0

5
3

文字

分享

0
5
3

星座、星宿、星官傻傻分不清楚?

臺北天文館_96
・2021/06/21 ・5244字 ・閱讀時間約 10 分鐘
  • 本文轉載自臺北天文館,《臺北星空》第 100 期
  • 作者 / 天文愛好者,曾獲 2001 年尊親天文獎第二等一行獎,擔任 2009 全球天文年特展解說員 | 歐陽亮

星座對現代人來說,就是指西洋星座,那麼傳統的中國星座是怎麼被取代與遺忘的呢?

一講到星座,大家就想到個性、運勢、愛情等熱門占星話題,聊起生日會對應到哪個星座也能秒答出來,強者甚至還進階到命盤、相位、上升星座的分析。不過,有多少人會認真依照今日運勢穿著幸運衣物走向開運方位進行日常生活?又有幾個人會因此聯想到天上真正的星星?在這裡我們並不準備以心理學或統計學來討論星座命理是否 屬於偽科學的冷門問題,而是要探討另一個更枯燥的疑點:到底星星 組成的星群在古代是稱為「星座」、「星宿」還是「星官」?

有人認為,中國古代稱呼天上星群為「星官」;而「星座」則是西方專有的,不可用在中國星群。因為「星座」指的是天空的範圍, 在邊界內整個面積所包含的星星皆屬於此星座,概念與「只有連線但無邊界」的星官不同1。但是,從古書中可以查到一些關於「星座」的例子:

《史記.天官書》【索隱】:「案天文有五官。官者,星官也。 星座有尊卑,若人之官曹列位,故曰天官」(圖 1)。

圖 1 史記.天官 書即有「星座」一詞(武英殿 二十四史本)。圖/台北星空 100 期

這裡已出現了「星座」一詞。唐代的《史記索隱》在同一段裡同時使用星座、星官兩詞,難道是作者司馬貞對兩者傻傻分不清楚?另外,天文怎麼可能只有五個星官?其實這是司馬貞以為天官書說 的五宮是五官的誤寫2

除了史書之外,五代十國時期的詩人黃損也曾把星座寫進詩中:「昨夜細看雲色裏,進賢星座甚分明」。進賢是在角宿旁的單星星官,但這裡卻用星座來形容。

然而「座」這個字何時出現?史記天官書有一 句「太微,三光之廷……其內五星,五帝坐」指的就是太微垣中的星官「五帝座」(圖 2 ),「座」寫 為「坐」,兩者通用。在保留早期天文型態的「朝鮮天象列次分野之圖」中亦可看到:紫微垣「五帝坐」(現稱五帝內座)與天市垣「帝座」混用兩字在同一圖中3(圖 3 )。東漢的《說文解字》雖然沒有記載座字,但在戰國初期就有人以此字為名,因此即便「座」較晚才出現,也是早在戰國時代就發明了。

圖 2 宋元兩代之五帝座星圖比較(中國恆星觀測史,頁 303、437):左為宋;右為元。圖/台北星空 100 期
圖 3 「天象列次分野之圖」的五帝坐與帝座,兩者用字不同。圖/台北星空 100 期

在敦煌藏經洞發現的唐初占星寫本 Pelliot chinois 2512 也可以看到,三家星官在數量統計時, 雖然單位大多寫為「坐」,但甘氏中官七十六座卻寫為「座」(圖 4),顯示當時通用的情形很普遍。

圖4 敦煌寫本 Pelliot chinois 2512 統計星官數量時使用單位為「坐」但偶爾用「座」。圖/台北星空 100 期

至於「星官」 這個詞最早出現在以下正史:後漢書《天文上》:「星官之書自黃帝始」。另外《三國志》也有:「禧既明經,又善星官,常仰瞻天文」。

上述敦煌占星寫本的數量單位「座」或「坐」,在同時期另一個內容幾乎相同的日本《三家星官簿贊》裡則寫為「官」(圖 5),只有甘氏外官四十二座抄錯成了四十二星。因此並不是司馬貞分不清楚「座」與「官」,而是當時應該可以通用,沒有特別區分。《宋史》等元代之後寫成的史書在統計時沿襲前人稱呼, 星座仍然與星官同義。一直到清末,星座依然沒有現代的「天空範圍」意思。現代天文巨著《中國恆星觀測史》也是星座、星官兩者並用4

圖 5《三家星官簿贊》統計星官數量時使用單位為「官」。圖/台北星空 100 期

另外,古人用星星占卜, 就是想藉由某星官位置出現異象時,找到「與其同名的地面事物會被影響」這種關連,含有天官示警之意,未曾有過「星名沒有官員的含義就不可稱之為星官5」 這種想法,也沒有把動物或用具之類沒有官員含義的星官排除在外而另外統計其數目,這一點可從《三家星官簿贊》裡統一用 「官」字來總計數目即可知曉。

至於「星宿」常被認為專指二十八星宿,即黃道赤道附近的二十八個主要星群,不過古人卻不一定這樣區分。著名成語「杞人憂天」出處《列子.天瑞》寫道:「天果積氣,日月星宿不當墜邪?」這裡的星宿就泛指所有星辰,而非只限於角宿到軫宿的二十八宿。古籍中還有許多「夜觀星宿」的詞句,也不可能是在形容古人觀星時只看二十八宿而不看別的星星。所以星宿是可以廣義地用來形容所有星群的用詞。

再來看西洋的「星座」, 在古代其實也是星群的概念:星座 Constellation 字源於拉丁文 constellattus,意思是組合在一起的若干星星6。遠古巴比倫文獻提到的三位神掌管的星群或是月球路徑上的 18 個星座7,都是由星群所組成,並沒有以座標來劃分天空的概念。直到近代的西方古星圖在繪製時也都是以圖案或連線來表現該星座範圍,彼此之間沒有明顯的界限,有時還會重疊, 使得同一顆星被兩個星座共用!

圖 6 托勒密星表中的五車五 (β Tau) 同時出現在御夫座(上)與金牛座(下),但末尾的星等卻不一樣。圖/台北星空 100 期

西方古天文最重要的經典著作:托勒密的《至大論》(Almagestum)又名《天文學大 成》,在第 78 ~ 89 頁的星表中,列出了古典四十八個星座的一千多顆星,其中就有幾顆星被故意寫了兩次,因為托勒密認為它們是兩個星座共享的(最早的共享經濟?)。例如御夫座 (Auriga) 右腳上的星 β Tau 同時也是金牛座牛角尖端的星,現在已被歸在金牛座,即中國的五車五。不過星表兩處的座標雖然相同,星等卻不一樣(圖 6 )。另外,在牧夫座 (Boötes) 最上方的星星與武仙座 (Hercules) 右腳的星星也是同一顆,現在稱之為ν1 Boötis, 即七公五(圖 7 )。

圖 7 托勒密星表中的七公五同時出現在牧夫座(上)與武仙座(下)。圖/台北星空 100 期

在托勒密的書中,並沒有使用字母或數字來標示恆星,而是利用相對位置來描述識別每一顆星, 與中國明代之前的方法一樣。托勒密還在每個星座的最後,列出一些 鄰近卻未被採用的恆星,這些不屬於星座圖形的孤星被稱為未成形的 (amorphotoi) ,就如同中國古代星象裡也有許多顯而易見卻沒有被編入任何星官的星星一樣,如船尾座 ζ(明清時才增加的星名:弧矢增二十二, 2.2 等)、天鵝座頭部 β 星(輦道增七,3 等)。到了近代「星座隨你DIY」的混亂時期,這些孤星逐漸被合併到古典星座或是剛劃分出的新星座,直到 1930 年國際天文聯合會(IAU) 為了統整星座的邊界,捨棄共用重複的編號,星座才確定用座標來劃分,成為一種天空區域的概念,而不再指實際的星群,終結了星星被搶著要或沒人要的情形。

何時轉換為西洋星座體系

星座對現代人來說,就是指西洋星座,那麼傳統的中國星座是怎麼被取代與遺忘的呢?西洋體系中的黃道十二星座最早在隋 初就隨著佛教傳到中國,並偶爾與二十八宿同時出現於古墓壁畫的星圖裡,不過未受重視8。到了明末,傳教士帶來航海新發現的南極附近星座,剛好可填補傳統星圖上的空白區域,於是它們被改成中國星官,放進《崇禎曆書》裡。除此之外,其他星官仍舊保持表面上的傳統,只是有些被改變位置或整個取消了。

清末積弱不振,有識之士為了學習西方技術而引進西學9,並出現了第一本近代天文學翻譯專書《談天10。該書向清末知識份子展示了當時西方天文學的成果,且為過渡到現代天文學打下了思想基礎11。雖然書中以清朝年號來敘述外國作者赫歇爾生平有種混搭風味的荒謬感,然而這也呈現了當時真正的紀年方法。同理,此書內的所有星名也是使用中國原有的,例如「太微左垣上相亦雙星也12」,完全沒有提及西名「室女座 γ」,可見清末仍以中國星名為主流。然而五十多年後清朝還是滅亡了, 沒有被西學救起。

現代意義上屬於科學的「天文學」一詞,其 實遲至 1896 年才出現13。民初開始致力推廣現代天文學,全天西洋星座應該是此時才被廣泛採用。民國九年常福元先生著有《中西對照恆星錄》,引言中說:「欲為高深之研究,不得不借資西籍。顧讀西書有數難,而尤莫難於恆星……其分座又與吾國宿舍不同……茲編之作,專為會通中西星名,俾讀西書者不生隔閡,即讀中籍者,亦得兼識西名。」 顯示當時若要研究現代天文,得使用西洋星名才方便,但當時國人只知中國星名,因此他編了這本中西對照恆星錄供研究者找到該星,這可能就是全面轉為西洋體系的起點。然而時至今日,我們反倒使用這類對照表來找出中國星名,已與當初目的恰好相反了。若沒有特別提倡延續使用固有傳統星名14, 恐怕現在已經沒人記得了。

總之,星星是點,古代星座與星官是連線, 現代星座則是面。自古以來,東方與西方的星座都是以星星連線而成的,用現代的「範圍」概念來區分古代的星座與星官兩者必然不同、或認為星官必是官職等過度解讀,都會曲解古人原本的想法。雖然現在我們習慣兩者不再通用,然而描述中國古代星群時,交互使用星座與星官兩詞應該是沒有問題的,畢竟「星座」比較為人所知,也能吸引喜愛占星的年輕人來注意這個古老的冷知識話題。

附註

  1. 江曉原《12宮與28宿:世界歷史上的星占 學》,遼寧教育出版社,2005,頁 229 。
  2. 馮時《中國天文考古學》,社會科學文獻出版社,2001,頁 277 。
  3. 潘鼐《中國恆星觀測史》,上海學林出版社,2009,頁 159 ~ 161 更詳細地比較了日本《三家星官簿贊》、敦煌占星寫本 Pelliot chinois 2512 、開元占經以及 朝鮮天象列次分野之圖這四個古文獻中,坐與座通用的例子。
  4. 潘鼐《中國恆星觀測史》,頁 103 。
  5. 李維寶、陳久金、馮永利、陶金萍〈中國傳統 星名中的星宿、星官和星座〉,《天文研究與技術》 14 卷 1 期, 2017 ,頁 132-134 。
  6. 潘鼐《中國恆星觀測史》,頁 64 。
  7. 江曉原《12宮與28宿:世界歷史上的星占學》,頁 19、24、27 。
  8. 馮時《中國天文考古學》,頁 334 ~ 339 。
  9. 參見陳美東〈山雨欲來風滿樓- 1842 年至 1858 年間西方近代天文學知識在中國的傳播〉,《中華科 技史同好會會刊》2 卷 1 期,2001,頁 75 ~ 80 。
  10. 原作為天文學家約翰·赫歇爾 (John Frederick William Herschel) 的《天文學綱要》(Outlines of Astronomy, 1849),數學家李善蘭和傳教士偉烈亞力合 譯後,於 1859 年出版。約翰·赫歇爾為天王星發現者威廉·赫歇爾的兒子。
  11. 石雲里《中國天文學史》第八章,薄樹人主 編,文津出版社, 1996 ,頁 309 。
  12. 侯失勒 (即赫歇爾)《談天》,商務印書館, 第一冊:侯失勒約翰傳,頁六。
  13. 潘鼐〈評天學真原〉,《自然科學史研究》1997 年第 3 期,頁 291 。
  14. 陳遵媯《中國天文學史》第二冊 (1985 年) 頁 426 附表說明有提到單星採用中國星名的由來,這是中國天文學會天文名詞編輯委員會規定的原則:恆星外文 專名,均譯為中國原有的星名,不用西洋星座的星名。

數感宇宙探索課程,現正募資中!

文章難易度
臺北天文館_96
482 篇文章 ・ 24 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


0

28
6

文字

分享

0
28
6

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
56 篇文章 ・ 19 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。