J & Marz, L.(2022). Golden: the power of silence in a world of noise. Harper Wave.
  7. Kirste, I., Nicola, Z., Kronenberg, G., Walker, T. L., Liu, R. C., & Kempermann, G. (2015). Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Structure & Function, 220(2), 1221–1228. https://doi.org/10.1007/s00429-013-0679-3
  8. Pfeifer, E., Fiedler, H., & Wittmann, M. (2020). Increased relaxation and present orientation after a period of silence in a natural surrounding. Nordic Journal of Music Therapy, 29(1), 75–92. https://doi.org/10.1080/08098131.2019.1642374
雅文兒童聽語文教基金會_96
46 篇文章 ・ 207 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

5
1

文字

分享

0
5
1
植物口渴就喊:「啵、啵、啵~」
胡中行_96
・2023/04/06 ・2954字 ・閱讀時間約 6 分鐘

久旱不雨,植物悲鳴,[1, 2]類似教育部《臺灣閩南語常用詞辭典》所謂「因飢餓而吵鬧」的「哭枵」(khàu-iau)。[3]別問為何沒聽過,也不怪天地寡情,人類無義,從來漠不關心。植物叫那種超音波,傳至咱們耳裡就只剩寧靜。幸好靠著以色列科學家幫忙,轉換到常人的聽覺範圍,並分享於 2023 年 3 月底的《細胞》(Cell)期刊,才廣為周知。[1]

轉換到人類聽力範圍的番茄「叫聲」。音/參考資料 1,Audio S1(CC BY 4.0)

傾聽植物的聲音

面臨乾旱或草食動物的威脅,植物會做出多種反應,例如:改變外貌,或是以揮發性有機化合物影響鄰居等。[1]過去的文獻指出,缺水引發空蝕現象(cavitation),使植物負責輸送水份的木質部,因氣泡形成、擴張和破裂而震動。[1, 4]現在科學家想知道,這是否也會產生在特定距離內,能被其他物種聽見的聲音。[1]

受試的對象是番茄菸草,分別拆成乾旱、修剪和對照 3 組。對照組又有常態生長的一般對照、有土卻無植物的盆器,以及每株植物實驗前的自體對照 3 種。實驗大致有幾個階段:首先,在隔音箱裡,距離每個受試對象 10 公分處,各立 2 支麥克風收音。將聲音的紀錄分類後,拿去進行機器學習。接著移駕溫室,讓訓練好的模型,分辨雜音和不同情況下植物的聲音。再來,觀察乾旱程度與植物發聲的關係。最後,也測試其他的植物和狀態。[1]

麥克風對著乾旱、修剪和對照組的植物收音。圖/參考資料 1,Graphical Abstract局部(CC BY 4.0)

植物錄音與機器學習

隔音箱裡常態生長的植物,每小時平均發聲少於一次;而沒植物的盆器當然完全無聲。相對地,遭受乾旱或修剪壓力的實驗組植物,反應則十分劇烈:[1]

 平均值(單位)番茄菸草
乾旱發聲頻率(次/小時)35.4 ± 6.111.0 ± 1.4
 音量(聲壓分貝;dBSPL)61.6 ± 0.165.6 ± 0.4
 聲波頻率(千赫茲;kHz)49.6 ± 0.454.8 ± 1.1
修剪發聲頻率(次/小時)25.2 ± 3.215.2 ± 2.6
 音量(聲壓分貝;dBSPL)65.6 ± 0.263.3 ± 0.2
 聲波頻率(千赫茲;kHz)57.3 ± 0.757.8 ± 0.7

隔音箱中實驗組的錄音,被依照植物品種以及所受的待遇,歸納為 4 個組別,各組別再彼此配對比較,例如:乾旱的番茄對修剪的番茄等。以此資料訓練出來的機器學習模型,判別配對中各組別的準確率為 70%。第二階段在溫室中進行,自然較隔音箱嘈雜。科學家拿空蕩溫室的環境錄音,來教模型分辨並過濾雜訊。訓練後,令其區別乾旱與對照組番茄的聲音,結果 84% 正確。[1]既然能聽得出基本的差別,下一步就是了解水量對番茄發聲的影響。

體積含水量

為了操縱體積含水量(volumetric water content,縮寫VWC),即水份與泥土體積的比值或百分比,[1, 5]科學家狠下心,連續幾天都不給溫室裡的番茄植栽喝水。一邊觀察 VWC 的變化;一邊錄下它們的聲音。起先水份充足,番茄不太吵鬧;4、5 天下來,發聲的次數逐漸增加至高峰;然後應該是快渴死了,有氣無力,所以次數又開始減少。此外,番茄通常都在早上 8 點(圖表較像 7 點)到中午 12 點,以及下午 4 點至晚上 7 點,這兩個時段出聲。[1]科學家覺得這般作息,可能與規律的氣孔導度(stomatal conductance),也就是跟光合作用的換氣以及蒸散作用的水份蒸發,兩個透過氣孔進行的動作有關。[1, 6]

大部份的聲音都是在 VWC < 0.05 時出現;當 VWC > 0.1,水份還足夠,就幾乎無聲。科學家將比較的條件進一步分成 VWC < 0.01 與 VWC > 0.05、VWC < 0.05 跟 VWC > 0.05,以及 VWC < 0.01、VWC > 0.05 和淨空溫室的聲音。機器學習模型分辨起來,都有七、八成的準確率。[1]

縱軸為每日發聲次數;橫軸為缺乏灌溉的天數。圖/參考資料 1,Figure 3A(CC BY 4.0)
乾旱狀態下,番茄發聲的時段。縱軸為每小時發聲次數;橫軸為 24 小時制的時間。圖/參考資料 1,Figure 3B(CC BY 4.0)

植物發聲的原理

實驗觀察所得,都將植物發聲的機制,指向木質部導管中氣體的運動,也就是科學家先前預期的空蝕現象[1]下面為支持這項推論的理由:

  1. 木質部導管的口徑,與植物被錄到的聲波頻率相關:寬的低;而窄的高。[1]
  2. 乾旱與修剪所造成的聲音不同:在木質部導管中,前者氣泡形成緩慢,發聲時數較長;而後者則相當迅速,時數較短。[1]
  3. 聲音是由植物的莖,向四面八方傳播。[1]
  4. 空蝕現象造成的震動,跟記錄到的超音波,部份頻率重疊;而沒有重疊的,其實已經超出其他物種的聽力以及麥克風收音的範圍。[1]
葡萄、菸草和番茄木質部導管的水平橫截面。圖/參考資料 1,Figure S4B(CC BY 4.0)
葡萄(綠色)、菸草(灰色)和番茄(橙色)的差異:縱軸為聲波頻率;橫軸是木質部導管的平均口徑。圖/參考資料 1,Figure S4A(CC BY 4.0)

問誰未發聲

觀察完番茄和菸草之後,科學家不禁好奇,別的植物是否也會為自己的處境發聲?還是它們都默默受苦,無聲地承擔?研究團隊拿小麥玉米卡本內蘇維濃葡萄(Cabernet Sauvignon grapevine)、奇隆丸仙人掌(Mammillaria spinosissima)與寶蓋草(henbit)來測試,發現它們果然有聲音。不過,像杏仁樹之類的木本植物,還有木質化的葡萄藤就沒有了。另外,科學家又監聽感染菸草嵌紋病毒(tobacco mosaic virus)的番茄,並錄到它們的病中呻吟。[1]

你敢有聽著咱的歌

之前有研究指出,海邊月見草(Oenothera drummondii)暴露於蜜蜂的聲音時,會產出較甜的花蜜。[2]若將角色對調過來:植物在乾旱、修剪或感染等壓力下釋出的超音波,頻率約在 20 至 100 kHz 之間,理論上 3 到 5 公尺內的某些哺乳動物或昆蟲,例如:蝙蝠、老鼠和飛蛾,應該聽得到。[1, 2]以色列科學家認為幼蟲會寄住在番茄或菸草上的飛蛾,或許能辨識植物的聲波,並做出某些反應。同理,人類可以用機器學習模型,分辨農作物的聲音,再給予相應的照顧。如此不僅節省水源,精準培育,還能預防氣候變遷所導致的糧食危機。[1]

  

備註

本文最後兩個子標題,借用音樂劇《Les Misérables》歌曲〈Do You Hear the People Sing?〉的粵語和臺語版曲名。[7]

參考資料

  1. Khait I, Lewin-Epstein O, Sharon R. (2023) ‘Sounds emitted by plants under stress are airborne and informative’. Cell, 106(7): 1328-1336.
  2. Marris E. (30 MAR 2023) ‘Stressed plants ‘cry’ — and some animals can probably hear them’. Nature.
  3. 教育部「哭枵」臺灣閩南語常用詞辭典(Accessed on 01 APR 2023)
  4. McElrone A J, Choat B, Gambetta GA, et al. (2013) ‘Water Uptake and Transport in Vascular Plants’. Nature Education Knowledge, 4(5):6.
  5. Datta S, Taghvaeian S, Stivers J. (AUG 2018) ‘Understanding Soil Water Content and Thresholds for Irrigation Management’. OSU Extension of Oklahoma State University.
  6. Murray M, Soh WK, Yiotis C, et al. (2020) ‘Consistent Relationship between Field-Measured Stomatal Conductance and Theoretical Maximum Stomatal Conductance in C3 Woody Angiosperms in Four Major Biomes’. International Journal of Plant Sciences, 181, 1.
  7. FireRock Music.(16 JUN 2019)「【問誰未發聲】歌詞 Mix全民超長版 粵+國+台+英 口琴+小童+學生+市民 Do you hear the people sing?」YouTube.
胡中行_96
117 篇文章 ・ 39 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。