0

7
2

文字

分享

0
7
2

離地表 100 公里就是太空?看不到浩瀚星河的太空旅遊能體驗什麼?

賴昭正_96
・2021/10/04 ・5189字 ・閱讀時間約 10 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

今年 7 月的科技頭條,應是 11 日及 20 日兩架載著只須穿連身衣(不是專業宇航員在發射或著陸時穿的加壓宇航服和頭盔)之「一般老百姓」的太空艙,飛到太空邊緣後又成功返回地球,這一壯舉標誌著人類商業「太空旅行」(space travel)新時代的開始。

這兩架太空艙的軌跡基本上是相同的,我們以後者(7 月 20 日)的發射為例,為大家大略說明「太空旅行」到底是怎麼一回事。

太空火箭從地面垂直向上發射,進行大約 110 秒的動力飛行到三倍音速、高度為 76 公里處時,火箭減速,乘員艙與之分離,靠其慣性動量、在無動力推動下繼續向上衝刺飛行;因地球引力(重力)不斷地往下拉,衝到約 100 公里的高度,即開始反方向加速折回地面。進入大氣層時,因為空氣阻力而開始減慢,最後在降落傘的幫助下慢速著陸。總共飛行時間大約為 10 分鐘。

本文主要是討論太空旅行及無重量感(weightless)的物理,只在結論時才略微提及太空旅行所造成的社會觀感。

沒辦法讓飛機飛的地方都是太空——卡門線(Kármán line)

相信許多讀者都跟筆者一樣,認為太空是一個遙遠的地方:那裡不但沒有地球引力,也沒有空氣。筆者實在沒想到所謂的「太空旅行」,若不是因為 90 度的斜坡車子開不上去,100 公里的距離,其實只要開車約一個小時即可到達!

高空 100 公里處的氣壓只有地球表面的千萬分之一,也比一般客機飛行之 8-12 公里高度高得多,但那裡的地球引力卻還是非常強:只比地球表面的引力小了 3% 左右而已。

圖/Pixabay

為什麼「太空」定在那裡呢?我們知道飛機是靠機翼上下空氣壓力不同上升的[註1],因此飛機在沒有空氣的空間是沒辦法飛行的。

航天先驅卡門 (Theodore von Kármán[註2]) 在一國際會議中提出因為空氣太稀薄了,在海拔 100 公里處上方行駛的物體,需要一個不依賴地球大氣層產生升力的推進系統[註3],因此在 1960 年代,國際航空聯合會(Federation Aeronautique Internationale)將海拔 100 公里處定為太空的界限——稱為卡門線(Kármán line),粗略地標出傳統飛機無法有效飛行的高度。

7 月 11 日的「太空旅行」只到 80 公里處就轉回,因此依這一定義,不能算是「太空」旅行。但在 1960 年代初期,世界上第一位太空律師海雷(Andrew Haley)依卡門的定義,更精確地算出空間的實際邊界應該在距離地面約 84 公里處。這個高度在「中層大氣」(mesosphere)處:中層大氣是地球大氣層的最外層物理邊界,流星通常在此處燃燒,在這裡要產生升力所需的飛行速度將超過「軌道速度」(見後「為什麼在靠近地球的太空站上,也能體驗無重量感?」段落)

這個高度也是美國空軍在 1950 年代使用的高度:飛行高度超過 80 公里的飛行員可以獲得「宇航員機翼」(astronaut wings)別針。因為在太空界限下,空間是屬於個別國家,在它的上面則屬於「公空」;做為太空科技發達的強國,美國當然欣然採用這個定義。

不見浩瀚星河,只有四分鐘的無重量感體驗

如果地球只有籃球大小,則 100 公里的高空只是在籃球表面上的 1.1 公分處而已。在這樣的「高」度是不可能俯視到漂浮在太空中的地球的,只能像汪洋大海中的小船或天空中的飛機,看到天水(陸)交接的圓弧地平線而已。

因此太空旅行不可能是為了看「風景」,應該是為了體驗「沒有重量」。可是前面不是提過那裡的地球引力還是非常強的,怎麼會沒有重量?

圖/Pexels

地球的引力(稱為「重力」)本該讓我們往地球中心落下的,但是被地板或磅秤阻擋;地板或磅秤產生了反作用力(牛頓第三運動定律),所以人體就被夾在這重力與反作用力之間,產生了「重量」的感覺。

如果將地板或磅秤拿掉,則人體將因重力的關係繼續往下掉(稱為「自由落體」),因為沒有任何阻擋下掉的反作用力,我們不會有被壓迫的感覺,造成了「無重量」感:所以「無重量」只是一種感覺,並不代表我們沒有受到重力或任何力。

地球重力所產生的加速為 9.8 m/s2 ,通常簡寫為 g。在 110 秒的火箭動力往上推動時,太空人會感受到比 g 更大的加速;但太空艙一脫離火箭後,他們會立即處於自由落體狀態(即使太空艙還在往上升),突然感到失重。這時 他們可以解開座椅釦子,在機艙裡面到處「漂浮」,在一個窗口輕輕一碰就可飄到另一個窗口、喝水、擲球……等,親自體驗無重量感的一些奇奇怪怪現象。

為什麼是「漂浮」呢?想像你是在一個自由落體的電梯中,如果從口袋中拿出一個蘋果,在面前張手將它放開,蘋果會下掉嗎?當然會,因為這不正是牛頓發現萬有引力的靈感嗎?

問題是你與電梯也是以同樣的加速在下降,因此對你與電梯而言,蘋果將「漂浮」在你面前不動的(牛頓第一運動定律)!如果太空艙內沒有空氣,你輕輕地推蘋果一下,蘋果將會加速(牛頓第二運動定律),當推動力消失後即沿直線「漂浮」地做等速運動(牛頓第一運動定律)!

事實上正是這一「領悟」,使愛因斯坦將只適用於等速參考坐標的狹義相對論,成功地擴展到適用於任何參考坐標之廣義相對論(參見「愛因斯坦一生中最幸運的靈感–廣義相對論的助產士」,2021 年 3 月號科學月刊)。

圖/Pexels

在大約四分鐘的失重體驗後,太空艙的下降將慢慢感受到空氣的阻力,使太空人慢慢感受到最高可達六倍重力的「重量」減速,最後靠降落傘緩緩著陸。

為什麼在靠近地球的太空站上,也能體驗無重量感?

地球之萬有引力是無遠弗屆,原則上我們是逃不出其如來佛的手掌心[註4] ,所以要使太空艙不被拉回地面,主要有兩個方法:

  1. 跟地心引力硬碰硬,例如往上衝的火箭。
  2. 把地心引力當作物體圓周運動的向心力,若地心引力全用在圓周運動轉彎時的向心力上,地球引力就沒辦法吸落物體。

不免俗地,必須先看一下向心力的公式,當一質量為 m 之物體做圓周運動時,會需要向心力改變運動方向。牛頓物理告訴我們,這向心力(F)的大小與圓周運動半徑(r)成反比,並與運動速度的平方成正比:

F=m{\frac  {v^{2}}{r}}

當向心力與地球引力相等時:

兩邊的 m 可以對消,因此不用考慮物體質量,只要考慮該物體位於多高的位置(圓周運動半徑),就能算出物體需要以多少速度前進,才不會被地球引力吸落,而這個前進速度,我們稱為「軌道速度」

這正是國際太空站保持在高空約 400 公里處的設計原理:它以每小時約 28,000 公里平行於地球表面的速度前進,相當於每 90 分鐘繞地球一圈,一天的空間行程大約是從地球到月球再返回的距離; 而地球在赤道的自轉速率,大約為每小時 1,700 公里。

能設計將太空站或衛星固定在空間的某一點嗎?能,但超出本文討論的範圍,只好留給讀者自己去想了。

而在太空站內,由於地心引力全被當作圓周運動的向心力,所以「無重量」不只是「感覺」,而是在太空站內的物體真的沒有重量,沒有任何淨力作用於物體上!

圖/Pixabay

想體驗無重量不用跑到太空——拋物線飛行

相信任何人初次經驗到無重量感都會驚奇得張口合不起來的:杯子的水倒不出來、一根手指就可以舉起在地面上重一公噸的物體、輕輕一跳就可以創世界紀錄。

可是需要花這麼大的人力、物力去製造這環境嗎?筆者年輕時就曾在遊樂場裡享受到大約一秒鐘、記憶猶新的無重量感;而如果你不怕摔得粉身碎骨的話,從台北 101 大樓往下跳,也可享受到大約 9 秒鐘的自由落體(生命可貴,千萬不要輕易嘗試)

1950 年,美國德州布魯克斯空軍基地(Brooks Air Force Base)空軍航空醫學院(Air Force School of Aviation Medicine)的哈伯(Fritz & Heinz Haber)博士兄弟就提出利用「拋物線飛行」(parabolic flight)來模擬「無重力」的建議。

現在「拋物線飛行」不但已經是美國國家航空和航天局(NASA)之宇航員訓練、科學實驗、及空間設備技術測試的平台,而且已經商業化了[註5] 。「拋物線飛行」需要經過特殊訓練的飛行員來精確地操縱及控制飛機的飛行,在此我們僅簡單的介紹其原理如下。

從穩定的高空 8 公里處平飛姿態,改成 45° 上沖姿態飛行;在這個階段,體重是正常體重的 1.8 倍。這飛行持續約 20 秒後,機組人員開始執行一種稱為「注入」(injection)的機動降低推力,並操縱飛機軌跡使其遵循一種拋物線(投擲石頭在重力作用下的自由落體)飛行。垂直載荷係數在這個階段從 1.8g 降到持續約 25 秒的零重力(0g)感。最後在拋物線的下降部分執行與進入對稱的 1.8g 退出階段,在大約 20 秒內將飛機返回到穩定的高度水平。如此重複20-30次。

Parabolic Flight.jpg

為了體驗無重量,值得飛出卡門線嗎?

美金萬元不到就可以「拋物線飛行」,體會無重力經驗,但卻已有 600 人預訂 25 萬美金去做 80 公里太空旅遊[註6]。你說這不是財富和特權的粗俗展示是什麼?當然,那是他們「辛苦賺來」的錢,他們要怎麼用我們無話可說;只是在高喊減碳[註7]及貧富不均的全球危機中,億萬富翁們卻在花大錢將自己送入太空尋找樂趣,似乎有點……

有「不以為然」想法的人似乎不只是筆者;事實上或許由於「心中有愧」,全世界最有錢的、此次太空旅遊公司之一的大老闆、亞馬遜公司創辦人貝索斯(Jeff Besos)在出發前宣布將捐贈 2 億美元給史密森學會(Smithsonian Institution)——這是自 1846 年史密森 (James Smithson) 創辦該巨大之博物館、教育、和研究綜合體以來的最大單筆捐贈;而這次太空旅遊拍賣一座位所得的 2000 萬美金也全部捐給慈善機構。

據 Treehugger 網路上的一篇文章「太空旅遊的碳足跡有多少?」( What Is the Carbon Footprint of Space Tourism? )分析,雖然這些太空旅遊每次會製造 60 到 80 公噸的碳足跡[註8],就其本身來看,這事實上並不算多:因為一架從芝加哥飛往香港的 777-200 飛機就輸出 351 公噸的碳足跡,每天還飛行多次!

但不要忘了後者承載約 300 人飛行 1.3 萬公里。該文最後結論說:但與這些富豪之私人飛機整年在多個住宅間飛來飛去,可能都微不足道;所以我們不是需要更少的火箭和更少的太空旅遊,而是需要更少的億萬富翁。不知讀者同意與否?

註解

  • 註 1:空氣流動越快的地方,壓力越小[伯努利定律(Bernoulli’s Law),為一應用於流體的能量不滅定律]。機翼的設計就是使其上下的空氣流速不同。
  • 註 2:匈牙利出生 ,在第一次世界大戰前後的幾年裡,參與直升機的早期設計等工作;1930 年,卡門移居美國,成為二戰期間火箭和超音速飛行的專家。1944 年,卡門和他的同事在加州建立了噴氣推進實驗室(Jet Propulsion Laboratory),為現在是美國宇航局的傑出實驗室。
  • 註 3:火箭推進器靠的是動量不滅定律,所以可以在沒有空氣的地方飛翔。
  • 註 4:實際上當然不是這樣。在「 霍金和黑洞:霍金一生的追尋讓我們知道了哪些事?」一文裡,筆者用簡單的能量不滅定律,導出要脫離地心引力的最小速度;在沒有空氣的阻力下,其值為每小時 40,284 公里。當然,在實際操作上我們並不一定要一下子提供這麼大的速度;我們可以分段加速,慢慢將太空推出地心引力之外。不知道讀者是否在這裡看出一個邏輯上難以理解的地方(參見「從圓周率與無理數,談數學也有其無法理解、不精確、和不確定性)」:地心引力與距離的平方成反比,所以地心引力可以趨近於零,但不會等於零(即永遠逃脫不了地心引力)。
  • 註 5: 有興趣的讀者可以上網到「零重力公司」(Zero-Gravity Corporation)登記(美金 7500 元加稅)。
  • 註 6: 現在已是 45 萬元美金起跳。
  • 註 7: 聯合國氣候變遷小組(IPCC)7 月 9 日由 234 位科學家撰寫的 3000 多頁報告指出,地球暖化速度比科學家先前觀察到的還要快,全球均溫很可能在大約十年內就升高攝氏 1.5 度,突破巴黎協定的升溫幅度限制。
  • 註 8: 貝索斯的火箭燃料是使用液態氫和液態氧,不會直接產生二氧化碳;因此氫正越來越多地被推廣作為應對氣候變化的一種方式。但絕大多數氫氣(96%)來自化石燃料,特別是來自甲烷及煤的氣化,其提煉時所產生的熱及溫室氣體其實不亞於其它燃料 [這情況很像不考慮發電可能造成更大的污染,而盲目地發展電動汽車一樣,詳見「我愛科學」(華騰文化有限公司,2017年12月出版)]。
文章難易度
賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
2

文字

分享

0
4
2
睽違三年,重磅回歸:獵鷹重型的現在與未來
EASY天文地科小站_96
・2022/11/04 ・2560字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/林彥興(EASY天文地科團隊總編輯,現就讀清大天文所)

台灣時間 2022 年 11 月 2 日晚上九點四十一分,SpaceX 的「獵鷹重型 Falcon Heavy (FH)」火箭從濃霧繚繞的甘迺迪太空中心 LC-39A 發射台轟然升空。睽違三年,世人終於再次體會到世界最強火箭飛向天際,以及雙助推器同時著陸的震撼。

USSF-44 任務中獵鷹重型火箭的升空與著陸。圖/SpaceX

從獵鷹九號到獵鷹重型

相信有在關注太空時事的讀者們,對 SpaceX 的獵鷹九號火箭都不陌生。

獵鷹九號火箭。圖/SpaceX

獵鷹九號是 SpaceX 目前當仁不讓的發射主力,從低軌小衛星共乘高軌頂配同步衛星乃至星際探測器都能一手包辦,而且還擁有能夠「重複使用第一節」這舉世唯一的絕技,在大幅降低成本的同時,也讓 SpaceX 能夠以超過一週一發的超高頻率發射火箭。從 2022 年初至週二當天,獵鷹九號已經發射 49 次,佔世界總發射次數的約 35%;論發射酬載總質量,世界所有其他火箭加起來還不到獵鷹九號的一半。[1][2]

但獵鷹九號雖然優秀,面對少數特別重的酬載(也就是衛星、太空船等火箭攜帶的物體),或是要把酬載送到特別高能量的軌道時,仍然力有未逮。怎麼辦呢?基本概念很簡單:在獵鷹九號第一節兩側,再綁兩根第一節火箭,給火箭更多的燃料、更強的推力,就能把更重的酬載,送到更高更遠的地方,這就是「獵鷹重型 Falcon Heavy, FH」火箭。習慣上,人們將中間那根第一節稱為芯級(Core Stage),兩側的則稱為助推器(Side Booster)。根據任務需求,芯級和助推器可選擇不同的回收模式(陸上回收、海上回收、不回收)。在完全不回收的模式下,獵鷹重型擁有超過 60 公噸的最高理論運載力(LEO),比位列第二的三角洲四號重型火箭多了一倍不只。

發射台上的獵鷹重型火箭,可以清楚的看到並排的芯級與助推器。圖/SpaceX

風光亮相後?

獵鷹重型在 2018 年進行了一場轟轟烈烈的首飛。由於未經驗證的新火箭,一般不會有客戶願意買單承擔風險,因此火箭製造商通常會自費發射一些不太重要的東西,常稱為「假酬載 Dummy Payload」,向客戶展示火箭確實可以把你的衛星送入軌道。這個不太重要的假酬載,也給了工程師們搞怪的機會。

假酬載該選什麼好呢?
大老闆 Elon Musk:「啊,那就把我的 Tesla 跑車打上去吧。」

Falcon Heavy 首飛官方剪輯

首飛隔年(2019)四月和六月,獵鷹重型分別進行了兩次任務(福衛七號就是其中之一噢)。但在這之後,獵鷹重型彷彿就進入了休假期,長達三年都沒有發射任務。為甚麼會這樣呢?這背後的原因有非常多面相可以討論,比如獵鷹九號就已經足以應付現在市場上絕大部分的發射需求、獵鷹重型發射的酬載開發與製造進度延宕等等。篇幅有限,在此就不展開細說。但總之,對太空迷們來說,這三年真的是格外漫長。獵鷹重型還是獵鷹重型,但 2022 的世界已經跟 2019 大不相同了。

獵鷹九號(與其子型號)與獵鷹重型發射次數統計,可以看到比起馬不停蹄的獵鷹九號,獵鷹重型的發射是多麼稀少。來源:維基百科,2022.11.04 數據。

機密任務 USSF-44

回到正題,本次 USSF-44 任務的目標,是為美國太空軍發射機密軍事衛星,前往地球同步軌道。

發射直播回顧。

在上面的影片中,我們可以看到火箭發射的全過程。在轟轟烈烈地起飛後,火箭沿著預定軌道不斷加速。升空後約兩分三十秒,幾乎耗盡燃料兩根助推器率先脫離。而芯級在本次任務中則不進行回收,毫無保留地將所有燃料都用於運送衛星。約四分零三秒,芯級耗盡所有燃料並脫離,由第二節火箭負責繼續將衛星送入指定軌道。由於衛星的機密性,第二節直播就此切斷。直播聚焦於兩個助推器,如何自行返回陸上降落場,並最終成功降落。

本次任務的成功,不僅宣告著獵鷹重型的回歸,也是 SpaceX 第一次直接把衛星送進「地球同步軌道 GEO」,而非一般的「地球同步轉移軌道 GTO」(相關知識可以參考「衛星軌道萬花筒」系列圖文)。擁有將衛星直送 GEO 的能力,對火箭發射商來說意義相當重大。另一方面,雖然可憐的芯級被太空軍指定拋棄了,但兩側助推器的同框降落真的百看不厭。如果覺得這次發射霧太大景不好,不妨多看幾次 2018 首飛的剪輯吧!

還要再等三年嗎?獵鷹重型的未來

那麼,何時才能再次看到獵鷹重型轟然起飛呢?答案可能比你以為的要快。按現在的規畫,明年一月就應當要有兩場獵鷹重型的發射,分別是 ViaSat-3 與 USSF-67,都是 GEO 直送任務。但當然,這是火箭發射,再延宕個幾個月也是很正常的。

往更遠的看,未來五年獵鷹重型將發射的重要酬載包括:

  • 大型行星探測器:靈神星(Psyche,左圖)任務與歐羅巴快船(Europa clipper,右圖)。
圖/NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin|N
  • 阿提密斯計畫:月球門戶建造(PPE 與 HALO 艙段)、VIPER 月球車、月球門戶補給(Dragon-XL)。
月球門戶太空站(左下)與 Dragon XL 無人貨船。圖/NASA
南希.葛莉絲.羅曼太空望遠鏡 Nancy Grace Roman Space Telescope。圖/NASA (WFIRST Project and Dominic Benford)
  • 太空軍機密衛星與同步通訊、氣象衛星若干。

相信這些名字對太空迷讀者來說都是如雷貫耳。可見獵鷹重型在美國近期多項重要太空計畫中,都是關鍵角色。接下來幾年,就讓我們拭目以待,一起見證獵鷹重型大展身手吧!

EASY天文地科小站_96
21 篇文章 ・ 760 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

3
1

文字

分享

0
3
1
哈伯也懂漂移?3D-DASH:哈伯太空望遠鏡最大的近紅外巡天計畫
Tiger Hsiao_96
・2022/07/10 ・2933字 ・閱讀時間約 6 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

若問當前軌道上最強的可見光太空望遠鏡是誰,那當然非哈伯太空望遠鏡莫屬。身處太空的它有著直徑 2.4 公尺的主鏡,可以在不受大氣層干擾的情況下,清晰地拍攝遙遠且黯淡的天體。然而,哈伯望遠鏡並非全能,雖然它在解析度(angular resolution)和靈敏度(sensitivity)上都無人能及,但也有不擅長的領域 ── 它的視野相當小。

哈伯太空望遠鏡。圖/NASA

即使是哈伯裝備的所有相機中視野最大的「先進巡天相機(ACS)」,其視野也只有 202 角秒 x 202 角秒而已,相當於滿月的 1.5%,或是一個十元硬幣在約 25 公尺外的大小。可以想見,想要用這麼小的視野拍攝廣大的區域,是相當緩慢而沒有效率的事。

直到最近幾年,天文學家發明了稱作「Drift And SHift (DASH)」的新型觀測模式,可以在不改變哈伯硬體設備的前提下,大大增加哈伯在近紅外線波段的拍攝效率。利用這項技術,來自多倫多大學的團隊展開名為 3D-DASH 的大型紅外線巡天計畫,其拍攝的天空範圍,是前一個紀錄保持人「CANDELS」的七倍之多。

不斷選擇「引導星」的傳統觀測模式

想了解為什麼 DASH 技術可以大大提升哈伯的觀測效率,就要先從哈伯原本是怎麼觀測的開始談起。

不知道大家有沒有在黑夜中拍照的經驗呢?在低亮度的環境中,相機總需要比較長的時間進行曝光,才能拍出清楚的照片。而如果你在曝光的過程中不小心移動了相機,那拍出來的照片就會糊成一團。同理,由於天文學家想要拍攝的目標,大多是極其遙遠且黯淡的天體,所以天文觀測時單張照片的曝光時間,往往動輒數百秒以上。因此,專業天文望遠鏡常會配備「導星(Guiding)」系統,以確保望遠鏡能在數百秒的時間內,都精準的指向同一個位置。

導星的原理很簡單,就是在望遠鏡和相機觀測的同時,同時用另一套相機監測視野中星星的位置。一旦發現畫面中恆星的位置有任何小小的移動,導星系統就會命令望遠鏡調整指向(pointing),即時把誤差修正回來。在哈伯望遠鏡上,這個負責導星的相機叫作「精細導星感測器(FGS)」。而這個用來幫望遠鏡「導航」的星星,就被稱為「引導星(guide star)」。

哈伯在進行拍攝時,需要找一顆導星來隨時校正方向。圖/GIPHY

一般來說,在哈伯望遠鏡每指向一個新的目標,都需要先花費一段約十分鐘的時間選擇引導星,然後才能進行科學拍攝。然而,由於哈伯的軌道週期僅有 97 分鐘左右,因此在一次軌道中,哈伯基本上只能拍攝一或兩個固定的天區,不然就會有大量的觀測時間被浪費在尋找引導星的過程中。如此一來,天文學家若想透過哈伯來拍攝 800 個不同指向,就需要花費 800 次的軌道繞行時間才能結束這項任務。

花費很多時間有什麼問題呢?哈伯望遠鏡的觀測,是由美國「太空望遠鏡科學研究所(STScI)」向全世界天文學家公開徵求觀測企劃之後,再從中挑選出最具科學效益的企劃後實施。一個耗時 800 個軌道週期的觀測,很難在競爭激烈的觀測計劃書中脫穎而出。

但如果,天文學家真的很需要用哈伯進行大面積的巡天,該怎麼辦呢?

提升效率的新方法

如前述,一般來說哈伯每指向一個新目標,都需要花費十分鐘來進行捕捉引導星。但換個角度想,如果把導星功能關掉,不就可以省下這些時間了嗎?

計画通り!圖/GIPHY

還真是沒錯,哈伯的設計的確是可以關掉導星系統,利用其中的陀螺儀來進行控制。但陀螺儀的能提供的穩定性終究不如導星系統,一旦曝光時間過長,望遠鏡的微小移動還是會造成最後曝光出來的星星像塗抹花生醬一樣糊成一片,這樣的影像是很難用於科學分析的。

開導星耗時間,不開導星又沒辦法長曝,該怎麼辦呢?

這時就輪到「Drift And SHift(DASH)」技術出場了!DASH 的核心概念很簡單:

  • 為了省時,我們就關掉導星。
  • 關導星不能長曝,那我們就拍很多短曝光時間的照片,降低每張照片的模糊程度,再把它們對齊之後疊起來。

以 3D-DASH 計劃來說,關掉導星會讓哈伯的指向以每秒 0.001 至 0.002 角秒的速度緩緩飄移。因此天文學家將每張照片的曝光時間壓縮到 25 秒以下,讓星點在畫面中的移動不超過一個像素(WFC-3 的像素大小為 0.129 角秒)。利用這樣的技術,天文學家就能在哈伯的一次軌道週期中,拍攝八個不同的指向,把觀測效率提升了八倍!

3D-DASH 的觀測天區和其他觀測計畫天區大小、深度(最暗可拍到的天體星等)的比對圖。圖/arxiv

拍這些照片有什麼用?3D-DASH 的科學意義

3D-DASH 計畫的觀測資料最近已於網路上公開,不過這龐大的資料量,觀測團隊以及其他科學家們還需要更多時間進行分析。不過,在公布這個計劃的論文中,團隊已經提出了一些值得分析的科學問題。

舉例來說,天文學家認為如今多數的橢圓星系(elliptical galaxy)們,都是由較小的星系合併而來。因此尋找合併中的星系,並測量它們的各項物理性質,是研究星系演化歷史的重要方法。但很多時候,地面望遠鏡可以大略看到一個光點可能是兩或多個相鄰的天體組成,卻沒有足夠的解析度可以研究它們的細節。但有了 3D-DASH 的資料,天文學家就可以清楚的看到星系們合併的細節,並研究其中細微的結構以及測量更多複雜的物理量。

合併中的星系們。圖/NASA

不過這種大範圍的巡天計畫也不是完美的。為了拍攝廣大的天區,每個天區分配到的平均觀測時間就會比較少,因此比起 CANDELS 等前輩們,3D-DASH 只能看到相對亮的星系們。雖然如此,3D-DASH 這種相對廣而淺的觀測,不僅可以提供更大量的星系樣本,幫助天文學家使用強大的統計方法進行分析;也可以讓天文學家先大概了解這片天區裡有些什麼,如果發現了有趣的目標,就可以使用哈伯或韋伯等其它強大的望遠鏡們進行更深入的觀測!

3D-DASH 的所涵蓋的天區,以及其超高的解析度。圖/arxiv

參考資料

延伸閱讀

Tiger Hsiao_96
2 篇文章 ・ 13 位粉絲
現於約翰霍普金斯大學攻讀天文博士。