0

8
2

文字

分享

0
8
2

宏觀影像技術用在微觀細胞上!——當天文學遇上腫瘤生物學

羅夏_96
・2021/07/13 ・4966字 ・閱讀時間約 10 分鐘

讓癌症專家頭痛不已的問題

Janis Taube 是約翰霍普金斯大學的病理學教授,她的主要工作是透過顯微鏡來觀察免疫細胞與腫瘤細胞間的交互作用,以此預測病人對於特定治療的反應。她會使用螢光染劑來標示特定的細胞或蛋白質,如此便能觀察細胞間的交互作用。不過她也遇到不少問題,首先,不同螢光染劑的訊號會疊加在一起,這會影響觀察結果。另外在觀察時,她通常是觀察同一平面上的細胞間交互作用,但細胞其實是處在三維空間,因此也要將三維空間中的交互作用考慮進去。

Headshot of Janis Marie Taube
約翰霍普金斯大學病理學教授 – Janis Taube。圖/John Hopkins University

如果你覺得這沒甚麼,但將這些問題放到有著數百萬細胞的組織樣本中,你就知道這問題的複雜程度了。要將彼此干擾的螢光訊號拼接成完整的影像,還要藉此判斷細胞在三維空間中的交互作用,這簡直讓 Taube 抓狂。雖然面對這個問題她無從下手,但約翰霍普金斯大學有另一批專家可是天天跟這類問題打交道。

Alexander Szalay 是約翰霍普金斯大學物理系、天文系和電腦科學系的教授,他同時也是「史隆數位巡天計畫」註1委員會的主席。他的團隊每天要進行的工作,就是將數百萬張由望遠鏡拍出,有著數十億天體的圖像拼接起來,並以此繪製出宇宙的 3D 圖像。講到這兒,你有沒有發現這和 Taube 的研究有甚麼相似之處?

Alexander S. Szalay
約翰霍普金斯大學天文系教授 – Alexander Szalay。圖/John Hopkins University

運用望遠鏡 (顯微鏡) 觀察有著不同特徵 (不同螢光訊號)眾多天體 (數百萬細胞),在天空中 (三維空間)位置與相互關係 (細胞間交互作用)

天文學與腫瘤生物學的研究方法和資料呈現的方式,其實可以相互借鑒。圖/參考資料 1

仔細來看,Taube 和 Szalay 要處理的影像問題其實是相似的。不過某種程度上,天文學面對的影像比腫瘤生物學更難處理。畢竟天體會隨著季節有所不同,而且望遠鏡還會受到氣候的干擾,但天文學家在有這麼多變因的情況下,仍成功繪製出宇宙的圖像。相較之下,處理不會動又沒有天氣干擾的組織切片,豈不手到擒來?

-----廣告,請繼續往下閱讀-----

於是,一場宏觀與微觀、天文與腫瘤生物學的碰撞油然而生1。下面,讓我們一起了解這個跨領域的合作究竟是怎麼發生的吧~

免疫療法的效用與免疫螢光染色的瓶頸

故事的起源得先從 PD – 1 和 PD – L1 阻斷劑說起。自從科學家們發現人體內的 T 細胞會攻擊腫瘤細胞後,便開始研究如何活化 T 細胞去消滅腫瘤,不過腫瘤細胞也不笨。

T 細胞表面上有一個名叫 PD – 1 (Programmed cell death protein 1) 的蛋白質,該蛋白質的活化會抑制 T 細胞的活性,而這是身體調節 T 細胞活性的機制。畢竟 T 細胞的過度活化也會傷及身體其他部分,因此勢必要有一個能抑制其活性的機制存在,而這個機制,正好就被腫瘤細胞所利用。

腫瘤細胞為了避免被 T 細胞攻擊,會在其細胞表面上產生 PD – L1 (Programmed cell death 1 ligand 1) 這個蛋白質。PD – L1 與 T 細胞表面上的 PD – 1 結合後,會抑制T細胞的活性,藉此讓腫瘤細胞躲避 T 細胞的攻擊。

為了應對腫瘤細胞抑制 T 細胞的能力,科學家們便研製出 PD – 1 和 PD – L1 的阻斷劑,讓兩者不會結合,如此便能讓 T 細胞保持戰鬥力。而 PD – 1 / PD – L1 阻斷劑也已成為美國 FDA 核准的免疫療法藥物,不過可惜的是,並非所有的癌症病患都適用這種療法,為什麼呢?

-----廣告,請繼續往下閱讀-----
PD – 1 和 PD – L1 的作用與其抑制劑 (Anti PD – 1 / PD – L1 ) 的應用。圖/免疫療法:Anti PD-1和Anti PD-L1

前面提到,腫瘤細胞會藉由 PD – L1 抑制 T 細胞的活性。但如果今天病患的腫瘤細胞不會表現 PD – L1,那即便給病患 PD – 1 / PD – L1 阻斷劑,也不會起到多大的作用。

另外,腫瘤組織會在人體內會形成複雜的腫瘤微環境註2,在這個微環境中,多種細胞會產生複雜的交互作用,這就讓 T 細胞在微環境中難以接觸到腫瘤細胞。此時就算給予 PD – 1 / PD – L1 阻斷劑,若 T 細胞碰不到腫瘤細胞,也是英雄無用武之地。

因此,能快速判斷 PD – 1 / PD – L1 阻斷劑是否對腫瘤有效的方法,就對病患的治療非常重要。如此不僅能節省醫療支出,也能讓病患及早改用其他有效的治療手段,增加他們的生存機率。

免疫組織化學染色法的應用與其挑戰

目前美國 FDA 認可判斷 PD – 1 / PD – L1 阻斷劑是否有效的方式之一,是對病患的腫瘤組織使用免疫組織化學染色法 ( immunohistochemistry,IHC )註3,這個方法可以讓特定的蛋白質在組織切片中用染色法專一地呈現出來。因此藉由 IHC,便能判斷出該腫瘤組織是否會表現 PD – L1,另外也能觀察在給病患使用 PD – 1 / PD – L1 阻斷劑後,T 細胞與腫瘤細胞的相互作用2

Figure 2
用於判斷 T 細胞是否會與腫瘤細胞作用的示意圖 ( 上 ) 和實際的 IHC 圖 ( 下 )。圖/參考資料 2 

IHC 看起是不錯的判斷方法,但其實仍有不少侷限性。

首先 IHC 需要染色,目前常用的是螢光染色劑。螢光染劑所產生的訊號夠強,利於研究人員判斷蛋白質是否有表現。但隨著使用的螢光顏色數量增加,這些訊號就相互疊加造成干擾。

-----廣告,請繼續往下閱讀-----

另外,當研究人員放大觀察組織樣本時,螢光訊號的解析度會降低,這就讓研究人員難以判斷蛋白質的表現量和細胞的交互作用。接著是訊號呈現的問題,研究人員通常會盡量收集位在同一平面上的螢光訊號,這樣才能獲得清晰的視野,也才好比較訊號的強弱。但組織切片本身是三維空間,如果只選擇同一平面的螢光訊號,就會忽略細胞在其他維度的交互作用。

而當把上述的三個問題 (多種螢光的疊加干擾、放大後螢光訊號解析度降低、三維空間的螢光訊號) 放到有著數百萬細胞的組織切片上,問題就更棘手了。這樣的影像數據光是要彙整就是浩大工程,深入解讀更是困難。

https://www.biomol.com/media/image/4b/44/ff/IHC-multiplex01.jpg
多顏色螢光染劑在腫瘤組織切片的結果。圖/Overview of Multiplex Immunohistochemistry

天文與腫瘤生物學的碰撞 —— AstroPath 的誕生

雖然這些問題對生物學家來說是很大的挑戰,但正如開頭所說,這可難不倒天文學家。於是 2018 年,Taube 和 Szalay 兩個不同領域的專家一拍即合,開始以天文學的影像處理工具與方式為基礎,創造出一個可分析多因素組織切片影像的模型。而他們於次年 NIH 的數據科學系列研討會上,就講述如何利用描繪星系的技術來繪製腫瘤的微環境,並希望通過這種方法了解腫瘤的結構及弱點3

Taube 和 Szalay 的演講影片

2020年,約翰霍普金斯大學與馬克癌症研究基金會 (The Mark Foundation for Cancer Research) 合作,創建新的癌症研究中心。該中心匯集了天文學圖像分析、病理學、電腦科學、癌症基因體學和免疫學等多個領域的專家,一同建構了一個運用天文學方式分析病理學影像的平台 –  AstroPath4

而今年 6 月發表在 Science 上的研究1,研究團隊就揭示了如何運用 AstroPath,將多螢光染色的免疫組織切片影像,彙整成一張解析度可達單個細胞間交互作用的多色影像。

-----廣告,請繼續往下閱讀-----
利用 AstroPath 所繪製出的完整多螢光免疫組織切片的影像,該影像即使放大,其解析度都能達到單個細胞的層級。圖/參考資料 1

而在 AstroPath 的幫助下,Taube 不僅能夠從影像中清楚看到 PD – L1 在腫瘤細胞的表現量,也能看到腫瘤細胞與 T 細胞在腫瘤微環境中的相互作用,而這些影像都有助於她預測 PD – 1 / PD – L1 阻斷劑的效用。Taube 也將 AstroPath 的結果,與其他判斷 PD – 1 / PD – L1 阻斷劑效用的方式做比較,發現AstroPath的影像確實能很好的預測 PD – 1 / PD – L1 阻斷劑的效用。而這個結果讓研究團隊有信心,未來AstroPath 能成為協助臨床治療的分析工具。

藉由 AstroPath 的影像,能夠看出腫瘤細胞的 PD – L1 表現量強弱,同時也能看到組織切片中,免疫細胞與腫瘤細胞間的相互作用。圖/參考資料 1

大數據科學的來臨

AstroPath 的初步成功,無疑給研究團隊很大的信心,不過 Szaley 認為仍有很長的路要走。目前 AstroPath 只分析肺癌和兩種皮膚癌,共 2.26 億個細胞的影像數據,其數據量就已超過史隆數位巡天計畫的所有數據總和了。但如果要想讓AstroPath 成為協助臨床癌症治療的工具,只分析這麼一點癌症種類,顯然是不足的。而且這麼大的數據量,也不是普通單位能夠處理的。

「大數據正在改變科學,從天文學、基因體學到海洋學,到處都有應用。資料密集型的科學發現是一種新的模式,而我們接下來面臨的技術挑戰是,如何在大規模收集資料時獲得一致、可重複的結果?接下來還有一些重要步驟:我們要通過多個機構的研究,將這些測試標準化,然後進行前瞻性臨床試驗,讓病人們享受到AstroPath平台所帶來的診斷優勢。」Szaley 如此說道。

而 Taube 希望 AstroPath 除了能幫助醫師進行診斷,未來也能應用 AstroPath 繪製出一個公開的腫瘤免疫圖譜,就像癌症基因體圖譜 (The Cancer Genome Atlas)註4一樣,增進腫瘤相關的研究。

-----廣告,請繼續往下閱讀-----

天文學是研究「天體」這個宏觀領域的學科;腫瘤生物學則是研究「腫瘤細胞」的微觀領域。這兩個學科的研究對象可說是天差地遠,理應不會有什麼交集。但兩個領域的碰撞,激發出 AstroPath 這種讓人意想不到的發明。不過相信隨著科學家們的思想越來越開闊,未來這種跨領域的合作只會越來越多。就讓我們一同期待,未來科學界還會再撞出甚麼有趣的火花吧~

註釋

  1. 史隆數位巡天計畫:是使用位於新墨西哥州阿帕契點天文台的 2.5 米口徑望遠鏡進行的紅移巡天項目。該項目開始於 2000 年,以阿爾弗雷德·史隆的名字命名,計劃觀測 25% 的天空,獲取超過一百萬個天體的多色測光資料和光譜數據。2006 年,史隆數位化巡天進入了名為 SDSS-II 的新階段,進一步探索銀河系的結構和組成。
  2. 免疫組織化學染色法:在抗體上結合螢光或可呈色的化學物質,利用免疫學原理中抗原和抗體間專一性的結合反應,檢測細胞或組織中是否有目標抗原的存在,此方式不只可以用來測知抗原的表現量也可觀察抗原所表現的位置。只要是能夠讓抗體結合的物質,也就是具有抗原性的物質包括蛋白質、核酸、多醣、病原體等都可偵測。免疫組織化學的優勢在於專一性、靈敏度、簡便快速以及成本低廉,所以廣為醫院採用,通常是藉由特定的腫瘤標記來篩選癌症。免疫組織化學染色法對基礎研究及預防和診療上都是相當重要的一個方法。
  3. 腫瘤微環境:是腫瘤細胞與周圍的其他細胞,如血管、纖維母細胞、免疫細胞等多種細胞共同組成的特殊環境。腫瘤細胞可以藉由分泌各式細胞因子,來讓微環境有利於自身發展。例如微環境中能促進血管新生,同時也有很強的免疫抑制能力,讓前來殺敵的免疫細胞無法作用。
  4. 癌症基因體圖譜:大規模地蒐集特定癌症病患的相關臨床記錄、腫瘤組織以及相對應正常組織,進行定序以及生物資訊分析,整合資料並公開定序資料與分析結果於官方網站供大家瀏覽及下載,利於世界各地的科學家、研究人員或是學術單位取得使用。藉以流通知識、促進研究,並打造完整的癌症基因組資訊,助於癌症的預防、診斷與治療。

參考資料

  1. Berry S, Giraldo NA, Green BF, Cottrell TR, Stein JE, Engle EL, Xu H, Ogurtsova A, Roberts C, Wang D, Nguyen P, Zhu Q, Soto-Diaz S, Loyola J, Sander IB, Wong PF, Jessel S, Doyle J, Signer D, Wilton R, Roskes JS, Eminizer M, Park S, Sunshine JC, Jaffee EM, Baras A, De Marzo AM, Topalian SL, Kluger H, Cope L, Lipson EJ, Danilova L, Anders RA, Rimm DL, Pardoll DM, Szalay AS, Taube JM. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science. 2021 Jun 11;372(6547):eaba2609. 
  2. Taube, J., Galon, J., Sholl, L. et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31, 214–234 (2018).
  3. Illuminating the Tumor Microenvironment Using Multiplex IF: Astronomy Accelerates Pathology
  4. Abstract 6584: The ‘AstroPath’ platform for spatially resolved, single cell analysis of the tumor microenvironment (TME) using multispectral immunofluorescence (mIF)
  5. Sky-Mapping Astronomy Algorithms Meet Pathology to Identify Predictive Biomarkers for Cancer Immunotherapy
文章難易度
羅夏_96
52 篇文章 ・ 805 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
泌尿上皮癌復發機率高,術後免疫輔助治療降低風險
careonline_96
・2024/02/10 ・1771字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「醫師,我媽的腎臟功能剩下 40 分,接下來的輔助治療應該要如何進行?」陪著王女士回診的女兒問。

70 歲的王女士因為罹患上泌尿道上皮癌而接受手術,切除一側的腎臟與輸尿管。台中榮民總醫院泌尿外科李建儀醫師指出,由於泌尿上皮癌術後復發的風險較高,因此建議接受術後輔助治療,但是患者的腎臟功能卻讓家屬很擔心。

經過詳細討論後,決定使用免疫治療。李建儀醫師說,治療過程中,患者有出現皮膚搔癢的狀況,不過可以用藥物與藥膏來改善,順利完成為期一年的術後免疫輔助治療。目前沒有局部復發或遠端轉移的狀況,患者也持續在門診追蹤。

人體的泌尿系統類似水管系統,泌尿上皮就是管路的內壁,涵蓋腎盂、輸尿管、膀胱、尿道等,由泌尿上皮產生的惡性腫瘤便統稱為「泌尿上皮癌」。

-----廣告,請繼續往下閱讀-----

泌尿上皮癌最常見的症狀是血尿,李建儀醫師說,大約 85% 的病人會出現血尿,可能是肉眼可見,或是顯微鏡下才看得到的血尿。而血尿的嚴重程度與腫瘤的嚴重程度不一定有關。出現在下泌尿道,如膀胱、尿道的腫瘤,血尿會比較明顯,較容易被發現。

泌尿上皮癌復發風險高

李建儀醫師說,位於膀胱的下泌尿道泌尿上皮癌,若是尚未侵犯肌肉層,可以使用經尿道膀胱腫瘤刮除術,再視狀況以膀胱灌藥來輔助,減少復發機率。李建儀醫師說,若是已經侵犯肌肉層,便需要進行手術切除。

位於腎盂、輸尿管的上泌尿道泌尿上皮癌的治療相對比較複雜,即使是第一期也可能得進行腎臟跟輸尿管的切除。李建儀醫師說:「目前在處理侷限性腫瘤,或患者的腎臟功能較差時,可能會進行部分腎臟切除手術,盡量保留腎臟功能。然而根據統計,泌尿上皮癌患者中近 8 成在 5 年內有復發的危險,比例非常高。」

為了降低復發機率,泌尿上皮癌患者於手術之後可使用輔助化學治療,或使用免疫治療。李建儀醫師說,「術後輔助免疫治療用在肌肉侵犯型、或是淋巴有轉移的病人,在減少復發與遠處轉移的機率上,都有明顯的改善,與未使用輔助治療相比,有助延長近一倍的無疾病存活期。」

-----廣告,請繼續往下閱讀-----

免疫療法的作用機轉是透過抑制細胞表面的免疫檢查點來做治療,李建儀醫師解釋,針對癌細胞表面的 PD-L1 分子與免疫 T 細胞表面的 PD-1 分子,當 PD-L1 與 PD-1 接合時,T 細胞會受到抑制,若使用藥物避免 PD-L1 與 PD-1 接合,T 細胞便能辨識癌細胞並發動攻擊,抑制腫瘤生長。

在過去,免疫治療主要用於晚期泌尿上皮癌患者,大多病情較嚴重且用過多種藥物。李建儀醫師說:「由於病情較嚴重,治療成效較為有限,所以大家會在臨床試驗嘗試提早使用免疫治療。目前已經確認,在高復發風險的患者,包括肌肉侵犯型膀胱癌,或第二期、第三期的上泌尿道泌尿上皮癌,使用術後輔助免疫治療有助降低復發的機率。」

貼心小提醒

泌尿上皮癌常見症狀是血尿,位於膀胱的泌尿上皮癌通常有較明顯的血尿,而容易被發現;位於腎盂、輸尿管的泌尿上皮癌可能會較晚發現。

在狀況許可時,會使用手術治療切除腫瘤,不過泌尿上皮癌術後復發風險較高。李建儀醫師說,泌尿上皮癌患者中近 8 成在 5 年內有復發的危險,建議進行術後輔助治療以降低復發風險,可使用化學治療或免疫治療。

-----廣告,請繼續往下閱讀-----

患者在術後建議與醫師詳細討論,選擇合適的治療,並且按時回診、密切追蹤!

討論功能關閉中。

careonline_96
444 篇文章 ・ 271 位粉絲
台灣最大醫療入口網站

0

0
1

文字

分享

0
0
1
精準定位一站式手術治療早期肺癌,術後留意免疫檢查點、提防復發風險
careonline_96
・2023/12/29 ・2664字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

針對能手術的早期肺癌,手術與術後輔助治療都是影響預後的關鍵,本次照護線上特別邀請三軍總醫院胸腔外科黃才旺醫師,公開解析手術重點、團隊照護以及術後輔助治療新突破。

近年國民健康署將肺癌低劑量電腦斷層 LDCT 納入成為我國第五癌症篩檢,目標透過低劑量電腦斷層 LDCT 早期發現肺癌,提升整體預後。三軍總醫院胸腔外科黃才旺醫師指出,近年來低劑量電腦斷層確實發揮成效,偵測到許多早期肺癌,能接受手術的患者人數也增加;同時,針對早期肺癌的手術與術後治療也持續發展,讓肺癌預後有不少提升。

精準定位切除微小病兆,一站式手術縮短手術時間、有效減少併發症

首先,透過低劑量電腦斷層偵測到的肺部腫瘤,普遍較小且呈現毛玻璃狀,在內視鏡手術下不易找到病灶,需於在手術前先立體定位腫瘤確切位置,才能精準切除。黃才旺醫師解釋,過去患者通常要先到檢查室進行定位,然後再進入開刀房接受手術,這樣的作法較為耗時,會增加運送、等待時造成病人氣胸、咳血的風險。

為了優化流程,三軍總醫院於 2018 年就開始執行一站式肺腫瘤立體定位手術。顧名思義,患者能在同一個手術房中,就完成立體定位與手術切除,黃才旺醫師說,一站式肺腫瘤立體定位手術能有效減少運送及等候的時間,降低立體定位後至手術之間,病人的焦躁不適感,也讓相關併發症(例如氣胸、血胸)出現的機率大大減少。

-----廣告,請繼續往下閱讀-----

目前三軍總醫院胸腔外科已累積大量經驗,約 10 分鐘內可完成立體定位、接續切除手術,定位切除手術成功率大於 9 成。

綠色通道全方位快捷顧及病患需求,跨科別團隊讓治療更有效率

肺癌患者對於檢測、治療、生活照護等多方面需求多元,往往需要多科別參與,三軍總醫院也為此特別成立肺癌多專科團隊。

黃才旺醫師說,肺癌多專科團隊成員包含胸腔內外科、病理科、放射診斷科、放射腫瘤科、復健科、心理師、個案管理師等,且三總特有的中醫團隊也加入其中,藉由各自的醫療專業幫助病患。

各科團隊成員會定期開會、集思廣益,替肺癌患者擬定適宜的個人化治療計畫;也開設綠色通道提供整合性門診,幫助減少各科室來回、檢查等候的時間,大幅提升就醫便利性。

-----廣告,請繼續往下閱讀-----

早期肺癌降低復發風險,術後輔助治療勿忘免疫檢查點

早期肺癌手術後要拚治癒,不可不知的重點便是術後輔助治療。黃才旺醫師解釋,在接受手術治療後,1A 期肺癌患者五年存活率可達 90% 以上,1B 期肺癌患者五年存活率約 85%,2 期則降到 60% 左右,3 期則會降至 50% 以下,可見復發風險仍然嚴峻。

因此通常只要是 2 期以上的患者,醫師都會安排術後輔助治療,而1B期若具有較高的復發風險,也會建議接受術後輔助治療。黃才旺醫師說,傳統的術後輔助治療以化學治療為主,效果較差強人意,近年 EGFR 標靶治療與免疫治療也陸續被運用於術後輔助治療,讓療效有不少提升。

黃才旺醫師進一步說明,若基因檢測有發現 EGFR 基因突變,可選用對應之標靶藥物;若無 EGFR 突變,則就可以觀察腫瘤是否具免疫檢查點 PD-L1 表現,若有就可考慮 PD-L1 抑制劑之免疫治療。

所謂 PD-L1 抑制劑,是透過抑制癌細胞藉免疫檢查點機制,逃避 T 細胞攻擊的一種免疫治療。

-----廣告,請繼續往下閱讀-----

黃才旺醫師解釋,當免疫系統中的 T 細胞有能力辨識並毒殺癌細胞時,癌細胞為了自保,可能會在細胞表面產生 PD-L1,當 PD-L1 與 T 細胞上的 PD-1 結合時,就會抑制 T 細胞的攻擊。此時,就可以使用 PD-L1 抑制劑對症下藥,阻止 PD-L1 與 PD-1 結合,讓 T 細胞可以發動攻擊、毒殺癌細胞。

PD-L1 抑制劑讓癌細胞「卸妝」,手術前就先與醫師討論 PD-L1 表現檢測

「具有 PD-L1 的癌細胞就像擁有偽裝能力,可以躲過 T 細胞的攻擊。」黃才旺醫師形容,「PD-L1 抑制劑能讓偽裝失效,使癌細胞現出原形,T 細胞就能對癌細胞大開殺戒。」臨床試驗的結果顯示,術後輔助治療使用化學治療接續 PD-L1 抑制劑,視患者本身 PD-L1 表現高低,能降低復發風險約 30~55% 不等。

黃才旺醫師進一步解釋,針對 PD-L1 表現較高的患者,通常可以預期 PD-L1 抑制劑能發揮較佳的治療成效,因此建議患者可於擬定治療測前先進行 PD-L1 檢測。由於檢測 PD-L1 表現必須使用腫瘤切片檢體,為讓檢測流程更順暢,治療更有效率,建議患者應把握『術前』就跟醫師討論檢測 PD-L1,避免後續可能有檢體不足的疑慮。

黃才旺醫師也強調,現有健保資源有限,在考量治療急迫性下,目前雖對晚期患者資源較多,但也已逐漸朝早期邁進,身為醫師為了患者的利益著想,不論是否有健保給付,都會盡可能地讓患者知道所有可能的治療資訊,充分醫病溝通,完整保障患者權益。

-----廣告,請繼續往下閱讀-----

筆記重點記起來

  1. 肺癌高危險族群善用政府資源,2 年可免費進行 1 次低劑量電腦斷層 LDCT 篩檢,有助早期發現肺癌。
  2. 早期肺癌治療仍以手術為主,手術時採一站式定位,可縮短手術時間、有效減少併發症;術後必須注意復發狀況,積極評估術後輔助治療必要性,除化學治療外,同步考量 EGFR 標靶治療、免疫檢查點抑制劑治療等之用藥可能。
  3. 根據臨床試驗的結果,在化學治療後接續使用一年之 PD-L1 抑制劑作為早期肺癌術後輔助治療,可幫助具有 PD-L1 表現之肺癌患者降低復發機率。
  4. 檢測 PD-L1 表現需使用肺癌檢體,患者記得在手術前就先與醫師討論,以取得足夠檢體檢測,提升術後治療效率。

討論功能關閉中。

careonline_96
444 篇文章 ・ 271 位粉絲
台灣最大醫療入口網站