2

10
1

文字

分享

2
10
1

喂~真的不是機器人的耳朵!揭露人工電子耳的運作原理

雅文兒童聽語文教基金會_96
・2021/08/15 ・4279字 ・閱讀時間約 8 分鐘

  • 作者 / 張逸屏|雅文基金會聽語科學研究中心 研究員

聽到「人工電子耳」這五個字你會想到什麼呢?既是「人工」又是「電子」的耳朵,大概就像義肢或義眼吧,會有著與原器官相似的外型,若一不小心開啟妄想小宇宙,各種以機器人為題材的科幻電影馬上浮現……,先等一下!這誤會可大了!

幫助聽損者重拾聽力的高科技

 人工電子耳其實是聽力損失者在助聽器之外,可選擇使用的聽覺輔具之一。「聽見聲音」對一般聽力正常的人來說,是在出生前就已經開始累積的感官經驗,胎兒的聽覺系統在孕期 6 個月左右就發育完成(Graven & Browne, 2008),而聽覺也是人們離世時最後消失的感官功能(Blundon, Gallagher, & Ward, 2020),可說是在五感當中陪伴人一生最久的感官。然而,有許多人因為各種先天或後天的因素而有程度不同的聽力損失。隨著科技發達,要重拾聽覺已不再是遙不可及的事。

就像是大部分長輩因老化而造成的重聽,程度相對較輕,可以透過佩戴助聽器矯正聽力;但重度或極重度以上的聽損,採用助聽器這種放大聲音的方式很可能已無法滿足需求。這時,植入人工電子耳則是另一種可以恢復聽覺的選擇。

人工電子耳如何產生聽覺?

     

文件:人工耳蝸.png
人工電子耳構造示意圖。圖一/Wikipedia

人工電子耳的原文為 cochlear implant,也有人稱為「人工耳蝸」。從圖一中可以看到,醫生透過手術將電極(Electrode)植入到內耳的耳蝸當中,而佩戴在耳朵上的聲音處理器(Sound processor)將接收到的聲音訊號,依照音量和頻率分布做計算、並轉換為電訊號,再透過佩戴在頭上的線圈,經電磁感應傳送到植入體(Internal implant),越過受損的內耳,透過電極以電流刺激聽神經(Hearing nerve)而產生聽覺(Loizou, 1999)。所以人工電子耳的外型和耳朵並不相似,而是有一部份佩戴在耳朵上、一部份植入在頭部內的。近年更有一體成形機(可參考網頁),佩戴在外部的所有元件都組合在一起,佩戴起來更加輕巧。

當代人工電子耳的發展可回溯到 1960 年代,一開始發展時許多學者其實並不看好,認為只透過少數幾個電極,不可能將複雜的聲音訊號與特性真實地呈現,並傳遞給大腦詮釋為有意義的訊息。然而經過研發與臨床試驗,許多植入電子耳的聽損者可以有好的成效(Eshraghi et al., 2012),植入後一年時測驗句子聽辨,平均正確率可達到約 90%(Wilson & Dorman, 2008)。美國 FDA(U.S. Food and Drug Administration;相當於衛福部食藥署)也分別在 1980 年和 2000 年正式通過成人和 1 歲以上孩子植入電子耳,至 2019 年底全球登記在案的電子耳數量超過 73 萬(NIDCD, 2021)。

-----廣告,請繼續往下閱讀-----

原來耳蝸就像鋼琴鍵盤

雖然電子耳確實能將重度聽損者帶回有聲世界,一開始不看好的學者,其實也對電子耳恢復聽覺的表現感到驚嘆。聲音的訊號十分複雜,究竟是如何只透過 16〜22 個電極,就完成了傳遞聲音訊號的任務呢?要回答這個問題,就要了解聲音的兩大特性、以及分別如何用電流來呈現。

聲音的兩大特性就是「音量大小」及「頻率高低」,在電子耳的訊號處理中,音量可用電流的大小來呈現,而頻率則可以利用電極在耳蝸中的位置來呈現,其原理是因為人的耳蝸原本就有「音調排列(tonotopic)」的特性。

人的耳蝸長度大約 3.5 公分,形狀有點像蝸牛殼(所以叫耳蝸嘛!),盤繞大約 2 圈半。所謂的音調排列,就如同圖二所示,若想像將耳蝸拉直後,耳蝸的底部負責高頻的聲音、頂端則負責低頻的聲音,就像是對應鋼琴鍵盤上按照聲音頻率高低而排列的琴鍵。因此,聲音訊號並不是全部一起送到所有的電極,而是聲音處理器會將聲音分解為數個不同的頻段,再分別送到對應的電極。

File:1408 Frequency Coding in The Cochlea.jpg
耳蝸的音調排列說明示意圖。若將耳蝸拉直來看,底部(Oval window base)負責高頻(high frequency)的聲音,而頂部(Apex)則對應低頻(low frequency)的聲音 。圖二/Wikipedia

在耳蝸植入的電極數量,決定聲音處理器會將輸入的聲音分解為幾個頻段。例如,澳洲電子耳大廠 Cochlear® 公司的 Neucleus 電子耳,一般來說會在耳蝸內植入 22 個電極,那麼聲音處理器就會將聲波分解為 22 個頻段,再以電流脈衝(pulses)進行編碼,並分別去刺激對應的電極。也就是說,大約在 100-300 Hz 這個頻率帶的聲音,在進行編碼後就會被傳送到植入在耳蝸最頂端的電極;而大約在 6000-8000 Hz 這個頻率帶的聲音,則會透過耳蝸最底端的電極來刺激聽神經[註1]

-----廣告,請繼續往下閱讀-----

上述說明的是理論上最理想的狀況,然而在實際上,可能因組織構造、聽損本身造成的神經存活狀態、電極間電流的互相干擾(此為電流本身之特性)等種種原因,造成呈現特定聲音頻率帶的電脈衝並不是(只)刺激原本所設定、負責某頻段的聽神經,使得聲音有失真和扭曲的現象。所幸人類的大腦具有可塑性,在植入電子耳後,透過聽能訓練和日常不斷累積聆聽經驗,許多電子耳使用者都能逐漸適應、並提升聽辨的表現。

電極數越多、一定聽得越好?

那麼,透過電子耳的聲音聽起來到底是如何呢?在網路上有不少電子耳聲音模擬[註2]的影音可以參考,這裡介紹美國達拉斯大學提供的網頁(Loizou, n.d.)。其中提供了不同頻道數(channel = 頻道;概念上相當於電極數)、以及不同植入深度的聲音模擬。以頻道數來說,若逐個試聽,會發現愈多頻道時語音會愈清楚。不過受限於耳蝸體積、電極相近時會互相干擾等因素,植入的電極數能增加數量有限,如前述一般是植入 16 – 22 個電極。此外,雖然在理論上愈多頻道(電極)聲音會愈清晰,但由於各種複雜的影響因素[註3],實際上這樣的關係並不是絕對的,尤其不同的電子耳產品間、或不同個案間,不能直接以電極數來評斷聲音/聆聽品質的優劣。

植入深度也是影響因素

除了頻道數外,網站上還提供了不同植入深度的模擬。電子耳的植入手術中,是將電極從耳蝸的底端插入,理想的植入深度是大約 25 公釐。這樣的情況下,特定頻率帶的聲音就可以透過對應的電極,去刺激負責那段頻率的聽神經。如果植入的深度不夠,代表電極的位置是比較偏底端的,根據前面提到的音調排列特性,特定頻率帶的聲音就會被送往較接近底端、偏向較高頻率的電極和聽神經了。

Frequency allocations of analysis and carrier filter bands for 8-channel acoustic simulations of cochlear implant speech processing. 
植入深度不足對語音處理的影響示意圖。圖三/參考資料 7(Figure 1)

植入深度不足的情況可參考圖三,圖的上半部示意理想植入深度,因此聲音處理器的聲音分解(Analysis bands)和刺激電極在耳蝸的分布(Carrier bands)是能夠完全對應的。而圖三的下半部,則是植入深度極端不足(16 公釐)的示意圖。在這情況下,大約 200-360 Hz 這段頻率的聲音(Analysis bands最左邊的小方塊),會被傳送到負責大約 1000-1400 Hz 這段頻率帶的電極及聽神經(Carrier bands 最左邊的小方塊),因此聲音聽起來會變得很高、很尖很細,而有扭曲的現象。你可以在聲音模擬的網站試聽看看,植入深度愈淺(22 mm)時,聲音聽起來會愈尖。

-----廣告,請繼續往下閱讀-----

透過訓練,讓大腦適應電子耳的聲音

除此之外,你可能也會發現,若先聽過原始的語音(original speech/original sentence)、再聽模擬的聲音,會發現聽起來變得容易理解得多,尤其是參數條件較好的模擬語音,也就是較多頻道、或植入深度較深的模擬語音。如果反覆再多聽幾次,甚至會發現,即使是頻道數較少、植入深度較淺的模擬語音,也不像第一次聽到時感覺那麼難以辨識了。這樣反覆練習聆聽的過程,可說是電子耳術後聽能復健的縮影。

聽損者在植入電子耳後,對於大腦來說,並無法馬上就能詮釋透過電刺激所傳送的訊號,而是要透過不斷地練習,包括正式的聽能復健、以及日常生活中持續累積聆聽經驗,才能將手術前透過聲波所理解的各種聲音,再重新與電刺激所呈現的聲音進行配對。

電子耳術後復健是關鍵

電子耳植入後是否能成功地透過聽理解日常對話,背後有許多的影響因素,其中關鍵的兩點,是植入前是否有聽能和語言的基礎,以及植入後的聽能復健與日常練習[註4]。若植入前有聽語基礎,像是學語後失聰的成人、或植入前有穩定佩戴助聽器的聆聽經驗等,因為已具備語言知識和語音聆聽經驗,大腦的聽覺區有持續地接收刺激,所以在植入後,可以在既有的聽語基礎上,去建構更好的聽能技巧。而植入後的聽能復健與日常練習更是至關重要,透過不斷地練習,並配合聽語專業人員的復健課程,讓大腦可塑性發揮作用,去辨識進而理解透過電子耳傳遞的語音。

2017 年電子耳納入健保給付後,許多醫生和家長都會積極地為聽損孩子植入電子耳。然而,這裡要提醒的是,雖然電子耳確實有許多成功的案例,但在決定手術之前,仍應審慎評估風險與成效,並了解術後復健所需投入的時間與心力,才能在植入後達到最好的聆聽成效。

-----廣告,請繼續往下閱讀-----

註解

  • 註 1:本文所說明的聲音處理方式是經典的策略,隨著各家廠商研發新技術,聲音訊號處理的方式會有所變化,但在概念上大致相似。
  • 註 2:電子耳聲音模擬呈現的仍然是聲波,與電子耳透過電刺激所傳遞的方式有本質上的不同,所以並無法真實呈現電子耳使用者聆聽的感受。聲音模擬的真正用途是在學術研究與技術研發,讓學者和電子耳公司,能透過改變模擬的參數進行實驗,來找尋更好的電子耳聲音處理策略。
  • 註 3:影響因素包括:先天內耳構造、電極間的電流交互作用、耳蝸死區、聽神經存活率、電子耳調頻圖的各項參數……
  • 註 4:植入後的另一項關鍵因素是定期調頻(mapping;另一譯名為「調機」),即聽力師依個案需求,調整電子耳聲音處理策略的各項參數及電流量,一開始植入後需較密集地調頻,應配合聽力師建議定期進行,穩定後亦應每年調頻一次。受限於篇幅本文未深入說明。

參考資料:

  1. Blundon, E. G., Gallagher, R. E., & Ward, L. M. (2020). Electrophysiological evidence of preserved hearing at the end of life. Scientific reports10(1), 1-13.
  2. Eshraghi, A. A., Nazarian, R., Telischi, F. F., Rajguru, S. M., Truy, E., & Gupta, C. (2012). The cochlear implant: historical aspects and future prospects. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology295(11), 1967-1980.
  3. Graven, S. N., & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn and infant nursing reviews8(4), 187-193.
  4. Loizou, P. C. (n.d.). Cochlear implant audio demos. Retrieved from https://ecs.utdallas.edu/loizou/cimplants/cdemos.htm
  5. Loizou, P. C. (1999). Introduction to cochlear implants. IEEE Engineering in Medicine and Biology Magazine18(1), 32-42.
  6. NIDCD (National Institute on Deafness and Other Communication Disorders) (2021). Cochlear Implants. NIH Publication No. 00-4798. Retrieved from https://www.nidcd.nih.gov/health/cochlear-implants
  7. Nogaki, G., Fu, Q. J., & Galvin III, J. J. (2007). The effect of training rate on recognition of spectrally shifted speech. Ear and hearing, 28(2), 132.
  8. Wilson, B. S., & Dorman, M. F. (2008). Cochlear implants: a remarkable past and a brilliant future. Hearing research242(1-2), 3-21.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
雅文兒童聽語文教基金會_96
63 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
靜脈曲張不只是外觀問題,治療選擇與術後保養要點
careonline_96
・2025/09/05 ・2486字 ・閱讀時間約 5 分鐘

提問:請問靜脈曲張的常見症狀?

李應陞醫師:通常在門診看到靜脈曲張的常見症狀,都是有下肢腫脹或是痠麻,走路走久會有疼痛的情形。有些患者會有抱怨半夜會有抽筋的症狀。常見的就是表淺會有浮出一些靜脈叢,我們俗稱蚯蚓在皮膚上面爬的情形。

提問:請問靜脈曲張可能出現哪些嚴重併發症?

李應陞醫師:常見的嚴重的併發症包含下肢會逐漸出現水腫,然後會有冒汁液的情形,甚至嚴重會產生蜂窩性組織炎。更嚴重的可能會產生下肢的傷口、潰瘍的情形,因為靜脈的壓力非常高,所以這類的潰瘍傷口其實都是很潮濕的,而且都會有發生一些惡臭的情形。如果不積極治療的話,都會讓傷口無法癒合。

-----廣告,請繼續往下閱讀-----

提問:請問靜脈曲張的危險因子?

李應陞醫師:事實上在現代的社會上,久坐久站的工作者,譬如說護理師、公車司機、計程車司機等等,都需要去預防自己有可能會有靜脈曲張的發生。再來包括體重過重者,因為腹腔壓力過大,導致下肢的靜脈壓力過大,導致靜脈曲張等。然還有一些是有遺傳因子或家族病史等等,都應該要特別去注意自己是否有靜脈曲張的症狀。因為有荷爾蒙的關係,所以女性其實更應該去注意自己有沒有靜脈曲張的發生。

提問:請問要如何評估靜脈曲張的嚴重度?

李應陞醫師:靜脈曲張的嚴重度從腿部的外觀看是否有蚯蚓狀的浮現的靜脈,這個大部分都是在中級左右。再用病史去詢問病人,包括你是否有黃昏的時候比較容易水腫,或是覺得腳部因為久坐久站而導致的腫脹、難受,甚至半夜抽筋等等,都可以去區分出這個大概就是屬於中後期。再更嚴重一點的話,包括慢性傷口的產生,大部分都會出現在腳踝的內側。當發現這樣的傷口部位的時候,其實大部分可以斷定就是為比較末期的靜脈曲張的症狀。最標準的一個黃金診斷工具當然是超音波,我們會用超音波去看靜脈曲張的瓣膜,一旦有產生逆流的話,表示它是一個形態上面的缺損,就應該去跟病患討論是否需要積極做處理。

-----廣告,請繼續往下閱讀-----

提問:請問該如何治療靜脈曲張?

李應陞醫師:靜脈曲張的治療有很多種,包含了最保守型的治療,建議病人穿醫用型的彈性襪,然後多抬腳,盡量避免泡熱湯。如果以介入處理來講的話,第一種是傳統型態,就是用靜脈曲張剝離手術。另外幾種微創的治療方式,包含以熱能為主的靜脈雷射治療,以膠水為主的屬於非熱能的治療,就是以現在俗稱的超級膠水,去做靜脈瓣膜閉合的治療。

提問:請問傳統手術會如何進行?

李應陞醫師:傳統手術通常都需要用全身麻醉的方式,而且病患需要住院。我們從整隻腿的上端跟下端各開一個洞,用醫用的鐵絲沿著靜脈往上走,然後兩端勾起來,直接抽取靜脈。術後病患產生的不適感會很嚴重,而且病患其實最擔心的就是他旁邊的神經會受到缺損,而導致病患在多年後都有可能會抱怨肢體麻木等情形。

-----廣告,請繼續往下閱讀-----

提問:請問什麼是微創靜脈膠水治療?

李應陞醫師:顧名思義就是用一個特殊的醫用生物膠水,從一個微創的傷口放一個導管進去,大隱靜脈或者是小隱靜脈,從近端到遠端,做一個靜脈膠水的閉合的手術,使靜脈不再逆流,減少它的臨床症狀。

提問:請問微創靜脈膠水治療能帶給患者哪些幫助?

李應陞醫師:微創靜脈膠水帶給病患最大的幫助應該就是不需要全身麻醉,而且手術當日就可以離院等方便性。因為它是用微創的方式去進行的,只需要一個小洞給導管進去,把靜脈閉合起來即結束。所以說帶給病患最大的好處就是舒適感跟方便性,然後可以手術完直接離院,回歸日常生活作息。

-----廣告,請繼續往下閱讀-----

提問:請問什麼是微創靜脈雷射治療?

李應陞醫師:微創靜脈雷射治療,顧名思義就是用一根熱能的導管,沿著大隱靜脈往上走,然後一路用熱能的方式去燒灼靜脈壁使之閉合。由於它是有熱能的形式,所以在術中都必須施打一些局部的腫脹藥劑,保護旁邊的神經,避免病患術後有疼痛感和麻木感。

提問:請問微創靜脈雷射治療能帶給患者哪些幫助?

李應陞醫師:雷射微創靜脈的處理方式,它和傳統的方式的最大差異,就是一個需要全身麻醉,一個只需要局部麻醉即可進行。微創靜脈雷射治療,它事實上閉合率極高,跟傳統的方式處理基本上是一樣的。它的優點就是當天即可出院。

-----廣告,請繼續往下閱讀-----

提問:請問要如何避免靜脈曲張復發?

李應陞醫師:我們會叮嚀說,盡可能還是要去改變自己的生活型態。如果無法及時的改變,或者是因為工作的需求,還是無法避免久坐、久站的話,我們還是會溫馨提醒,需要穿著彈性襪工作。腳部泡熱湯其實是一個禁忌,如果有在泡熱水、熱湯的習慣,一定要減少這個次數,才能維持一個長期的良好預後。

李應陞醫師:趨近六十歲的一個男性病患,長期久坐,導致他的靜脈曲張的症狀非常非常嚴重,就是雙腳嚴重靜脈潰瘍,然後流著大片的汁液,完全無法癒合。在經過了靜脈曲張治療後,他的潰瘍在一年內逐漸的恢復,最後幾次來門診的時候,他的靜脈曲張的傷口完全癒合。他兒子跟病患本人都非常非常的開心。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。