1

7
1

文字

分享

1
7
1

整個宇宙,都像是科學家的廣播電台!進化版的光波收音機

活躍星系核_96
・2021/03/26 ・2570字 ・閱讀時間約 5 分鐘 ・SR值 577 ・九年級

  • 文/ 蔡乃玉、游雨婕│ 臺灣大學物理學系學生

即使是目前發現最靠近地球的黑洞,也距離我們遠達上千光年,更別說那些上萬、上億光年的遙遠天體了,面對如此遙不可及的距離,你是否有想過,科學家究竟是得到來自它們的訊息呢?現今人類到底運用了什麼樣的科技,竟然可以獲得億萬光年之外的宇宙訊息?

無線電波,就是科學家的好工具!

整個宇宙,都像是科學家的廣播電台!

所謂的無線電波(Radio Wave),通常是指波長在 100000 公里(108 公尺)到 0.1 毫米(10-4 公尺)之間,頻率為 3 Hz~3000 GHz(3 THz)的電磁波段,一般通訊使用的頻段大約落在 3 kHz ~ 30 GHz,30~300 GHz 的頻段又因波長大小,稱為「毫米波」,是未來 5G 通訊使用的頻段。

(2021 / 4 / 1)編按:更正頻率與波長對應的錯誤,無線電波的定義以國際電信聯盟(ITU)的無線電頻譜為準,毫米波的頻段跟微波重疊,而 3 THz 也已經接近遠紅外線(FIR)的頻段。

事實上,無線電波不只可以拿來接收宇宙資訊,在我們的日常生活中,其實早就有很多使用無線電的裝置,像是廣播、無線電對講機、雷達、Wi-Fi 與藍芽都是透過無線電波來傳訊的唷!

大家在聆聽廣播時,多多少少都有聽過「AM、FM」這兩個字彙,你知道它們分別代表的意思是什麼嗎?

-----廣告,請繼續往下閱讀-----
廣播、無線電對講機、雷達、Wi-Fi 與藍芽等日常生活中常見的設備,都是透過無線電波來傳訊。圖/Pexels

AM、FM 是兩種傳遞信號的技術,也是我們生活中最容易接觸到的傳訊技術之二,它們可以讓「電磁波的振幅」隨著不同的因素而變化,同樣的,我們也可以讓無線電透過這兩種方法來傳遞訊號。

首先,AM,是振幅調變 (amplitude modulation) 的簡寫,它會讓電磁波的振幅隨著聲波的「振幅」而改變,當聲波的振幅變大、電磁波的振幅也變大,早期無線電大多使用這種技術,它可以讓訊號傳遞到比較廣的地方,但缺點是噪音很多。

FM 即為調頻 (frequency modulation) ,它會讓電磁波的振幅隨著聲波的「頻率」而改變,雖然 FM 沒有辦法像 AM 傳遞到那麼遠,但 FM 的優點是噪音比較少。

然而,即使 FM 的噪音已經減少了很多,FM 的噪音仍然很難、很難完全去除,相信大家聆聽 FM 廣播電台時,也有這樣的困擾。對於科學家來說,這可是不能默默忍受的缺點!因此,科學家也不斷努力研發出降低、去除無線電噪音的技術。

-----廣告,請繼續往下閱讀-----

無線電波不夠讚,把它變成「光」吧!

光學纖維(俗稱光纖)是一種使用石英玻璃或塑膠製成的纖維,會用「光」進行資料傳輸,比起剛剛所提到的 FM 和 AM ,光纖不僅速度更快、噪音也更少!

由此可知,「光」也是非常棒的傳訊技術,若我們可以將無線電波轉為光波,就可以像光纖一樣,更有效的降低噪音!目前已經有很多種方式能夠將這兩種電磁波進行轉換,在市面上,我們也早就可以很簡單的買到光電轉換器囉!

利用光在玻璃或塑料製成的纖維中以全反射原理傳輸的光纖,有效提升了訊號傳遞的效率。圖/Pixabay

為了讓光波傳訊的品質更上一層樓,科學家們研發出光學相位調變 (optical phase modulation) 技術,偵測光的「相位」變化來使得精密度提高,可以有效降低無線電噪音,進而提高訊息的完整度

以 T.Bagci 和 A.Simonsen 曾發表在 Nature 的論文為例,該研究團隊使用了奈米薄膜為材料,而奈米薄膜可以結合「無線電波頻率共振電路 」和 「薄膜表面反射的光」,使得這些無線電頻率訊號能夠透過光學的相位變化的形式被觀測到,也就是將無線電波轉換成了光波,以光波的形式傳遞。

-----廣告,請繼續往下閱讀-----

以這種方式傳遞訊息的話,連極小的尺度都能被觀測,非常靈敏。

用數據來比較的話,噪音的單位 V/ √Hz (伏特/√赫茲),現在市面上的光電轉換器能將噪音降低到 nV 尺度(奈米級,10-9),而對這一項技術電路本身的噪音為 800pV/√Hz(飛米級,10-12),轉換成光波後最低可降至 5pV/√Hz!

5pV/√Hz 的噪音有多低呢?論文指出,對 MRI 而言,對噪音的要求只要低於200pV/Hz 就足夠了!噪音被大幅降低後,不但可以讓訊號不失真,也可以讓弱小的訊號更容易被偵測到。

光、電怎麼變身?就像大鼓變芝麻(X)

以下將簡述這個裝置的原理,以及轉換的進行過程。

-----廣告,請繼續往下閱讀-----

實驗中使用了鍍了鋁的氮化矽的奈米薄膜,當輸入無線電訊號進去時,奈米薄膜就會像鼓面受到震動一樣,當輸入的訊號不同,鼓面震動的幅度也會不同。

此時,將雷射光照到薄膜上時,就像灑一把芝麻到鼓面上,隨著鼓面著震動,芝麻會跑到不同的地方去,而我們只要藉由觀察芝麻的反應,也就是反射光的變化,就可以得知輸入的訊號了。

科學家們就是透過這樣的方法,順利將無線電訊號以低噪音的方式轉換成光波。

實驗示意圖。

如同前文所提到的數據,在這個實驗進行時,電路本身還是會有些許噪音,大約800pV/√Hz 左右,主要來源為熱擾動,科學家們為了更進一步地減少噪音,除了光學相位調變技術之外,也搭配並採取了降低溫度、施加電壓以抵銷噪音頻率等等措施,成功讓無線電的噪音被降到極低的尺度。

-----廣告,請繼續往下閱讀-----

當我們可以聽到更細膩的聲音後…?

這項技術將可以將無線電波轉換成低噪的光波,因此可以用已經建立好的測量模型來觀測這些信號,讓人類得以研究這些微小的電波,使我們可以得到比以前更精準的訊號,觀測到以前所無法得到的宇宙訊息,或是讓核磁共振圖像更精準,是電子學在訊號傳遞上的一大突破!

未來,隨著通訊技術日新月異,你覺得我們可以在宇宙之間得到讓人意想不到的訊息嗎?也許…來自外星生物的打招呼訊息?讓我們一起解開更多來自外太空的秘密吧!

致謝

本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的協助。

參考資料:

  1. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).
  2. A. Horneff; B. Schlecker; M. Häberle; E. Hell; J. Ulrici; V. Rasche; J. Anders. “A New CMOS Broadband, High Impedance LNA for MRI Achieving an Input Referred Voltage Noise Spectral Density of 200pV/Hz√” IEEE International Symposium on Circuits and Systems (ISCAS), 2019.
  3. 無線電(Radio Waves)
文章難易度
所有討論 1
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

9
6

文字

分享

0
9
6
誰在海邊蓋天文台啊(惱)──世界第一座電波干涉儀
全國大學天文社聯盟
・2022/04/15 ・4114字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/玄冥
    曾經做過 Radio Astronomy,現在叛逃去 Structure Formation 了,但也許有天會再回去。喜歡的動物是樹懶。

1946 年 2 月的某個清晨,澳洲東海岸的一群無線電科學家嚴陣以待,將電波接收器對向海的彼岸。如果是幾年前,他們會膽顫心驚地觀察日軍戰機的動向,但是今天不一樣,他們滿懷期待地等著日出。因為科學家們知道,他們正將原本用於國家間內鬥的利器 —— 電波干涉術(Radio Interferometry),用於人類探索太空的共同嚮往。

電波干涉術原先是二戰時用來提高電波觀測準確度的技術,如果說大家對電波干涉術不熟悉的話,那麼對人類拍攝的第一張黑洞影像應該記憶猶新(圖一)。這張黑洞影像的成像原理便是電波干涉術,拍攝這張照片的電波干涉儀則是遍佈全球的「事件視界望遠鏡(EHT)」(圖二)。

圖一:事件視界望遠鏡拍攝之 M87 星系中心的超大質量黑洞。圖/EHT
圖二:事件視界望遠鏡。圖/NRAO

大家聽到「電波干涉儀」時,腦海中浮出的想像,可能都是如圖二中的碟狀接收器。然而實際上,電波干涉儀最初的樣貌是非常簡單的(圖三),以下這篇文章會分別介紹電波和干涉術,再介紹兩者結合的原理,一步步帶大家了解電波干涉儀的原型機是如何被設計出來的。

圖三:在澳洲 Dover Heights 岸邊的電波干涉儀。圖/CSIRO

什麼是無線電波?

無線電波(Radio wave,簡稱電波)是一種電磁波,它充斥於我們現代生活的各個角落。例如手機產生的信號、衛星轉播,以及藍牙、WIFI 等等。電波與可見光是唯二能在地球大氣中自由穿行的電磁波波段,因此大多數地面望遠鏡都以觀測可見光跟電波為主。重要的是,相對於可見光波,電波波長更長(約 1 mm 以上),較容易穿過障礙物,讓它更便於觀測藏在宇宙塵埃後的物體(如原恆星)。然而,能穿透障礙物的代價是,在相同的望遠鏡口徑下,電波望遠鏡的「角解析度(Angular resolution)」比較低。

角解析度(或稱角分辨率)是探知物體細微移動或分辨兩個鄰近物體的能力,白話的說就是它能看得多「清楚」。角解析度正比於望遠鏡的直徑,但反比於所觀測的電磁波波長。做一個誇張的比喻,如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。有限的角解析度,是電波天文台在 1930 年代剛出現時所面臨的主要困境之一。這個問題一直到二戰時期才得到解方 —— 干涉技術。

-----廣告,請繼續往下閱讀-----
如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。圖/envato elements

光的干涉,相信大家在高中的物理實驗中都見過。在實驗中,我們將光源對準布幕,並將切有兩條平行狹縫的一塊紙板隔在光源與布幕之間。此時通過兩條狹縫的光,便會在布幕上產生黑白相間的干涉條紋。這些條紋,源自光通過不同狹縫抵達布幕所需的距離不同,因此不同狹縫發出的光波到達布幕時的震動方向會有所不同。如果兩道光波震動方向相反,會造成相消干涉而形成暗紋;若抵達布幕時震動方向相同,則造成相長干涉而形成亮紋。

利用動畫可能更好理解一些(見圖四、五)。從實驗設備的上方俯視,藍色的點代表光源,紅色的點則是紙板上的狹縫位置,圖片底端是布幕,白色與黑色的部分即為光波的亮紋和暗紋。從圖四我們發現,當狹縫間距越遠,布幕上亮紋就越細緻,而從圖五則可以看見,當光源橫向移動時,布幕上的亮紋及暗紋亦會大幅移動。結合這兩張圖可以看出,越細緻的亮紋對光源的移動就越敏感,電波作為一種波亦有相同的特性。

圖四(左)、圖五(右):雙狹縫干涉示意圖。

軍隊如何利用電波干涉偵測敵軍?

讓我們將焦點拉回二戰時期。當時的英國軍隊為了能預警敵機,通常會將電波接收器對準海平面,隨時觀察敵機的位置。圖六和圖七是電波接收器(紅點)跟敵機(藍點)以及海面(黑色區域)的相對位置圖,此時敵機發出的電波會從兩條不同路徑抵達電波接收器,其中較短的電波是從敵機直達接收器,而較長的則是經海面反射後抵達接收器,這兩條路徑的電波會互相干涉並形成明暗相間的條紋。

圖六(左)、圖七(右):海岸干涉儀示意圖。

這些干涉條紋如同雙狹縫干涉所產生的條紋一樣,對波源的移動非常敏感(圖六),因此可以非常準確的判斷出敵機的位置;而如圖七所示,當電波接收器與海平面之間的高度差愈大,干涉條紋愈細緻,這表示電波接收器的海拔高度正比於其角解析度。實際上,如果將電波接收器放在濱海的峭壁上,其影像的清晰度約為一台口徑為兩倍峭壁高度的電波接收器,這便是「電波干涉儀」最初的樣子——也就是圖三那一台在峭壁上的電波接收器。

-----廣告,請繼續往下閱讀-----

隨著二戰結束,許多軍事科技被轉為民用或科研用途,電波干涉儀也不例外。對於研究太陽黑子的天文學家們來說,電波干涉儀在這一年轉為民用更是生逢其時,因為隔年恰好迎來了百年內規模最大的太陽極大期。

太陽活動通常以 9~14 年為週期。在太陽活動最旺盛的時候,往往會伴隨著許多太陽黑子的出現、以及被磁場束縛住的日冕物質所迸發的強電波。然而過去受限於電波觀測的低角解析度,人們只知道電波的強度與太陽黑子數量呈正相關,卻並不知道電波具體源自太陽的何處。隨著電波干涉儀的出現,天文學家得以精確地觀測出電波強度的分佈,其範圍比太陽小、且位置與太陽黑子高度重疊,這為此後的太陽黑子研究以及電波通訊應用提供了不少幫助。(1)(2)(3)

使用電波干涉儀探索宇宙吧!

銀河系和太陽,是天空中兩個最亮的電波源,因此是天文學家最先望向的目標。但天文學家們也注意到,較弱的電波源其實散佈於天空各個角落。這些電波源在沒有干涉儀的時代,因低角解析度以及來自銀河系的電波干擾而遲遲無法精確定位,而這一情況在電波干涉儀出現後得到改善。

二戰後,澳洲海軍負責雷達設備的軍官 John Bolton 以及他的助手,在澳洲沿海各處搭建了電波干涉儀,以觀測來自天鵝座的電波。他們將該電波源的位置精確度,由先前透過一般電波望遠鏡量測的五度推進至七角分(約 1/10 度),也得知這個天體的大小在八角分以下。

-----廣告,請繼續往下閱讀-----
在美國新墨西哥州的無線電干涉儀:甚大天線陣Very Large Array。圖/Hajor, CC BY-SA 3.0

然而弔詭的是,如果量測到的電波源自於這八角分不到的天體,這個天體所蘊含的能量密度將遠超出任何已知的天體!更令人驚訝的是,該天體並沒有對應到任何可見光影像中的恆星,於是他們將這個只出現在電波影像的天體稱為天鵝座 A(4) 。隨後他們用電波干涉儀掃瞄了南方的天空,陸續發現了許多類似天鵝座 A 的天體。

在後續技術發展下,天文學家終於找出這些電波天體在可見光的真身 —— 電波星系(5)(圖八、九)。電波星系在可見光波段的影像如同一般星系,然而在電波望遠鏡下,時常能看見噴流從電波星系中心噴湧而出,噴流的痕跡可達星系本體的數倍。現在我們知道,噴流是在星系中心大質量黑洞進食(吸積)時所噴出的強烈電漿流,其中的帶電粒子在噴流磁場的加速下會發出強電波,從而被電波干涉儀接收。

圖八:由甚大天線陣列(VLA)拍攝之天鵝座A電波星系的電波影像。圖/Mhardcastle, VLA data
圖九:由歐洲南方天文台拍攝之人馬座 A 電波星系,結合可見光與電波的影像。圖/ESO

這些噴流能夠改變星系的氣體與能量分佈,因此對星系演化有著至關重要的影響,今日人們也在透過更先進的電波望遠鏡了解這些星系。

時過境遷,如今的電波干涉儀,已經能夠將遍布全球各地多個電波接收器收到的電波進行干涉,不再是依託於大海的孤立接收器;干涉儀技術的改良,立基於全世界探索宇宙深空的好奇與嚮往,而非國家間互相對抗的戰火。

-----廣告,請繼續往下閱讀-----

回首過往,人們在戰爭中其實並未忘記對宇宙的嚮往,因此當硝煙散去,人們便互相合作,將戰時的科技化作探索太空的利器,揭開宇宙奧秘、滿足人類的好奇。如今,我們擁有更強大的科技,希望人們能夠繼承這份嚮往,一同探索更多宇宙的未知。

延伸閱讀

  1. 毀滅與新生:超大質量黑洞觸發的恆星形成- PanSci 泛科學
  2. 黑洞甜甜圈之後:宇宙噴火槍3C 279 黑洞噴流影像現蹤跡!——《科學月刊》 – PanSci 泛科學
  3. 黑洞攝影怎麼拍?七個問答來解謎——《黑洞捕手》 – PanSci 泛科學
  4. 仰望宇宙的好據點,大國爭相來插旗:「白山」毛納基亞——《黑洞捕手》
  5. 太陽升起前,把握最後的永夜!與時間賽跑的組裝任務——《黑洞捕手》 – PanSci 泛科學
  6. 人類史上首張黑洞近照:這張動員全球、沖洗兩年的照片是怎麼來的? – PanSci 泛科學

參考資料

  1. Some Highlights of Interferometry in early Radio Astronomy, Woodruff T. Sullivan III (2016)
  2. Pawsey, J. L., Payne-Soott, R., & McCready, L. L. (1946). Radio-frequency energy from the SunNature157(3980), 158-159.
  3. McCready, L. L., Pawsey, J. L., & Payne-Scott, R. (1947). Solar radiation at radio frequencies and its relation to sunspotsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences190(1022), 357-375.
  4. Bolton, J. G., & Stanley, G. J. (1948). Variable source of radio frequency radiation in the constellation of Cygnus. Nature161(4087), 312-313.
  5. Bolton, J. G., Stanley, G. J., & Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation. In Classics in Radio Astronomy (pp. 239-241). Springer, Dordrecht.

4

6
6

文字

分享

4
6
6
石蕊試紙的「石蕊」是什麼東西?為什麼碰到酸鹼會變色?
許阿鳥_96
・2022/03/25 ・2105字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

國中、國小自然課做實驗常用的石蕊試紙,大家應該都很熟悉,也知道石蕊試紙碰到酸性物質時會變成紅色,碰到鹼性物質時會變成藍色。不過,你知道石蕊試紙變色的原理是什麼嗎?

還記得實驗課常用的石蕊試紙嗎?圖/Wikipedia

「石蕊」是什麼?

編按:作者於 2022 年 3 月 27 日進行勘誤。

石蕊試紙當中會變色的原料,是由地衣提煉出來的。

地衣是真菌和藻類的共生體:真菌形成外殼,提供藻類保護;藻類行光合作用,提供真菌養分。雖然長得有點像苔蘚,不過它們並不是植物。由於地衣對空氣中的化學成分很敏感,常被當作空氣汙染的指標。除此之外,地衣的生命力強韌,它們通常都是一片荒蕪的環境中的先驅,在植物長出來之前,地衣就會先一步到達,把岩石分解成土壤,為之後的生態系打下基礎。在嚴寒的極地,地衣也是馴鹿等野生動物度冬重要的食物來源。

而其中,「石蕊」就是石蕊科(Cladoniaceae)、石蕊屬(Cladonia)的地衣。它們生長在中高海拔向陽的岩石上,屬於枝狀地衣,形狀就像一支支直立起來的粉綠色小喇叭。有些種類的石蕊邊上會長出鮮紅色的繁殖構造子囊果(ascocarp),就像戴著紅色帽子的英國士兵,因此又稱為「英國士兵地衣(British Soldier Lichen)」。雖然石蕊試紙是稱為石蕊試紙,但其實許多類群的地衣都可以作為石蕊試紙的原料,反倒是石蕊本人較不常被作為石蕊試紙使用。

石蕊。攝影/Cleyera Chou

延伸閱讀:十種常見的地衣

那麼,石蕊試紙變色的原理是什麼呢?要解答這個問題,我們必須先了解「顏色」和「酸鹼」的本質。

-----廣告,請繼續往下閱讀-----

「顏色」是什麼?

為什麼我們看到紅色的東西,會覺得它是紅色;而看到藍色的東西,會覺得它是藍色呢?

這是因為,不同的物體會吸收、反射不同波長的光,當光照到物體上,沒有被吸收、而是被物體反射的光波,傳到我們的眼睛裡面,就會被大腦解讀為顏色。

例如,假如一個物體反射紅光,吸收其他波長的光,那個物體我們在白光下看起來就會是紅色的。另外,如果一個物體吸收所有光的波長,那個物體我們在白光下看起來就會是黑色的;反之,如果那個物體反射所有光的波長,那個物體我們在白光下看起來就會是白色的。

一張含有 時鐘 的圖片

自動產生的描述
光的吸收與反射圖解。繪圖/許阿鳥

那麼,為什麼不同物體會吸收、反射不同波長的光?這是因為它們的化學結構長得不一樣。換句話說,一個物體的化學結構若是改變了,吸收、反射的光波長也會跟著改變,外顯的顏色也就會變得不一樣了。

-----廣告,請繼續往下閱讀-----

「酸鹼」是什麼?

知道了「顏色」本質上的差別是什麼,現在,我們要來談談什麼是「酸鹼」?溶液中,如果含有氫離子(H+),那這個溶液就會呈現酸性,溶液中的氫離子越多,pH 值就越小、越偏酸性;而溶液中如果含有氫氧根(OH),那個溶液就會呈現鹼性,氫氧根越多,pH值就越大、也就越偏鹼性。

回到石蕊試紙

現在回到石蕊試紙上面。石蕊中含有一種化學物質「 7-羥基吩噁嗪酮」(7-hydroxyphenoxazone,以下以 C12H7NO3 代稱。),是石蕊試紙變色的關鍵。C12H7NO3 是由三個環狀結構所組成的,帶有一個羥基(下圖中的HO-)。

7-羥基吩噁嗪酮的化學結構式。圖/Wikipedia

還記得前面說到的,酸性溶液含有氫離子,鹼性溶液含有氫氧根嗎?

當 C12H7NO3 碰到酸性溶液時,溶液中的氫離子會鍵結到環狀結構的氮(上圖中的 N)上面,造成結構改變;而當 C12H7NO3 碰到鹼性溶液時,羥基上的氫則會被溶液中的氫氧根(OH)搶走,造成結構改變。這兩種結構的改變如下圖所示。

-----廣告,請繼續往下閱讀-----

正如前面所說的,不同結構的化學物質,會吸收、反射不同波長的光,因此看起來顏色就會不同。得到一個氫離子的 C12H7NO3,會反射紅光,吸收其他的光;失去一個氫離子的 C12H7NO3,則會反射藍光,吸收其他的光。

因此,石蕊試紙會變色的原因就是:酸鹼溶液會改變 C12H7NO3 的結構,當石蕊試紙中的 C12H7NO3 結構改變了,會吸收、反射的光波長也改變了,顏色也因此看起來不一樣了。

現在大家都了解石蕊試紙變色的原理了,下回使用石蕊試紙時,就知道它為什麼會變色囉!

參考資料

  1. Wikipedia. (2022). Litmus. Wikipedia.
  2. Yee, Thomas. (2018). Why do acids turn litmus paper red? Quora
  3. Warzecha, Klaus-Dieter. (2017). Can the colour change in litmus paper be explained by conjugated systems? Acid base.
所有討論 4

1

7
3

文字

分享

1
7
3
首創「磁電子學」概念,物理新發現的喜樂是最強的動力!——郭瑞年專訪
鳥苷三磷酸 (PanSci Promo)_96
・2022/03/08 ・4093字 ・閱讀時間約 8 分鐘

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

 2015 年「台灣傑出女科學家獎」傑出獎第八屆傑出獎得主

  • 郭瑞年現任教於清華大學物理系,她被譽為台灣凝態物理權威,也是台灣半導體材料研發先驅者,致力於創新高介電值介電材料,成功研發取代傳統矽基半導體的電子技術。她自台大物理學系畢業後,赴史丹佛應用物理系攻讀碩博士,之後便在舉世聞名的貝爾實驗室從事研究長達 22 年,直到 2003 年回台任教。

「我準備了一份 PowerPoint 簡報,來讓你們好好認識物理。」還沒開始採訪,就已經感受到郭瑞年對物理如夏日豔陽般的熱情。在這一頁一頁的簡報與一來一往對談之中,以她四十年的科研歷程與物理學知識為經緯,交織出了這位科學家一路走來求知求真的精彩旅程。

郭瑞年對於物理的熱情溢於言表,也感染了周遭的人。圖/劉志恒攝影

見證新發現,是持續研究的最大動力

長年遊走在擬態科學的奇妙世界,由低溫超導體開啟旅程,郭瑞年的研究題材涵括了磁性超晶格、高溫超導體、透明導體、奈米電子學、自旋電子學與拓樸絕緣體。她在 1981 年畢業後,進入了科學研究的重要殿堂——貝爾實驗室,在此展開了「磁性超晶格」的相關研究,成為了「磁電子學」的開創者,此概念為 2007 年諾貝爾物理獎「巨磁阻現象」發現的重要基礎。

-----廣告,請繼續往下閱讀-----

若能將材料縮到奈米尺度,磁性是不是會出現改變?而如果人為可控制磁性的奈米材料,對科學界來說會是很重大的突破——從與同事聊天中得到的靈感。郭瑞年於 1983 年正式啟動相關研究:將磁性材料與非磁性材料像千層派那樣相互堆疊,每一層的厚度控制在原子層級,並對這樣磁性與非磁性堆疊而成的「磁性超晶格」進行實驗和觀察。頭兩年的研究並沒有很順利,測量出來的結果有些難以用既有的物理規則解釋。

為了釐清這「違反常理」的結果中間有何玄妙之處,郭瑞年聯絡另一位物理學家,進行中子散射實驗和分析,發現「透過非磁性材料層產生長距離磁耦合,由此改變磁性材料層的磁性方向」一個嶄新物理的機制,而這現象會受溫度影響:在室溫下的耦合力相對弱,在低溫下則會變強。 這物理機制便奠定了後來 1988 年法德兩位科學家 Fert and Grunberg 所發發現的巨磁阻效應(Giant Magnetoresistance; GMR)的重要基礎。

很多人形容郭瑞年與諾貝爾獎擦身而過,不免讓我們好奇她是否感到遺憾?郭瑞年揮揮手笑著說這個問題很多人問過。她表示雖然多少有遺憾,但發現一個超乎想像的嶄新物理現象時,「那種興奮感跟喜樂,是只有親自從事實驗的人才能體會出來,那是非常非常寶貴的,終生難忘!」而那才是真正帶動物理學家持續探索前進的動力。

郭瑞年認為,物理發現帶來的興奮與喜樂是令人難忘的動力。圖/劉志恒攝影

除了磁性超晶格,「前瞻」亦為郭瑞年其他研究的共同特色。1986 年年底,震驚世界的高溫超導體被發現,郭瑞年隨即展開相關的研究,成功製造了單晶高溫超導薄膜,進行尖端超導特性研究。

-----廣告,請繼續往下閱讀-----

1993 年團隊開始進行奈米電子學的研究,最重要的主題即是尋找可以取代矽晶,讓積體電路體積進一步縮小,並減少耗能的材料。在這個主題上,砷化鎵的電子遷移率較矽高上很多倍,有機會成為適合的替代品。但是相較於矽,這類由元素週期表上的三族與五族組成的三五半導體的氧化物表面容易有缺陷,很難發展成電晶體。郭瑞年自稱幸運,和她的先生洪銘輝博士合作,成功發現了適合的鎵釓氧化混合物,可做為砷化鎵的表面絕緣氧化層,並首次製成了三五半導體之場電效應電晶體。目前市場上已出現這類「第二代」半導體應用,特別是目前在 5G 通訊上急需發展的超快科技,可取代目前面臨極大瓶頸之矽半導體技術。

Prof. Kwo and Prof. Hong, 1983, in front of the main entrance of the Bell Lab, Murray HIll, 1983.  source: 受訪者提供。

然而當年砷化鎵曾經相當不被看好,為什麼仍然選擇這個主題?郭瑞年表示,這就是選擇研究主題的前瞻性:「從開始做研究最後到真的放在桌上可以用,這中間可能是三十年或四十年的時間」,完成重要探索、獲得成果直到應用,這中間要克服無數細節,但新科技也就因此才得以發展。」

郭瑞年目前專注的尖端研究在自旋電子學領域,她解釋,電子在導體裡彼此碰撞的現象會造成能量流失,現今科學家正嘗試開發出能有效利用電子自旋分流特性的新穎量子材料。

與物理的浪漫長跑中,熱情始終不減

郭瑞年對物理的熱情從學生時期開始,她從小就喜歡數學,也表現得相當好,在國中時遇見了一位女性物理老師,這位老師把物理解釋得清楚明白,郭瑞年學得熱血沸騰,更自願擔任班級的「物理小老師」為同學們解惑,樂此不疲,成為了她日後投入科研的契機。

-----廣告,請繼續往下閱讀-----
郭瑞年分享了自己的研究和生命故事,言談間對物理的熱情表露無遺。圖/劉志恒攝影

大學進入物理系繼續探索,郭瑞年微笑且自信地說自己是個自動自發的人,無論光學、熱學、力學,都超前了授課進度,將自己完完全全浸泡在物理世界中。她強調預習的重要,認為若能課前預習,正式課程便如同複習,如此一來,考試時就輕鬆了。

求學階段磨練的一身本領,到貝爾實驗室後終於大展身手。郭瑞年形容,貝爾實驗室就像金庸武俠小說裡的江湖門派,一公里長的走廊兩側都是實驗室,每扇門後都是一位身懷獨門絕招、內功高強的異士,各式儀器、奇思怪想漫盈整座貝爾實驗室,裡頭的科學家日以繼夜鑽研「武功」、投入研究。郭瑞年說:「每天走進去,都能聽見(自己)心臟『砰砰砰!』的聲音。」懷抱對物理的喜愛,郭瑞年在貝爾實驗室,日日皆滿腔熱血,一刻不減。

貝爾實驗室。sourece: english Wikipedia

郭瑞年也將熱情與投入當成伴手禮,從貝爾實驗室直送回台灣,期望培養更多絕世高手科學家。早在投入高溫超導體研究的1987 年至 1993 年間,她就常往返台灣交流。一直到 2003 年貝爾實驗室大幅縮小編制,成了推動她與夫婿洪銘輝教授回台的力量。臨行前,老闆慷慨地捐贈了整套 MBE 儀器與系統,期望郭瑞年能將手上的研究技術帶回祖國,讓台灣能在此高科技產業也有好的發展,於是,夫婦二人便回國繼續從事尖端半導體元件的創新研發。

友善的社會氛圍,有助於女科學家的養成

儘管對物理的熱情至今不減,郭瑞年也坦言,即使對她來說,在成為科學家的陡坡上,仍偶而碰到澆熄滿腔熱血的冰水迎面潑來。1981 年,她剛加入貝爾實驗室時,美國東岸風氣比較保守,女性與亞洲人屬於弱勢族群,易遭不平等對待與歧視。郭瑞年在初建實驗室時,需要頻繁與工班團隊溝通,並負責監工,有段時間工班進度落後,她提醒工班經理得盡快蓋好實驗室以便開始研究,他們卻揶揄:「如果你要工程有進展的話,最好趕快開始穿裙子!」事後工班經理雖遭糾正但毫無悔意,隔天見到郭瑞年時,又開了不適當的玩笑。

-----廣告,請繼續往下閱讀-----

除了這般外顯的行為,無形的歧視氛圍也包圍著她。郭瑞年坦言:當時貝爾實驗室同儕以男性居多,同性之間會邀請彼此參與活動並給予專業上的建議,而居於少數的女性,則較不容易打入科學界的社交圈,也少了許多獲取資源的機會。「社交和互動的缺乏若不改善,久而久之也會影響女科學家繼續往上爬的動力與機會。」郭瑞年解釋。

貝爾實驗室後來便發起「Mentor 導師制度」,主動關心女科學家的實驗內容,互相交流不同的科學資訊。郭瑞年回台灣後,在物理學會女性工作委員會裡也推動了導師制度,每年邀請女性科學家交流,讓前輩主動給予後進學術上或是專業生涯上的建議,替走上陡峭學術之路的女科學家,增加友善的推動力。

郭瑞年認為,在資質上,任何性別都沒有先天差異;在專業方面,女科學家在各領域也都相當卓越;於制度上,漸漸對於女科學家也越來越友善。例如,目前各大學給予助理教授升等的期限約為六年,但有部分學校針對升等期間生育小孩的女性助理教授,則會再給予兩年的「緩衝時間」,讓女科學家能夠從容地規劃生育,而也能夠有餘裕經營工作。

由於台灣社會的風氣,對於「物理」的既定印象也會影響新一代物理學研究者的培育。郭瑞年觀察,因為重視產業與產值,社會大眾普遍認為,物理讀到碩士學位,就足以在職場獲得不錯的工作跟收入,並不鼓勵繼續攻讀博士。但產業工作往往無法充分發揮物理專業人才的潛力,有興趣進一步鑽研物理的人才也可能因此放棄更上層樓,錯失了更多開創新領域研究的契機。

-----廣告,請繼續往下閱讀-----

「有點可惜。」郭瑞年嘆息地說。

無關乎獲獎的肯定或者收入,對郭瑞年來說,單單物理新發現的喜樂,便足以充飽她不懈投入研究、以及培育人才的動力,「希望慢慢從這邊培養訓練新的年輕人才,把這個新科技在台灣深耕,為未來做基礎。」

從臺灣大學、史丹佛大學、貝爾實驗室,再回到台灣,郭瑞年讓全世界得以深窺物理法則的奧妙、加速頂尖技術發展,但在這些之外,她追求極致、無畏險阻的決心,早已超越了「女科學家」的標籤,不停歇地朝著前人未至之境而去。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

-----廣告,請繼續往下閱讀-----
所有討論 1
鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia