Loading [MathJax]/extensions/tex2jax.js

0

8
2

文字

分享

0
8
2

宏觀影像技術用在微觀細胞上!——當天文學遇上腫瘤生物學

羅夏_96
・2021/07/13 ・4966字 ・閱讀時間約 10 分鐘

讓癌症專家頭痛不已的問題

Janis Taube 是約翰霍普金斯大學的病理學教授,她的主要工作是透過顯微鏡來觀察免疫細胞與腫瘤細胞間的交互作用,以此預測病人對於特定治療的反應。她會使用螢光染劑來標示特定的細胞或蛋白質,如此便能觀察細胞間的交互作用。不過她也遇到不少問題,首先,不同螢光染劑的訊號會疊加在一起,這會影響觀察結果。另外在觀察時,她通常是觀察同一平面上的細胞間交互作用,但細胞其實是處在三維空間,因此也要將三維空間中的交互作用考慮進去。

Headshot of Janis Marie Taube
約翰霍普金斯大學病理學教授 – Janis Taube。圖/John Hopkins University

如果你覺得這沒甚麼,但將這些問題放到有著數百萬細胞的組織樣本中,你就知道這問題的複雜程度了。要將彼此干擾的螢光訊號拼接成完整的影像,還要藉此判斷細胞在三維空間中的交互作用,這簡直讓 Taube 抓狂。雖然面對這個問題她無從下手,但約翰霍普金斯大學有另一批專家可是天天跟這類問題打交道。

Alexander Szalay 是約翰霍普金斯大學物理系、天文系和電腦科學系的教授,他同時也是「史隆數位巡天計畫」註1委員會的主席。他的團隊每天要進行的工作,就是將數百萬張由望遠鏡拍出,有著數十億天體的圖像拼接起來,並以此繪製出宇宙的 3D 圖像。講到這兒,你有沒有發現這和 Taube 的研究有甚麼相似之處?

Alexander S. Szalay
約翰霍普金斯大學天文系教授 – Alexander Szalay。圖/John Hopkins University

運用望遠鏡 (顯微鏡) 觀察有著不同特徵 (不同螢光訊號)眾多天體 (數百萬細胞),在天空中 (三維空間)位置與相互關係 (細胞間交互作用)

天文學與腫瘤生物學的研究方法和資料呈現的方式,其實可以相互借鑒。圖/參考資料 1

仔細來看,Taube 和 Szalay 要處理的影像問題其實是相似的。不過某種程度上,天文學面對的影像比腫瘤生物學更難處理。畢竟天體會隨著季節有所不同,而且望遠鏡還會受到氣候的干擾,但天文學家在有這麼多變因的情況下,仍成功繪製出宇宙的圖像。相較之下,處理不會動又沒有天氣干擾的組織切片,豈不手到擒來?

-----廣告,請繼續往下閱讀-----

於是,一場宏觀與微觀、天文與腫瘤生物學的碰撞油然而生1。下面,讓我們一起了解這個跨領域的合作究竟是怎麼發生的吧~

免疫療法的效用與免疫螢光染色的瓶頸

故事的起源得先從 PD – 1 和 PD – L1 阻斷劑說起。自從科學家們發現人體內的 T 細胞會攻擊腫瘤細胞後,便開始研究如何活化 T 細胞去消滅腫瘤,不過腫瘤細胞也不笨。

T 細胞表面上有一個名叫 PD – 1 (Programmed cell death protein 1) 的蛋白質,該蛋白質的活化會抑制 T 細胞的活性,而這是身體調節 T 細胞活性的機制。畢竟 T 細胞的過度活化也會傷及身體其他部分,因此勢必要有一個能抑制其活性的機制存在,而這個機制,正好就被腫瘤細胞所利用。

腫瘤細胞為了避免被 T 細胞攻擊,會在其細胞表面上產生 PD – L1 (Programmed cell death 1 ligand 1) 這個蛋白質。PD – L1 與 T 細胞表面上的 PD – 1 結合後,會抑制T細胞的活性,藉此讓腫瘤細胞躲避 T 細胞的攻擊。

為了應對腫瘤細胞抑制 T 細胞的能力,科學家們便研製出 PD – 1 和 PD – L1 的阻斷劑,讓兩者不會結合,如此便能讓 T 細胞保持戰鬥力。而 PD – 1 / PD – L1 阻斷劑也已成為美國 FDA 核准的免疫療法藥物,不過可惜的是,並非所有的癌症病患都適用這種療法,為什麼呢?

-----廣告,請繼續往下閱讀-----
PD – 1 和 PD – L1 的作用與其抑制劑 (Anti PD – 1 / PD – L1 ) 的應用。圖/免疫療法:Anti PD-1和Anti PD-L1

前面提到,腫瘤細胞會藉由 PD – L1 抑制 T 細胞的活性。但如果今天病患的腫瘤細胞不會表現 PD – L1,那即便給病患 PD – 1 / PD – L1 阻斷劑,也不會起到多大的作用。

另外,腫瘤組織會在人體內會形成複雜的腫瘤微環境註2,在這個微環境中,多種細胞會產生複雜的交互作用,這就讓 T 細胞在微環境中難以接觸到腫瘤細胞。此時就算給予 PD – 1 / PD – L1 阻斷劑,若 T 細胞碰不到腫瘤細胞,也是英雄無用武之地。

因此,能快速判斷 PD – 1 / PD – L1 阻斷劑是否對腫瘤有效的方法,就對病患的治療非常重要。如此不僅能節省醫療支出,也能讓病患及早改用其他有效的治療手段,增加他們的生存機率。

免疫組織化學染色法的應用與其挑戰

目前美國 FDA 認可判斷 PD – 1 / PD – L1 阻斷劑是否有效的方式之一,是對病患的腫瘤組織使用免疫組織化學染色法 ( immunohistochemistry,IHC )註3,這個方法可以讓特定的蛋白質在組織切片中用染色法專一地呈現出來。因此藉由 IHC,便能判斷出該腫瘤組織是否會表現 PD – L1,另外也能觀察在給病患使用 PD – 1 / PD – L1 阻斷劑後,T 細胞與腫瘤細胞的相互作用2

Figure 2
用於判斷 T 細胞是否會與腫瘤細胞作用的示意圖 ( 上 ) 和實際的 IHC 圖 ( 下 )。圖/參考資料 2 

IHC 看起是不錯的判斷方法,但其實仍有不少侷限性。

首先 IHC 需要染色,目前常用的是螢光染色劑。螢光染劑所產生的訊號夠強,利於研究人員判斷蛋白質是否有表現。但隨著使用的螢光顏色數量增加,這些訊號就相互疊加造成干擾。

-----廣告,請繼續往下閱讀-----

另外,當研究人員放大觀察組織樣本時,螢光訊號的解析度會降低,這就讓研究人員難以判斷蛋白質的表現量和細胞的交互作用。接著是訊號呈現的問題,研究人員通常會盡量收集位在同一平面上的螢光訊號,這樣才能獲得清晰的視野,也才好比較訊號的強弱。但組織切片本身是三維空間,如果只選擇同一平面的螢光訊號,就會忽略細胞在其他維度的交互作用。

而當把上述的三個問題 (多種螢光的疊加干擾、放大後螢光訊號解析度降低、三維空間的螢光訊號) 放到有著數百萬細胞的組織切片上,問題就更棘手了。這樣的影像數據光是要彙整就是浩大工程,深入解讀更是困難。

https://www.biomol.com/media/image/4b/44/ff/IHC-multiplex01.jpg
多顏色螢光染劑在腫瘤組織切片的結果。圖/Overview of Multiplex Immunohistochemistry

天文與腫瘤生物學的碰撞 —— AstroPath 的誕生

雖然這些問題對生物學家來說是很大的挑戰,但正如開頭所說,這可難不倒天文學家。於是 2018 年,Taube 和 Szalay 兩個不同領域的專家一拍即合,開始以天文學的影像處理工具與方式為基礎,創造出一個可分析多因素組織切片影像的模型。而他們於次年 NIH 的數據科學系列研討會上,就講述如何利用描繪星系的技術來繪製腫瘤的微環境,並希望通過這種方法了解腫瘤的結構及弱點3

https://www.youtube.com/watch?v=w6E2k3EXR3w
Taube 和 Szalay 的演講影片

2020年,約翰霍普金斯大學與馬克癌症研究基金會 (The Mark Foundation for Cancer Research) 合作,創建新的癌症研究中心。該中心匯集了天文學圖像分析、病理學、電腦科學、癌症基因體學和免疫學等多個領域的專家,一同建構了一個運用天文學方式分析病理學影像的平台 –  AstroPath4

而今年 6 月發表在 Science 上的研究1,研究團隊就揭示了如何運用 AstroPath,將多螢光染色的免疫組織切片影像,彙整成一張解析度可達單個細胞間交互作用的多色影像。

-----廣告,請繼續往下閱讀-----
利用 AstroPath 所繪製出的完整多螢光免疫組織切片的影像,該影像即使放大,其解析度都能達到單個細胞的層級。圖/參考資料 1

而在 AstroPath 的幫助下,Taube 不僅能夠從影像中清楚看到 PD – L1 在腫瘤細胞的表現量,也能看到腫瘤細胞與 T 細胞在腫瘤微環境中的相互作用,而這些影像都有助於她預測 PD – 1 / PD – L1 阻斷劑的效用。Taube 也將 AstroPath 的結果,與其他判斷 PD – 1 / PD – L1 阻斷劑效用的方式做比較,發現AstroPath的影像確實能很好的預測 PD – 1 / PD – L1 阻斷劑的效用。而這個結果讓研究團隊有信心,未來AstroPath 能成為協助臨床治療的分析工具。

藉由 AstroPath 的影像,能夠看出腫瘤細胞的 PD – L1 表現量強弱,同時也能看到組織切片中,免疫細胞與腫瘤細胞間的相互作用。圖/參考資料 1

大數據科學的來臨

AstroPath 的初步成功,無疑給研究團隊很大的信心,不過 Szaley 認為仍有很長的路要走。目前 AstroPath 只分析肺癌和兩種皮膚癌,共 2.26 億個細胞的影像數據,其數據量就已超過史隆數位巡天計畫的所有數據總和了。但如果要想讓AstroPath 成為協助臨床癌症治療的工具,只分析這麼一點癌症種類,顯然是不足的。而且這麼大的數據量,也不是普通單位能夠處理的。

「大數據正在改變科學,從天文學、基因體學到海洋學,到處都有應用。資料密集型的科學發現是一種新的模式,而我們接下來面臨的技術挑戰是,如何在大規模收集資料時獲得一致、可重複的結果?接下來還有一些重要步驟:我們要通過多個機構的研究,將這些測試標準化,然後進行前瞻性臨床試驗,讓病人們享受到AstroPath平台所帶來的診斷優勢。」Szaley 如此說道。

而 Taube 希望 AstroPath 除了能幫助醫師進行診斷,未來也能應用 AstroPath 繪製出一個公開的腫瘤免疫圖譜,就像癌症基因體圖譜 (The Cancer Genome Atlas)註4一樣,增進腫瘤相關的研究。

-----廣告,請繼續往下閱讀-----

天文學是研究「天體」這個宏觀領域的學科;腫瘤生物學則是研究「腫瘤細胞」的微觀領域。這兩個學科的研究對象可說是天差地遠,理應不會有什麼交集。但兩個領域的碰撞,激發出 AstroPath 這種讓人意想不到的發明。不過相信隨著科學家們的思想越來越開闊,未來這種跨領域的合作只會越來越多。就讓我們一同期待,未來科學界還會再撞出甚麼有趣的火花吧~

註釋

  1. 史隆數位巡天計畫:是使用位於新墨西哥州阿帕契點天文台的 2.5 米口徑望遠鏡進行的紅移巡天項目。該項目開始於 2000 年,以阿爾弗雷德·史隆的名字命名,計劃觀測 25% 的天空,獲取超過一百萬個天體的多色測光資料和光譜數據。2006 年,史隆數位化巡天進入了名為 SDSS-II 的新階段,進一步探索銀河系的結構和組成。
  2. 免疫組織化學染色法:在抗體上結合螢光或可呈色的化學物質,利用免疫學原理中抗原和抗體間專一性的結合反應,檢測細胞或組織中是否有目標抗原的存在,此方式不只可以用來測知抗原的表現量也可觀察抗原所表現的位置。只要是能夠讓抗體結合的物質,也就是具有抗原性的物質包括蛋白質、核酸、多醣、病原體等都可偵測。免疫組織化學的優勢在於專一性、靈敏度、簡便快速以及成本低廉,所以廣為醫院採用,通常是藉由特定的腫瘤標記來篩選癌症。免疫組織化學染色法對基礎研究及預防和診療上都是相當重要的一個方法。
  3. 腫瘤微環境:是腫瘤細胞與周圍的其他細胞,如血管、纖維母細胞、免疫細胞等多種細胞共同組成的特殊環境。腫瘤細胞可以藉由分泌各式細胞因子,來讓微環境有利於自身發展。例如微環境中能促進血管新生,同時也有很強的免疫抑制能力,讓前來殺敵的免疫細胞無法作用。
  4. 癌症基因體圖譜:大規模地蒐集特定癌症病患的相關臨床記錄、腫瘤組織以及相對應正常組織,進行定序以及生物資訊分析,整合資料並公開定序資料與分析結果於官方網站供大家瀏覽及下載,利於世界各地的科學家、研究人員或是學術單位取得使用。藉以流通知識、促進研究,並打造完整的癌症基因組資訊,助於癌症的預防、診斷與治療。
  1. Berry S, Giraldo NA, Green BF, Cottrell TR, Stein JE, Engle EL, Xu H, Ogurtsova A, Roberts C, Wang D, Nguyen P, Zhu Q, Soto-Diaz S, Loyola J, Sander IB, Wong PF, Jessel S, Doyle J, Signer D, Wilton R, Roskes JS, Eminizer M, Park S, Sunshine JC, Jaffee EM, Baras A, De Marzo AM, Topalian SL, Kluger H, Cope L, Lipson EJ, Danilova L, Anders RA, Rimm DL, Pardoll DM, Szalay AS, Taube JM. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science. 2021 Jun 11;372(6547):eaba2609. 
  2. Taube, J., Galon, J., Sholl, L. et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 31, 214–234 (2018).
  3. Illuminating the Tumor Microenvironment Using Multiplex IF: Astronomy Accelerates Pathology
  4. Abstract 6584: The ‘AstroPath’ platform for spatially resolved, single cell analysis of the tumor microenvironment (TME) using multispectral immunofluorescence (mIF)
  5. Sky-Mapping Astronomy Algorithms Meet Pathology to Identify Predictive Biomarkers for Cancer Immunotherapy
-----廣告,請繼續往下閱讀-----
文章難易度
羅夏_96
52 篇文章 ・ 895 位粉絲
同樣的墨跡,每個人都看到不同的意象,也都呈現不同心理狀態。人生也是如此,沒有一人會體驗和看到一樣的事物。因此分享我認為有趣、有價值的科學文章也許能給他人新的靈感和體悟

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
晚期肝癌只能化療?免疫治療如何改變治療標準?
careonline_96
・2025/02/21 ・1963字 ・閱讀時間約 4 分鐘

圖 / 照護線上

「那是位 50 多歲男性,診斷肝癌時腫瘤已經接近 10 公分,且有脊椎骨的轉移,屬於晚期肝癌。」中國醫藥大學附設醫院內科部消化系許偉帆醫師指出,「當時患者恰好有機會參加臨床試驗,利用雙免疫合併療法作為治療。」

接受雙免疫合併治療的成效顯著,腫瘤逐漸縮小,讓病情得相當好的控制。許偉帆醫師說,從發現至今已有兩年時間,目前胎兒蛋白、PIVKA-II 等指數正常,而且不管是電腦斷層掃描、骨頭掃描都沒有找到腫瘤存活的跡象,患者已回到工作崗位,也持續在門診追蹤。

在台灣,每年約有 8000 例新診斷的肝癌。許偉帆醫師說,患者年齡多在 45 至 60 歲之間,通常是家庭的經濟支柱,因此肝癌往往會對家庭與社會的經濟產生嚴重的影響。

B 型肝炎、C 型肝炎是肝癌的主要危險因子,因為肝炎病毒會導致慢性肝炎、肝硬化及肝癌,常被稱為「肝病三部曲」。許偉帆醫師說,酒精性肝炎、脂肪肝也都可能導致肝硬化,增加罹患肝癌的風險。近年來由脂肪肝導致的肝硬化患者越來越多,不可輕忽。

-----廣告,請繼續往下閱讀-----

「由於肝臟缺乏痛覺感受器,所以早期肝癌大多沒有症狀。」許偉帆醫師說,「晚期肝癌可能出現體重減輕、食慾不振、腹脹、腹痛、黃疸等症狀。正常的黃疸指數約 1 mg/dL,曾經有位老太太來就診時黃疸指數已經高達 25 mg/dL,進一步檢查才發現已是晚期肝癌。」

因為肝癌的治療與腫瘤狀態(大小、數目、侵犯血管程度、肝外轉移)、肝臟殘存功能、病人健康狀態等因素有關,臨床上會使用「巴塞隆納分期(BCLC stage)」將肝癌分為 Stage 0、Stage A、Stage B、Stage C、Stage D。根據統計,台灣早期肝癌(Stage 0)患者比例不到 10%,第一期(Stage A)患者約占三成,中期到末期(Stage B、C、D)患者比例超過 50%。許偉帆醫師說,早期肝癌建議接受手術切除,晚期肝癌的治療難度較高,必須仰賴全身性治療。

晚期肝癌的治療過去以化療為主,但是反應率較低,治療成效有限。許偉帆醫師說,隨著免疫療法的發展,晚期肝癌的治療成效漸漸提升,如今免疫治療已成為晚期肝癌的標準治療。

雙免疫合併療法顯著提升治療成效
圖 / 照護線上

研究發現,晚期肝癌患者使用雙免疫合併治療的成效顯著優於過往傳統療法。許偉帆醫師說,過往單用標靶藥物治療時,晚期肝癌患者平均存活期約一年;若使用雙免疫合併治療,患者的存活期有望可延長至近 2 年。

-----廣告,請繼續往下閱讀-----

接受雙免疫合併治療後,治療反應率(objective response rate)約 20-30%,腫瘤有機會獲得穩定控制、甚至縮小,使患者增加長期存活的機會。

然而,雙免疫合併治療還是可能出現皮疹、疲倦、腹瀉、肝功能異常等副作用,治療過程中都會持續監測,並給予適當的處置。

免疫治療的運用顯著提升了晚期肝癌的治療成效,患者要和醫師詳細討論,擬定個人化的治療策略,達到較佳的預後!

筆記重點整理

  • 由於肝臟缺乏痛覺感受器,所以早期肝癌大多沒有症狀。晚期肝癌可能出現體重減輕、食慾不振、腹脹、腹痛、黃疸等症狀。
  • 台灣早期肝癌(Stage 0)患者比例不到 10%,中期到末期(Stage B、C、D)患者比例超過 50%。早期肝癌建議接受手術切除,晚期肝癌的治療難度較高,必須仰賴全身性治療。
  • 晚期肝癌的治療在過去十多年皆以標靶治療為主,但是反應率較低,治療成效有限。隨著免疫療法的發展,晚期肝癌的治療成效漸漸提升,如今免疫治療已成為晚期肝癌的標準治療。
  • 晚期肝癌患者接受過往傳統療法的平均存活期約一年;若使用雙免疫合併治療,患者的存活期有機會延長至約 2 年。
  • 雙免疫合併治療的治療反應率約 20-30%,腫瘤能獲得穩定控制、甚至縮小。部分患者有機會從無法開刀轉變為可進行手術、電燒、栓塞等局部治療,增加長期存活的機會。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
1

文字

分享

0
2
1
肺癌免疫治療新突破:10分鐘皮下注射,提升便利性與生活品質!
careonline_96
・2025/01/17 ・2181字 ・閱讀時間約 4 分鐘

圖 / 照護線上

「有位 60 多歲的肺癌患者,需要長期接受免疫治療 PD-L1 抑制劑。」新光吳火獅紀念醫院胸腔內科葉育雯醫師表示,「雖然治療成效很不錯,但因為患者的血管條件不佳,所以每次打針和抽血都成為了挑戰,接受靜脈注射後也常出現瘀血的情況。」

其實,臨床治療上經常碰到類似的狀況,過往沒有適切解方,隨著醫療的進步,現在已有突破性的給藥方式問世–皮下注射新劑型。葉育雯醫師說明,PD-L1 免疫抑制劑是肺癌治療的重要武器,能夠降低死亡風險、提升存活率;現在劑型進化出現皮下注射給藥,在相同的療效下,能大幅將注射時間縮短至僅約 10 分鐘,不須留置針頭或人工血管,降低疼痛感,因此能減輕患者的治療負擔,提升生活品質。

近年來,肺癌免疫治療不斷進步,其中 PD-L1 免疫抑制劑的作用機轉,可讓患者自身的免疫系統,破解腫瘤細胞的偽裝,重新發動攻擊。葉育雯醫師解釋,肺癌細胞在生長過程中,會利用人體本來就有的 PD-L1 機制,讓免疫系統無法有效攻擊癌細胞。使用 PD-L1 免疫抑制劑治療時,就可以阻止上述機制,使癌細胞表面的 PD-L1 與免疫細胞上的 PD-1 的無法結合,解除癌細胞對免疫系統的抑制,恢復T細胞的功能,進而對癌細胞發動攻擊。

PD-L1免疫抑制劑解除癌細胞對免疫細胞的抑制,重新發動攻擊
圖 / 照護線上

PD-L1 免疫抑制劑可用於多種癌症的治療,在肺癌上也可廣泛適用於早期與轉移的病患。葉育雯醫師分析,針對非小細胞肺癌,包括早期術後輔助治療以及癌細胞轉移後的治療,PD-L1 免疫抑制劑都有機會可以幫助病患;另外針對小細胞肺癌轉移或復發後的合併治療也可適用。在 PD-L1 免疫抑制劑的多元適用下,能夠有機會幫助不同疾病階段的患者們,降低復發風險、降低死亡風險、延長整體存活時間或是延緩惡化速度。

-----廣告,請繼續往下閱讀-----
PD-L1免疫抑制劑可適用於不同種類與階段的肺癌
圖 / 照護線上

相較於化學治療,PD-L1 免疫抑制劑的副作用較少,因此對生活品質的影響也較小,普遍患者對治療的耐受性較佳。現在更開發出新的皮下注射新劑型,大大縮短給藥時間,便利性又再度提升。

「原本 PD-L1 免疫抑制劑為靜脈注射給藥,注射時間需要 30 至 60 分鐘。」葉育雯醫師分析,「新皮下注射劑型,不再透過靜脈輸注,給藥時間縮短到約 10 分鐘就能完成!有助減少患者在醫院的停留時間,甚至也不再需要找血管打針或使用人工血管,操作上簡便很多。」

免疫治療皮下注新射劑型 提升治療便利性
圖 / 照護線上

葉育雯醫師進一步指出,如果患者不用施打化療、僅需單獨使用 PD-L1 免疫抑制劑時,此時若改採皮下注射劑型,對便利性的提升是最有感,但其實任何需要使用 PD-L1 免疫抑制劑的情況,皮下注射劑型都可以適用,且治療效果與安全性,也與傳統的靜脈注射劑型相當。葉醫師也提醒因每位病友病況不同,是否適合皮下注射劑型,可多與主治醫師討論,方能讓治療事半功倍。

肺癌 PD-L1 免疫抑制劑皮下注射劑型重點整理

  • PD-L1 免疫抑制劑可用於多種癌症的治療,在肺癌上也可廣泛適用於早期與轉移的病患。
  • 非小細胞肺癌:早期術後輔助治療、癌細胞轉移後的治療
  • 小細胞肺癌:轉移或復發後的合併治療
  • PD-L1 免疫抑制劑在肺癌治療的應用上,有機會幫助不同疾病階段的患者們,降低復發風險、降低死亡風險、延長整體存活時間或是延緩惡化速度。
  • PD-L1 免疫抑制劑的副作用比化學治療少,對生活品質的影響也較小,目前最新的皮下注射新劑型,更能大大縮短給藥時間,便利性再提升,療效不打折。
  • 傳統靜脈給藥時間:較久,需 30-60 分鐘
  • 最新皮下注射給藥時間:短,僅需約 10 分鐘
  • 治療效果與安全性:靜脈注射與皮下注射皆相同

-----廣告,請繼續往下閱讀-----

討論功能關閉中。