0

6
1

文字

分享

0
6
1

亂咬人的海浪?淺談海岸邊那個危險的瘋狗浪

Mia_96
・2021/07/19 ・2729字 ・閱讀時間約 5 分鐘

每到了夏季,海邊總是大家嚮往的好去處(雖然現在因為疫情影響,我們提倡乖乖待在家裡為臺灣防疫盡心盡力!),過往夏季時大家前往喜愛的陽光沙灘,總可以看到陣陣海浪拍打在岸邊,盡情享受清涼海水與徐徐海風的吹拂!

海浪可以如浪花般輕盈,卻也可以如海嘯般帶來巨大災害。圖/Pixabay

但!海洋並非總是風平浪靜,有時的海洋也會帶給我們突如其來的巨變,在新聞中時常聽聞的瘋狗浪即為其一。

到底什麼是瘋狗浪?又為什麼要稱呼他為瘋狗浪呢?

在海面傳遞的能量——海浪

要了解瘋狗浪的成因,首先要先了解海浪是如何形成的!

海浪的主要成因是風將能量從大氣傳至海面,當海面獲得能量時,海洋中的水分子便開始做圓周運動,這,就是海浪!上層海水拖著下層海水,能量一層一層地向下傳遞,傳遞過程同時受到水分子之間的摩擦力影響,能量逐漸減弱,因此在深層的海洋幾乎沒有波動產生。

-----廣告,請繼續往下閱讀-----

當海浪開始向前傳遞時,越接近岸邊,海床逐漸升高,下層的水分子撞到海面下的海床,就會造成海浪的波速逐漸減緩,我們以下面這張岬灣圖簡單判斷波浪傳到岸邊時與海岸呈現的交角關係。

岬灣地形的形成原因為差異侵蝕作用,所以可以假設為在海面下的海床也與裸露在陸地上的岬灣一致,在岬的部分突出,灣的部分凹陷。圖/作者自製

當波浪(藍色箭頭)逐漸打進海岸時,受到海底地形的影響,其波速逐漸減緩,波浪逐漸偏向法線(黃色實線),越靠近海岸,波浪持續偏向法線,最終波浪前進的方向會與海岸漸趨垂直。

海岬上的突發大浪

海岬地形即是容易出現瘋狗浪的其中一個原因,從圖中可以發現,當海岬處波浪不斷聚集,能量匯聚會造成海浪的波高逐漸累積,此時的海岬,容易產生突發性的大浪,也就是我們俗稱的瘋狗浪。

另外,容易造成瘋狗浪的原因還有強風吹拂,當風速越強烈快時,海面獲得的能量就會更多,產生的海浪也會更為強烈,當強烈的海浪再加上碰到匯聚能量的海岬地形時,便更容易造成瘋狗浪的產生。

-----廣告,請繼續往下閱讀-----

瘋狗浪並沒有明確的定義或是說法,因為瘋狗浪容易致在岸邊活動的人們於危險當中,就如同瘋狗一樣可能會亂咬人,所以我們習慣將突然發生或是強烈的海浪稱做瘋狗浪。

突如其來的大浪有可能越過海堤,沖上岸邊造成危險。圖/Pixabay

臺灣易發生瘋狗浪的時間與地點

在臺灣,最易發生瘋狗浪的時間便是颱風與東北季風盛行之季節:颱風強力的風速會在臺灣外海持續產生強烈的海浪,當海面不斷獲得能量,其傳至海岸邊的能量也會更多、更大;而冬季時的東北季風也是容易產生瘋狗浪的原因之一。

而臺灣的東北角因多為岬灣地形,則是瘋狗浪易出現的地點,但瘋狗浪並不局限於出現在東北角,只要有海岬地形,或是較為突出的堤坊、海岸都有可能匯聚能量,形成波高較高的海浪。所以當知道海洋上有氣旋產生、強烈的季風作用或是在岸邊感受到較為強力的海風吹拂時,都應盡量遠離岸邊才最為安全!

預知瘋狗浪—海洋雷達觀測系統

過去我們總認為海象難以預測(此海象非海洋中生活或是在海生館可以看到的海象,而是指海面上因為風力吹拂而造成海浪的情況!),因為海象預測需要考慮到風向風速的變化、海浪相互作用影響、海底地形等眾多原因,但風場環境瞬息萬變,間接也造成不斷變動的海象,再者,一般民眾較少需求接觸相關的海象預報,所以海象觀測一直不如氣象觀測發達。

-----廣告,請繼續往下閱讀-----

台灣目前使用的為海洋雷達陣列推算海域中波浪的強度,發展出台灣海洋雷達觀測系統(Taiwan Ocean Radar Observing System, TOROS),提供給人民更為準確、進步的海象監測,即時性與預測性的海象觀測,使海洋運輸、漁業捕撈等工作或是休閒娛樂更加安全。

海洋雷達陣列是使用雷達發射雷達波,當雷達波入射到海表面時,碰到海洋中的海浪,便會以各方向散射,海洋雷達就是利用雷達波所產生的「布拉格效應」—當海洋上出現與雷達波波長有偶數倍數關係的海浪,會產生較為強烈且能量較大的雷達回波反射回雷達,來推算目前海面上波浪的波長!

而不同地點、距離會使回傳的回波產生相異的都卜勒效應,透過都卜勒效應(頻率為正值,代表海浪靠近雷達;頻率為負值,代表海浪遠離雷達)便可以知曉波浪與雷達的相對速度與方向。

關於都卜勒效應更詳細且清楚的解釋可參考此影片。

當雷達透過布拉格效應獲得海浪之波長(因雷達波的波長為已知數),又知曉海浪頻率的變化後,將回波所得出之資料輸入電腦計算,便可以得出波浪的波高、波向、週期、速度等相關資料。

-----廣告,請繼續往下閱讀-----
左上為布拉格散射之示意圖,左下為海浪前進或後退所產生的都卜勒效應,透過雷達回波的譜線分析 (右圖) 即可判斷海浪、風向、風速、方向等海面訊息。圖/臺灣海洋科技研究中心

而難以預測的海象遇到瘋狗浪更增添了難度,因為瘋狗浪的成因與易發生地點都僅是推測性的預測而非絕對性的預測,專家目前對瘋狗浪的成因仍持續的嘗試理解與推估,但目前中央大學水海所團隊已經透過海洋雷達觀測系統,可以有效的在瘋狗浪抵達的前 20 至 30 分鐘提供預警!

透過分析瞬時的海象變化,更可以有效進行預測,也可較為減少瞬間海象造成的災難,海洋中的觀測系統仍在不停的發展與改進中,在未來,一定會持續的改良與精進海象觀測,加強海上或海邊活動的安全性!

利用臺灣海洋雷達觀測系統 (TOROS) 測得臺灣周遭海象變化。圖/臺灣海洋科技研究中心

資料來源:

  1. 國立中央大學地球科學系
  2. 神出鬼沒的瘋狗浪
  3. 海洋觀測儀器與方法
  4. 利用高頻雷達監測台灣四周海域表層海流
文章難易度
Mia_96
17 篇文章 ・ 27 位粉絲
喜歡教育又喜歡地科,最後變成文理科混雜出生的地科老師

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
0

文字

分享

1
4
0
「真.無線充電」?試試電磁波獵能手環,你的身體就是最好的捕能裝置!
PanSci_96
・2023/04/22 ・2679字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

你的手機能無線充電嗎?不過,雖說是無線充電,但還是得要放在充電盤上,由充電盤連結一條電線,這樣的充電方式,想必跟大家期待的「真.無線充電」有落差。

好消息是,有人提出一種藉由捕捉空間中的無線電波、獲得電能的無線充電方式,所以代表這些電能是完全免費的!但……這是真的嗎?

隔空充電可行嗎

現在我們已經可以透過無線網路串連全球的資訊,但是遠距能量傳輸卻尚未成真。

當代的無線通訊裝置,舉凡手機電話、wifi 網路、無線電、衛星定位等,都可以靠著不斷地發射無線電波來交換訊息。不過其實仔細想想,無線電波、電磁波其實就是不斷變化的電磁場。既然可以透過磁場變化來傳遞能量,那這些強大的電磁波網絡,是不是也可以拿來傳遞電能呢?

-----廣告,請繼續往下閱讀-----

實際上還真有類似的例子,一百年前最早的收音機竟然完全不需要插電!礦石收音機只需要天然礦石、金屬針、線圈和一些電線,就能收到附近廣播電台送出的訊號,轉換成聲音並放出。

那麼為什麼沒有沿用至今呢?主要就是效率的問題。礦石收音機需要不斷調整金屬針接觸礦石的位置,還得拉長長的天線來捕捉更多的無線電波;市售的礦石收音機玩具,甚至附有一條長長的鱷魚夾電線,可以接到大型金屬家具,產生更清楚、更大聲的聲音。當然這種收音機很快就被以電驅動的真空管收音機取代了。

2021 年初小米曾發表過隔空充電技術專利,利用指向型遠距充電,系統會先定位出手機的位置,再透過多個天線組成的陣列將電波瞄準發射給手機,克服電磁波發散的問題,據稱能在數公尺內進行無線 5W 的無線充電,雖然還不到快充,但也算是革命性突破。不過目前還在技術發表階段,尚未正式推出。

礦石收音機是利用天然礦石或晶體,加上天線、地線和調諧電路,所製成的收音機。圖/維基百科

無線射頻獵能

再換個角度思考,能量在傳遞的時候會向四周發散,而我們生活周遭到處都是會發出電磁波的 3C 產品,那能不能反過來,捕捉這些由其他電器溢散的電磁波,並轉為能量呢?

-----廣告,請繼續往下閱讀-----

還真的有人這麼做了。收集這些廢能,並轉化成可用電能的技術,就稱為「無線射頻獵能」。近十年來,有許多相關的技術與研究,不過效率大多還未到達實用階段。

就在今年一月,美國麻州大學團隊發表了一種可以用於無線射頻獵能的線圈手環,而且功率竟然比一般的線圈天線高十倍以上。

有趣的是,其實他們當時並不是在研究無線充電,而是如何使用 LED 快速閃爍來傳遞訊息;這種名為可見光通訊 VLC 的技術,有望成為未來 6G 通訊的方式。但發現到,這種技術需要 LED 以每秒數百萬次的頻率閃爍,過程中會釋放出大量不可用的無線電波,浪費掉許多能量;於是轉念一想,嘗試用線圈收集這些逸散的能量,降低傳訊時的能量浪費。

研究團隊發現,當線圈靠近金屬片時,收集能量的效率會變得更好。透過反射增強訊號,金屬片吸收環境中的電磁波再向外放出;隨著金屬片面積越大,攔截到的電磁波也越多,收集能量的效果也越好。

-----廣告,請繼續往下閱讀-----

但是無線充電就是要擺脫這些笨重的金屬板,於是研究人員開始拿生活周遭的 3C 產品來進行實驗。從獵能的功率來看,效果最好的依序是筆電、平板、手機。這和預期的一樣:面積越大,獵能效果越好。

然而,意想不到的是,實驗效果最好的,竟然是人體!

推測這是因為人體中含有大量水分,其容易導電、被極化的特性有助於蒐集空間中的電磁波。人體就是一根巨大的共振天線,能增加無線電訊號的發射效率,同樣的道理,也可以用來收集環境中的無線電波能量。

人體是巨大的共振天線!圖/GIPHY

研究團隊將線圈手環的設計稱為「Bracelet+」,是第一個借助人體的獵能裝置;後續又嘗試將線圈做成戒指和手環,希望能打造出輕便的隨身獵能裝置。

-----廣告,請繼續往下閱讀-----

那這樣是不是以後只要綁條線圈在手上,就再也不需要幫手機充電了呢?該線圈手環目前在數公尺的距離外最多可以捕獲微瓦等級的功率,也就是百萬分之一瓦。用這種電壓當然不可能幫手機充電,不過已經足以供應一些低功耗的隨身裝置,像是常見的智慧健康手環,或是負責監控體溫或血糖的元件,甚至類似心律調節器的植入式醫療器材,或許就可以利用該線圈設計,減少充電的頻率。

在 5G 物聯網的架構中,各種居家和隨身裝置必須隨時維持連線,如何為這些獨立、低功耗的裝置供電便成了重要的課題。在這種情況下,如果可以汲取周遭無線電波的廢能,不只可以節省能源,還能免去定期更換電池或充電的麻煩。

遠距充電熱潮

目前的 5G 和開發中的 6G 技術,都持續往電磁頻譜中更高頻率的部分去探索,設置覆蓋率更高、頻譜更寬的無線通訊網絡,而這些頻率的電磁波也將為無線充電帶來新的發展機會。

去年在 Scientific Reports 期刊上,有篇研究提出了 5G 網路作為電力網的想法。團隊針對 5G 使用的頻率設計出一種天線以及搭配的電路,可以在 180 公尺外接收到 6 微瓦,為無線電力網的夢想邁出了第一步。

-----廣告,請繼續往下閱讀-----

不過,在這波遠距無線充電的熱潮下,市面上也出現許多令人半信半疑的遠距充電技術。

例如 2011 年一家新創公司推出了超音波充電技術,宣稱可以透過空氣的震動替手機充電;然而,雖說超音波充電雖然在原理上可能可以運作,但在充電效率和經濟成本上根本不切實際,對人體健康的影響也相當有爭議。

除此之外,還有一家叫做 TechNovator 的公司推出了前所未聞的量子充電技術,他們宣稱可以透過「能量量子化」來傳輸能量,並且在「空間中創造能量結構」,還不需要任何形式的電磁場,就可以達成 100 瓦的無線充電!至於到底有沒有這麼好的事,就留給各位判斷了。

在所有物品與資訊都以無線網路相連的這個時代,無線的電力傳輸與電力網是關鍵的下一步;能夠有效的無線傳輸能量,才能讓我們生活周遭的智慧裝置擺脫電線的束縛,減少電池的消耗,成為一個自由移動,自給自足的物聯網。

-----廣告,請繼續往下閱讀-----

不論是透過可見光、wifi、還是 5G 訊號,無線且遠距的充電與獵能,將來勢必會有讓人驚豔的發展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1217 篇文章 ・ 2148 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
2

文字

分享

0
7
2
離地表 100 公里就是太空?看不到浩瀚星河的太空旅遊能體驗什麼?
賴昭正_96
・2021/10/04 ・5189字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

今年 7 月的科技頭條,應是 11 日及 20 日兩架載著只須穿連身衣(不是專業宇航員在發射或著陸時穿的加壓宇航服和頭盔)之「一般老百姓」的太空艙,飛到太空邊緣後又成功返回地球,這一壯舉標誌著人類商業「太空旅行」(space travel)新時代的開始。

這兩架太空艙的軌跡基本上是相同的,我們以後者(7 月 20 日)的發射為例,為大家大略說明「太空旅行」到底是怎麼一回事。

太空火箭從地面垂直向上發射,進行大約 110 秒的動力飛行到三倍音速、高度為 76 公里處時,火箭減速,乘員艙與之分離,靠其慣性動量、在無動力推動下繼續向上衝刺飛行;因地球引力(重力)不斷地往下拉,衝到約 100 公里的高度,即開始反方向加速折回地面。進入大氣層時,因為空氣阻力而開始減慢,最後在降落傘的幫助下慢速著陸。總共飛行時間大約為 10 分鐘。

本文主要是討論太空旅行及無重量感(weightless)的物理,只在結論時才略微提及太空旅行所造成的社會觀感。

沒辦法讓飛機飛的地方都是太空——卡門線(Kármán line)

相信許多讀者都跟筆者一樣,認為太空是一個遙遠的地方:那裡不但沒有地球引力,也沒有空氣。筆者實在沒想到所謂的「太空旅行」,若不是因為 90 度的斜坡車子開不上去,100 公里的距離,其實只要開車約一個小時即可到達!

高空 100 公里處的氣壓只有地球表面的千萬分之一,也比一般客機飛行之 8-12 公里高度高得多,但那裡的地球引力卻還是非常強:只比地球表面的引力小了 3% 左右而已。

-----廣告,請繼續往下閱讀-----
圖/Pixabay

為什麼「太空」定在那裡呢?我們知道飛機是靠機翼上下空氣壓力不同上升的[註1],因此飛機在沒有空氣的空間是沒辦法飛行的。

航天先驅卡門 (Theodore von Kármán[註2]) 在一國際會議中提出因為空氣太稀薄了,在海拔 100 公里處上方行駛的物體,需要一個不依賴地球大氣層產生升力的推進系統[註3],因此在 1960 年代,國際航空聯合會(Federation Aeronautique Internationale)將海拔 100 公里處定為太空的界限——稱為卡門線(Kármán line),粗略地標出傳統飛機無法有效飛行的高度。

7 月 11 日的「太空旅行」只到 80 公里處就轉回,因此依這一定義,不能算是「太空」旅行。但在 1960 年代初期,世界上第一位太空律師海雷(Andrew Haley)依卡門的定義,更精確地算出空間的實際邊界應該在距離地面約 84 公里處。這個高度在「中層大氣」(mesosphere)處:中層大氣是地球大氣層的最外層物理邊界,流星通常在此處燃燒,在這裡要產生升力所需的飛行速度將超過「軌道速度」(見後「為什麼在靠近地球的太空站上,也能體驗無重量感?」段落)

這個高度也是美國空軍在 1950 年代使用的高度:飛行高度超過 80 公里的飛行員可以獲得「宇航員機翼」(astronaut wings)別針。因為在太空界限下,空間是屬於個別國家,在它的上面則屬於「公空」;做為太空科技發達的強國,美國當然欣然採用這個定義。

不見浩瀚星河,只有四分鐘的無重量感體驗

如果地球只有籃球大小,則 100 公里的高空只是在籃球表面上的 1.1 公分處而已。在這樣的「高」度是不可能俯視到漂浮在太空中的地球的,只能像汪洋大海中的小船或天空中的飛機,看到天水(陸)交接的圓弧地平線而已。

-----廣告,請繼續往下閱讀-----

因此太空旅行不可能是為了看「風景」,應該是為了體驗「沒有重量」。可是前面不是提過那裡的地球引力還是非常強的,怎麼會沒有重量?

圖/Pexels

地球的引力(稱為「重力」)本該讓我們往地球中心落下的,但是被地板或磅秤阻擋;地板或磅秤產生了反作用力(牛頓第三運動定律),所以人體就被夾在這重力與反作用力之間,產生了「重量」的感覺。

如果將地板或磅秤拿掉,則人體將因重力的關係繼續往下掉(稱為「自由落體」),因為沒有任何阻擋下掉的反作用力,我們不會有被壓迫的感覺,造成了「無重量」感:所以「無重量」只是一種感覺,並不代表我們沒有受到重力或任何力。

地球重力所產生的加速為 9.8 m/s2 ,通常簡寫為 g。在 110 秒的火箭動力往上推動時,太空人會感受到比 g 更大的加速;但太空艙一脫離火箭後,他們會立即處於自由落體狀態(即使太空艙還在往上升),突然感到失重。這時 他們可以解開座椅釦子,在機艙裡面到處「漂浮」,在一個窗口輕輕一碰就可飄到另一個窗口、喝水、擲球……等,親自體驗無重量感的一些奇奇怪怪現象。

為什麼是「漂浮」呢?想像你是在一個自由落體的電梯中,如果從口袋中拿出一個蘋果,在面前張手將它放開,蘋果會下掉嗎?當然會,因為這不正是牛頓發現萬有引力的靈感嗎?

問題是你與電梯也是以同樣的加速在下降,因此對你與電梯而言,蘋果將「漂浮」在你面前不動的(牛頓第一運動定律)!如果太空艙內沒有空氣,你輕輕地推蘋果一下,蘋果將會加速(牛頓第二運動定律),當推動力消失後即沿直線「漂浮」地做等速運動(牛頓第一運動定律)!

-----廣告,請繼續往下閱讀-----

事實上正是這一「領悟」,使愛因斯坦將只適用於等速參考坐標的狹義相對論,成功地擴展到適用於任何參考坐標之廣義相對論(參見「愛因斯坦一生中最幸運的靈感–廣義相對論的助產士」,2021 年 3 月號科學月刊)。

圖/Pexels

在大約四分鐘的失重體驗後,太空艙的下降將慢慢感受到空氣的阻力,使太空人慢慢感受到最高可達六倍重力的「重量」減速,最後靠降落傘緩緩著陸。

為什麼在靠近地球的太空站上,也能體驗無重量感?

地球之萬有引力是無遠弗屆,原則上我們是逃不出其如來佛的手掌心[註4] ,所以要使太空艙不被拉回地面,主要有兩個方法:

  1. 跟地心引力硬碰硬,例如往上衝的火箭。
  2. 把地心引力當作物體圓周運動的向心力,若地心引力全用在圓周運動轉彎時的向心力上,地球引力就沒辦法吸落物體。

不免俗地,必須先看一下向心力的公式,當一質量為 m 之物體做圓周運動時,會需要向心力改變運動方向。牛頓物理告訴我們,這向心力(F)的大小與圓周運動半徑(r)成反比,並與運動速度的平方成正比:

F=m{\frac  {v^{2}}{r}}

當向心力與地球引力相等時:

兩邊的 m 可以對消,因此不用考慮物體質量,只要考慮該物體位於多高的位置(圓周運動半徑),就能算出物體需要以多少速度前進,才不會被地球引力吸落,而這個前進速度,我們稱為「軌道速度」

-----廣告,請繼續往下閱讀-----

這正是國際太空站保持在高空約 400 公里處的設計原理:它以每小時約 28,000 公里平行於地球表面的速度前進,相當於每 90 分鐘繞地球一圈,一天的空間行程大約是從地球到月球再返回的距離; 而地球在赤道的自轉速率,大約為每小時 1,700 公里。

能設計將太空站或衛星固定在空間的某一點嗎?能,但超出本文討論的範圍,只好留給讀者自己去想了。

而在太空站內,由於地心引力全被當作圓周運動的向心力,所以「無重量」不只是「感覺」,而是在太空站內的物體真的沒有重量,沒有任何淨力作用於物體上!

圖/Pixabay

想體驗無重量不用跑到太空——拋物線飛行

相信任何人初次經驗到無重量感都會驚奇得張口合不起來的:杯子的水倒不出來、一根手指就可以舉起在地面上重一公噸的物體、輕輕一跳就可以創世界紀錄。

可是需要花這麼大的人力、物力去製造這環境嗎?筆者年輕時就曾在遊樂場裡享受到大約一秒鐘、記憶猶新的無重量感;而如果你不怕摔得粉身碎骨的話,從台北 101 大樓往下跳,也可享受到大約 9 秒鐘的自由落體(生命可貴,千萬不要輕易嘗試)

1950 年,美國德州布魯克斯空軍基地(Brooks Air Force Base)空軍航空醫學院(Air Force School of Aviation Medicine)的哈伯(Fritz & Heinz Haber)博士兄弟就提出利用「拋物線飛行」(parabolic flight)來模擬「無重力」的建議。

現在「拋物線飛行」不但已經是美國國家航空和航天局(NASA)之宇航員訓練、科學實驗、及空間設備技術測試的平台,而且已經商業化了[註5] 。「拋物線飛行」需要經過特殊訓練的飛行員來精確地操縱及控制飛機的飛行,在此我們僅簡單的介紹其原理如下。

-----廣告,請繼續往下閱讀-----

從穩定的高空 8 公里處平飛姿態,改成 45° 上沖姿態飛行;在這個階段,體重是正常體重的 1.8 倍。這飛行持續約 20 秒後,機組人員開始執行一種稱為「注入」(injection)的機動降低推力,並操縱飛機軌跡使其遵循一種拋物線(投擲石頭在重力作用下的自由落體)飛行。垂直載荷係數在這個階段從 1.8g 降到持續約 25 秒的零重力(0g)感。最後在拋物線的下降部分執行與進入對稱的 1.8g 退出階段,在大約 20 秒內將飛機返回到穩定的高度水平。如此重複20-30次。

Parabolic Flight.jpg

為了體驗無重量,值得飛出卡門線嗎?

美金萬元不到就可以「拋物線飛行」,體會無重力經驗,但卻已有 600 人預訂 25 萬美金去做 80 公里太空旅遊[註6]。你說這不是財富和特權的粗俗展示是什麼?當然,那是他們「辛苦賺來」的錢,他們要怎麼用我們無話可說;只是在高喊減碳[註7]及貧富不均的全球危機中,億萬富翁們卻在花大錢將自己送入太空尋找樂趣,似乎有點……

有「不以為然」想法的人似乎不只是筆者;事實上或許由於「心中有愧」,全世界最有錢的、此次太空旅遊公司之一的大老闆、亞馬遜公司創辦人貝索斯(Jeff Besos)在出發前宣布將捐贈 2 億美元給史密森學會(Smithsonian Institution)——這是自 1846 年史密森 (James Smithson) 創辦該巨大之博物館、教育、和研究綜合體以來的最大單筆捐贈;而這次太空旅遊拍賣一座位所得的 2000 萬美金也全部捐給慈善機構。

據 Treehugger 網路上的一篇文章「太空旅遊的碳足跡有多少?」( What Is the Carbon Footprint of Space Tourism? )分析,雖然這些太空旅遊每次會製造 60 到 80 公噸的碳足跡[註8],就其本身來看,這事實上並不算多:因為一架從芝加哥飛往香港的 777-200 飛機就輸出 351 公噸的碳足跡,每天還飛行多次!

-----廣告,請繼續往下閱讀-----

但不要忘了後者承載約 300 人飛行 1.3 萬公里。該文最後結論說:但與這些富豪之私人飛機整年在多個住宅間飛來飛去,可能都微不足道;所以我們不是需要更少的火箭和更少的太空旅遊,而是需要更少的億萬富翁。不知讀者同意與否?

註解

  • 註 1:空氣流動越快的地方,壓力越小[伯努利定律(Bernoulli’s Law),為一應用於流體的能量不滅定律]。機翼的設計就是使其上下的空氣流速不同。
  • 註 2:匈牙利出生 ,在第一次世界大戰前後的幾年裡,參與直升機的早期設計等工作;1930 年,卡門移居美國,成為二戰期間火箭和超音速飛行的專家。1944 年,卡門和他的同事在加州建立了噴氣推進實驗室(Jet Propulsion Laboratory),為現在是美國宇航局的傑出實驗室。
  • 註 3:火箭推進器靠的是動量不滅定律,所以可以在沒有空氣的地方飛翔。
  • 註 4:實際上當然不是這樣。在「 霍金和黑洞:霍金一生的追尋讓我們知道了哪些事?」一文裡,筆者用簡單的能量不滅定律,導出要脫離地心引力的最小速度;在沒有空氣的阻力下,其值為每小時 40,284 公里。當然,在實際操作上我們並不一定要一下子提供這麼大的速度;我們可以分段加速,慢慢將太空推出地心引力之外。不知道讀者是否在這裡看出一個邏輯上難以理解的地方(參見「從圓周率與無理數,談數學也有其無法理解、不精確、和不確定性)」:地心引力與距離的平方成反比,所以地心引力可以趨近於零,但不會等於零(即永遠逃脫不了地心引力)。
  • 註 5: 有興趣的讀者可以上網到「零重力公司」(Zero-Gravity Corporation)登記(美金 7500 元加稅)。
  • 註 6: 現在已是 45 萬元美金起跳。
  • 註 7: 聯合國氣候變遷小組(IPCC)7 月 9 日由 234 位科學家撰寫的 3000 多頁報告指出,地球暖化速度比科學家先前觀察到的還要快,全球均溫很可能在大約十年內就升高攝氏 1.5 度,突破巴黎協定的升溫幅度限制。
  • 註 8: 貝索斯的火箭燃料是使用液態氫和液態氧,不會直接產生二氧化碳;因此氫正越來越多地被推廣作為應對氣候變化的一種方式。但絕大多數氫氣(96%)來自化石燃料,特別是來自甲烷及煤的氣化,其提煉時所產生的熱及溫室氣體其實不亞於其它燃料 [這情況很像不考慮發電可能造成更大的污染,而盲目地發展電動汽車一樣,詳見「我愛科學」(華騰文化有限公司,2017年12月出版)]。
賴昭正_96
41 篇文章 ・ 49 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。