Loading [MathJax]/extensions/tex2jax.js

0

11
1

文字

分享

0
11
1

上完大號,不想面對室友尷尬又不失禮貌的微笑?——談談常見臭味分子的結構和消除原理

ffr_96
・2021/07/21 ・2210字 ・閱讀時間約 4 分鐘

隨著暑假的來到,許多大學新鮮人開始期待嶄新的大學生活。像是活潑有趣的系學會、熱血沸騰的社團活動、或是一場轟轟烈烈的戀愛。其中,最令人興奮的莫過於宿舍生活。宿舍裡的室友可能來自四面八方,大家的生活習慣各不相同,難免會需要互相配合,特別是上廁所這回事。有些學校的宿舍,是一間房間配置一間衛浴,使用上十分方便,不需要走出房間就可以輕鬆如廁和盥洗。不過,也偶爾會發生同學們排泄物臭氣沖天,充斥整個房間的窘境 (苦笑) 。

許多人會選擇購買芳香劑或者除臭噴霧,避免自己有機會淪落到這個尷尬的情境。這些產品都主打能夠消除惡臭,達到淨化空氣的功效。不過,臭味到底是什麼?到底要如何被消除?

為什麽我們會聞到臭味?圖/giphy.com

為什麽我們會覺得臭——臭味的形成

人體的嗅覺受體細胞 (olfactory receptor cell) 約有四千萬個,在鼻腔中負責傳遞氣味訊號給大腦。大腦中的杏仁核是掌管情緒最主要的部位。當我們聞到臭味,而且產生一些負面情緒的時候,是嗅覺受體細胞產生一系列的電位訊號給杏仁核,告訴大腦「聞到這種氣體會很不舒服」這件事。簡而言之,氣味容易牽動情緒,而臭氣分子通常具有特定的結構,帶給大腦「不愉快」的訊息,因此,我們就會定義帶有特定結構的氣體是「臭」的。    

嗅覺受體細胞構造圖。圖/britannica.com

常見臭氣分子結構大解密

自然界的分子能榮登成為臭氣分子的原因非常多。除了分子本身需要具備良好的揮發性 (如果連揮發成氣體都有難度,那後面傳訊息給大腦的部分就不用玩了) 、分子結構要能夠和受體結合之外,最重要的是結構中具有孤電子對*

孤電子對能刺激人類嗅覺,因此是形成臭氣分子最主要的因素。而氮 (N)硫(S)鹵素 (F,Cl,Br,I) 等元素在形成分子時,通常是具備孤電子對的一方,因此時常在臭氣分子中見到。像是公共廁所中常聞到的尿騷味來源-阿摩尼亞(ammonia,分子式:NH3)、哺乳類動物糞便中的「屎味」-糞臭素 (skatole,分子式 : C9H9N )、在火山口或者溫泉旁能夠聞到的「硫磺味」來源-硫化氫(hydrogen sulfide,H2S )、新房子粉刷後聞到的「油漆味」來源-甲醛 ( formaldehyde,HCHO ),或者是去光水刺激的臭味來源-丙酮 ( acetone, 分子式 : C3H6O)。

-----廣告,請繼續往下閱讀-----
常見臭氣分子結構。圖/參考資料 4

不讓臭味影響心情,你需要除臭救星!

臭味帶給生活上非常多困擾,讓身心產生不愉悅的反應。由於產生臭氣的原因眾多,因此市面上販售各式各樣產品,希望能解決這樣的問題,而每一種產品都有各自的優缺點。

(一) 物理性除臭產品

  1. 芳香劑
    市面上有些擴香、香水和固體的香膏等產品散發出濃厚的香氣,用來遮蓋環境中原本的惡臭。優點是在臭味不明顯時,不但能有效去除臭味,還能為環境增添一股芬芳,但是時間拉長之後,很容易造成兩種不同味道混雜在一起,變成另一種古怪的味道 QAQ。除此之外,已有文獻指出,芳香劑中的甲醇、甲醛等化學物質,長期吸入人體內可能會導致偏頭痛以及對呼吸道和皮膚等等的器官造成危害。
  2. 活性碳
    活性碳是利用木材、椰子殼等有機物經由一系列物理和化學方法製成的孔洞材料,吸附力非常強,能夠去除空氣中的臭氣分子,也常用於減少水中難分解的物質。它的好處在於對人體的傷害較低,而且對廣泛的分子都能有效的吸附。不過,當活性碳中的孔洞達到飽和狀態時,除臭效果就大打折扣。
有時,我們不得不求助各種芳香劑來除臭。圖/giphy.com

(二) 化學性除臭產品

  1. 液體噴霧
    臭氣產生的機制非常多,可能是來自細菌代謝後的產物,或者是物質經由氧化還原,變質之後產生的氣味等等,因此,為了同時消除多種途徑產生的臭氣,有些液體噴霧包含抗菌劑、香料、氧化劑、還原劑等,經由噴灑之後,可同時而且快速達到抑制細菌、遮蓋臭味、分解臭味分子的功效。不過,雖然液體噴霧能夠應付多種臭氣,但是並不能維持非常久的時間,因此,長期使用下來成本非常高。

雖然有些人會選擇事先告知室友們,即將要「上廁所」。不過,聞到臭味時,心情難免都會受到影響。大家可以根據自己的需求以及考量,去選擇除臭產品,也為自己減少尷尬的機會。

-----廣告,請繼續往下閱讀-----

注釋

*孤電子對 (lone pair) : 一個原子和另一個原子形成鍵結時,沒有參與鍵結的電子。存在於原子最外殼層。

  1. Genva, M., Kenne Kemene, T., Deleu, M., Lins, L., & Fauconnier, M. L. (2019). Is It Possible to Predict the Odor of a Molecule on the Basis of its Structure?. International journal of molecular sciences, 20(12),3018.
  2. Steinemann, A. (2017). Health and societal effects from exposure to fragranced consumer products. Preventive Medicine Reports, 5, 45–47.
  3. 一「嗅」萬千的巧妙
  4. 陳玟妏(2006)。高雄市臭味調查及改善 (碩士論文)。
  5. 周明顯(2005)。環境臭味及控制科學發展,2005 年 3 月,387期。
  6. 蘇裕昌(2004)。生活環境中主要的臭味成分及臭味的去除紙漿技術,Vol 18,No. 1。

-----廣告,請繼續往下閱讀-----
文章難易度
ffr_96
2 篇文章 ・ 4 位粉絲
從小吃貢丸米粉長大,大學以火雞肉飯為主食。過了四年,乘著風回到北部。現在是中央化學所碩一生,喜歡花花草草,期許自己能將生活中的化學介紹給大家。 個人IG連結:https://www.instagram.com/ffrliterature/

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
2

文字

分享

0
6
2
指甲刮黑板的聲音,為何讓人難以忍受?
雅文兒童聽語文教基金會_96
・2023/10/22 ・2522字 ・閱讀時間約 5 分鐘

  • 朱家瑩/雅文基金會聽語科學研究中心 研究員

想像一下當你聽到手指甲刮著黑板產生的摩擦聲,或者是拿著叉子摩擦著不鏽鋼碗的聲音,抑或是小孩的哭叫聲,有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵,甚至是情緒爆炸、只想要遠離現場呢?這些讓人不適的聲音,是有其特有的聲學特質?或是其他緣故呢?

想像一下指甲刮黑板的聲音。圖/Pexels

不是尖銳、高頻音就刺耳,而是流淌在你我血液的祖先智慧

一般認為,令人不適的聲音是因為刺耳的高頻聲,尤其像是手指甲刮黑板時所產生的摩擦聲,其中那種「ㄍㄧ ㄍㄧ ㄍㄧ」的聲音,似乎是造成不適感的主因。

然而,Halpern、Blake 和 Hillenbrand(1986)這三位研究者對於這個現象感到好奇,因此他們進行了一項實驗 [1],他們將那些令人不適聲音(如:刮金屬或石板的聲音)中的高頻音減弱。

結果顯示,即使減弱尖銳的高頻聲音,受試者仍然感到不適,因而主張尖銳的高頻音並不是造成不適感的主因。接續 Halpern 等人在企圖尋求答案時,意外發現刮黑板的聲音頻譜圖跟靈長類猴子的警告叫聲非常相似,因而大膽推測這個不適感並非高頻音造成的,而是源於人類祖先的記憶。

-----廣告,請繼續往下閱讀-----

人類對特定頻率區間的聲音感知最敏感,加上跨感官的連結,讓人聽到某些音就不適

可惜,到底是不是來自老祖先的智慧傳承,這點未獲得後續研究的支持。另一方面,Kumar 等人(2008)進一步以聲學分析探究是否是因特定頻率導致聆聽的不適感時,發現聲音中涵蓋 2500-5500 赫茲這個頻率區間的聲學頻率似乎特別容易引起聽者的不適感 [2]

有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵?圖/Pexels

他們推測這可能是因為這個頻率範圍的聲音感知上最為強烈,同時也具有最高的能量,因此使得聽覺系統特別對這些頻率的聲音敏感。

但是,我們平常聊天談話中也涵蓋了這個頻率範圍的聲音,除了頻率之外,是不是還有其他因素造成對某些聲音的不適感呢?

Ro 等人(2013)發現當聽到聲音時,聲音進入大腦的聽覺皮質同時,會傳遞訊號到觸覺感官系統,啟動了觸覺感官,讓聽者聽到聲音時,「感覺」到自己的皮膚彷彿被指甲刮的刺痛感 [3]

-----廣告,請繼續往下閱讀-----

聽聲音會啟動身體觸覺感官系統並非只存在刮黑板這類聲音,有些人在聽到音樂聲,像是聽到低音貝斯的聲音時,也會感覺到自己的身體也在震動,甚至感受到皮膚的不適感 [4、5]

也許因為這個跨感官的訊號傳遞,讓身體的其他部位也出現不適的感受,才會讓聽者對於這些聲音感到不適。

當感知到令人不適的聲音,杏仁核會依據習得經驗,決定是否啟動保護機制!

Zald 與 Pardo(2002)發現當聽到讓人感到不適的聲音刺激時,大腦中的杏仁核(amygdala)會高度活化 [6],而杏仁核在大腦中負責掌控恐懼、焦慮、害怕等負面情緒,換句話說,當聲音訊息抵達杏仁核時,它會誘發情緒反應,進而導致我們做出不同行為反應 [7]

杏仁核的啟動是大腦的一種保護機制,透過過往的經驗連結學習會對讓人不適的聲音發出警報[8] ,當聽者遇到可能危及安全的聲音時,杏仁核就會發出警報。

-----廣告,請繼續往下閱讀-----

例如,當聽到車子緊急剎車的聲音時,這個聲音傳送到杏仁核,會進而引起我們想要逃離的反應,或者產生對駕駛者行為的憤怒反應。

由於杏仁核在聆聽這些聲音時會高度活化,Kumar 等人(2012)進一步試圖了解在聆聽令人不適的聲音時,杏仁核在大腦中扮演著怎樣的角色,以及聲音資訊如何被傳遞到杏仁核。

他們的研究結果顯示,聲音刺激會最先傳送到聽覺皮質(auditory cortex)進行聲學訊息處理和分析,解碼聲音所代表的意義,例如,聽到「ㄍㄧ」的剎車聲,解碼出來的是來自汽車或者腳踏車的剎車聲。聽覺皮質處理完畢後,將資訊傳遞到杏仁核,當杏仁核接收到來自聽覺皮質的訊號後,依據這些訊息及過去經驗發出警報 [8],誘發恐懼、焦慮或憤怒等負面情緒,並可能促使進一步的行為反應,像是尖叫、摀住耳朵,或逃離現場。

舉例來說,如果是汽車的剎車聲,基於過去的經驗,可能存在危險,因此可能會誘發恐懼情緒,並引發立馬逃離現場的行為舉動。

-----廣告,請繼續往下閱讀-----
有些人基於過去的經驗,聽到汽車的剎車聲,可能會誘發恐懼情緒。圖/Pexels

然而,如果解碼後的聲音是腳踏車的剎車聲,根據過去的經驗,可能不會有危及生命的危險,因此即便會觸發閃躲的動作行為,但負面情緒可能不如汽車剎車聲來的強烈,可能只會憤怒的罵騎車的人不長眼。

聽到某些聲音,讓人立馬想逃或想戰,也許這個過往的經驗是來自遠古時代祖先的傳承,但更可能是因為聽到這些聲音時,觸覺感官系統被啟動了,身體上「感覺」到不適,所以當不適的聲音再次出現時,杏仁核的活化反應就更增強,讓我們除了單純的接收到聲音之外,也產生了身體及情緒上的反應。

  1. Halpern, D. L., Blake, R., & Hillenbrand, J. (1986). Psychoacoustics of a chilling sound. Perception & Psychophysics39, 77-80.
  2. Kumar, S., Forster, H. M., Bailey, P., & Griffiths, T. D. (2008). Mapping unpleasantness of sounds to their auditory representation. The Journal of the Acoustical Society of America124(6), 3810-3817.
  3. Ro, T., Ellmore, T. M., & Beauchamp, M. S. (2013). A neural link between feeling and hearing. Cerebral cortex, 23(7), 1724-1730.
  4. Koenig, L., & Ro, T. (2022). Sound Frequency Predicts the Bodily Location of Auditory-Induced Tactile Sensations in Synesthetic and Ordinary Perception. bioRxiv.
  5. Lad, D., Wilkins, A., Johnstone, E., Vuong, Q.C. (2022). Feeling the music: The feel and sound of songs attenuate pain. British Journal of Pain, 16(5), 518-527. 
  6. Zald, D. H., & Pardo, J. V. (2002). The neural correlates of aversive auditory stimulation. Neuroimage16(3), 746-753.
  7. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience23(1), 155-184.
  8. Kumar, S., von Kriegstein, K., Friston, K., & Griffiths, T. D. (2012). Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds. Journal of Neuroscience, 32(41), 14184-14192.
-----廣告,請繼續往下閱讀-----
雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

2

5
4

文字

分享

2
5
4
比臭豆腐還臭!「臭」名昭彰的瑞典鹽醃鯡魚罐頭
胡中行_96
・2022/05/05 ・3817字 ・閱讀時間約 7 分鐘

面對恐懼與憎惡,固守執念僅會增添痛苦,不如從別的角度來看待事物。

丹麥裔美國哲學家貝麗特.布加德(Berit Brogaard)[1]在《憤恨:了解我們最危險的情緒》(Hatred:Understanding Our Most Dangerous Emotion)中,提到這些負面感受,是我們面對可能的傷害時,會有的直覺反應,但未必與真實的危險有關。

比方說,消毒後完全無菌的蟑螂,就算裝在膠囊裡,您還是不敢吃。有時憎惡是源自「受到束縛的靈魂」,無奈沒法掙脫不斷老化的軀體,從而對任何與腐化、死亡關聯的事物,都感到噁心。總之,會產生那些負面的情緒,千錯萬錯都是自己心理作祟,不得怪罪外在的世界。

哲學家布加德說了這麼多,難道只是在為她筆下,集「爛蛋、酸乳、腐魚、水溝」臭味之大成的瑞典臭魚開脫?

詳解鹽醃鯡魚罐頭的前世今生

「瑞典鹽醃鯡魚罐頭」(surströmming),是一種發酵到臭「酸」(sur)的「波羅的海鯡魚」(strømming;學名:Clupea harengus var. membras)。[2]

-----廣告,請繼續往下閱讀-----
瑞典鹽醃鯡魚罐頭(surströmming)。圖/維基百科

在每年 5 月到 7 月的產卵季前,漁夫會獵捕這些體脂肪尚低的鯡魚,將魚浸在飽和的鹽水裡 1天至 2 天,而且最初 4 個小時還得不停攪動。接著,會移除頭部和大部份內臟,但保留性腺和幽門垂(pyloric ceca),然後將魚放進桶裝的 17% 稀釋鹽水裡,裝桶後的頭三天,不時滾動桶子。之後,在 15 到 18 度左右的溫度下,儲藏 3 週到 4 週,待發酵完成,鯡魚就會被分裝進罐頭中。

這種繁複的做法,原本可能是為了保存大量漁獲而設計。儘管發酵後的產品以惡臭出名,16 世紀時卻一度因為缺乏食鹽而流行,到了 17 世紀更成為瑞典某些地區的軍糧。[2](是說他們怎麼都不擔心臭到鳥散魚潰,全軍覆沒?)

日本 NHK 曾以科學方法,為世界各國的惡臭食物排名,冠軍「瑞典鹽醃鯡魚罐頭」的威力,是薰遍臺灣大街小巷的臭豆腐所望塵莫及。[3]

台灣臭豆腐 VS 瑞典鹽醃鯡魚罐頭,你選哪個?圖/維基百科

如同欣賞奧運體操,有強度也要不失美感。歷年來不少科學家費心挖掘它的內涵,從腐化的過程到臭味的層次都加以分析。

-----廣告,請繼續往下閱讀-----

波羅的海鯡魚死後,在邁向瑞典國粹罐頭的偉大旅程上,最開始的幾個步驟是這樣的:[2]

  1. 在封閉無氧的環境下,肌肉分解為乳酸。
  2. 蛋白質與脂肪「自溶」(autolysis;又稱「自體分解」)。
  3. 微生物菌落開始建立。

鯡魚極富層次的臭味

其中,鯡魚肌肉組織中可見的自溶酵素,包括:鈣蛋白酶(calpains)、 組織蛋白酶(cathepsins)、 帶有胱天蛋白酶(caspase)的蛋白酶體(proteasomes)等。此外,細菌以及幽門垂裡的酵素,也在此間推波助瀾。[2]

接著,在每年七、八月,分裝好的鯡魚罐頭被交給大盤商後,發酵的過程仍會持續半年之久,直到裡面的氣體把罐頭給撐到變形。[2]科學家在三個廠牌的罐頭裡,找到數種細菌,主要包含:AlkalibacteriumCarnobacteriumTetragenococcusClostridiisalibacter、Porphyromonadaceae和Halanaerobium等。[4][註1]由於罐頭內鹽份提高了醃漬液體中的滲透壓(osmotic pressure),使部份細菌無法將蛋白質分解成寡肽(oligopeptides)和胺基酸(amino acids),因此一般屍體腐敗過程中常見的吲哚(indole)、糞臭素(skatole)、腐胺(putrescine)、屍胺(cadaverine),都不會出現。[2]

瑞典鹽醃鯡魚罐頭裡,經由發酵產生的氣體,除了二氧化碳,還有層次多元的臭氣:

-----廣告,請繼續往下閱讀-----
  1. 乙酸(acetic acid)[2]:食用醋的主要化學成份。
  2. 丙酸(propionic acid)[2]:具刺鼻酸味。[5]
  3. 丁酸(butyric acid):聞起來像變質的奶油。[2]
  4. 戊酸(valeric acid)[6]:有腳臭味。[7]
  5. 己酸(caproic acid)[6]:帶著腐爛包心菜的氣息。[8]
  6. 氨(ammonia)[6]:一股尿騷味。[5]
  7. 甲硫醇(methanethiol)[6]:造成人類口臭和糞便惡臭的化合物之一,也是吃完蘆筍後幾小時,改變尿液氣味的元兇。[9]
  8. 硫化氫(hydrogen sulfide)[6]:散發腐爛雞蛋般的臭味。[2]
  9. 三甲胺(trimethylamine)[4]:一種三級揮發胺(volatile amine)[10],聞起來像腐魚、爛蛋、垃圾或尿液。[11]

如何正確的打開鯡魚罐頭

當上述發酵產生的氣體,已經在封閉環境內鼓脹至極限,您手中握著的就不再是個單純的罐頭,而是處理不慎便會忘情噴發的未爆彈。儘管瑞典人在 YouTube 上,優雅示範如何輕鬆開罐享用鹽醃鯡魚,外國人未必能輕易駕馭項絕技。[12]

Swedes Show Them How It’s Done(BuzzFeed Response)/YouTube

根據《臭食物大全:發酵學教授的美食筆記》作者小泉武夫教授的親身經驗,他在飯店房間裡被爛魚炸得一身腥,全身衣物脫到剩內褲,還是洗不掉手上的味道。

為避免重蹈小泉教授的覆轍,請有心嘗試的讀者參考下列安全要點:[6]

  1. 事先冷凍,以降低罐內氣壓,減少噴發風險。
  2. 在戶外開罐,避免室內環境遺臭萬年。
  3. 穿著不要的衣物或雨衣,倘若拆彈(開罐)失敗,至少心愛的潮服不受波及。
  4. 站在下風無人處執行,臭氣才不會殃及池魚。
貼心小叮嚀:有意嘗試開啟鯡魚罐頭的讀者,請參考安全要點。圖/維基百科

其實鯡魚罐頭內含豐富營養

您或許會問這般煞費苦心,究竟是為了什麼?販賣瑞典鹽醃鯡魚的網站宣稱其產品除了鹹之外,還濃郁、酥脆、有酸勁,且帶草藥味。[13]小泉教授則認為,不值得為這種像是加了碳酸水的醃漬物,拼得魚死網破。[6]當然,美味與否單純主觀認定,但其食品安全和營養成份倒是可受公評。

-----廣告,請繼續往下閱讀-----

值得欣慰的是,有礙人體健康的菌種,例如:李斯特菌(Listeria monocytogenes)、沙門桿菌(Salmonella)、金黃色葡萄球菌(Staphylococcus aureus)、仙人掌桿菌(Bacillus cereus)與產氣莢膜梭菌(Clostridium perfringens)等在鯡魚罐頭研究中都零檢出。[2], [4]此外,瑞典鹽醃鯡魚含有 11.8% 蛋白質、8.8% 鹽份、3.8% 脂肪,以及 omega-3 脂肪酸、維他命 D 和以鈣質為主的礦物質等豐富的營養。[2], [14]

所以,只要能夠克服人類面對魚餒肉敗時,本能的心理障礙,瑞典鹽醃鯡魚罐頭其實可以為您帶來安全、滋養,且充滿驚奇的異國饗宴。

註解

  1. 許多指稱「鹽厭氧菌屬」(Halanaerobium)為瑞典鹽醃鯡魚罐頭發酵主力的文獻,似乎都是參考2000年《國際食品微生物學》(International Journal of Food Microbiology)的論文。[15]然而本文採用的2020年《食品微生物學》(Food Microbiology)最新研究,提到許多在這種罐頭中的細菌「第一次被發現」。(”The data obtained allowed pro-technological bacteria, which are well-adapted to saline environments, to be discovered for the first time.”)[4]
  1. Hatred: Understanding Our Most Dangerous Emotion by Berit Brogaard (Oxford University Press, 2020; p.29-30
  2. Fermented and ripened fish products in the northern European countries (Journal of Ethnic Foods, 2015) 
  3. 臭い食べ物のランキング(社会実情データ図録,2022)
  4. Discovering microbiota and volatile compounds of surströmming, the traditional Swedish sour herring (Food Microbiology, 2020)
  5. Characteristics of Deodorization for Malodorants in Aqueous Solution by Sonication (Journal of the Environmental Sciences, 2004) 
  6. 來自瑞典的地獄罐頭!鹽醃鯡魚到底在臭什麼?(食力,2018)
  7. Chilled Foods: A Comprehensive Guide by Martyn Brown (Woodhead Publishing, 2008; p.121)
  8. Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables (Food Chemistry, 2022) 
  9. Sulfur Metabolism in Plants and Related Biotechnologies (Comprehensive Biotechnology (Second Edition) Volume 4, 2011, p.257-271)
  10. Aerial Exposure to the Bacterial Volatile Compound Trimethylamine Modifies Antibiotic Resistance of Physically Separated Bacteria by Raising Culture Medium pH (American Society for Microbiology, 2014)
  11. Trimethylaminuria (MedPlus, 2021) 
  12. Swedes Show Them How It’s Done (YouTube, 2015)
  13. What Does Surströmming Smell Like? (The Swedish Surströmming Supplier)
  14. Health effects of nutrients and environmental pollutants in Baltic herring and salmon: a quantitative benefit-risk assessment (BMC Public Health, 2020)
  15. Strictly anaerobic halophiles isolated from canned Swedish fermented herrings (Surströmming) (International Journal of Food Microbiology, 2000)
-----廣告,請繼續往下閱讀-----
所有討論 2
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。