Loading [MathJax]/extensions/MathMenu.js

0

0
0

文字

分享

0
0
0

平板電腦能讓視力障礙者有更好的閱讀體驗

營養共筆
・2012/11/15 ・1754字 ・閱讀時間約 3 分鐘 ・SR值 492 ・五年級

(請注意,這是在一場醫學會議上發表的研究結果。由於尚未經過同儕評審的關係,我們應該把它看待為初步的訊息。)

研究發現 iPad 與其他背光式螢幕的平板電腦也許能讓數百萬視覺障礙者閱讀地更快、更輕鬆。

視力障礙(Low vision)是對那些經過眼鏡、隱形眼鏡、藥物或甚至是手術矯正後的人在閱讀、看電視或是其他日常活動依然有困難的總稱。處在這種情況下的人,僅有的選擇就是經常使用放大鏡或是其他協助視力障礙的裝置,只是這些東西通常是笨重而且不太容易使用。

隨著 iPadKindles 與其他背光式平板的問世,這些裝置或許能為視力障礙的人們帶來新的選擇。新的研究顯示這些裝置能讓他們閱讀的更舒適地閱讀。

用背光平板電腦閱讀

這個研究是由兩個實驗所構成。第一個研究找來 62 個人來閱讀實體印刷或是 iPad 2 上 3 篇《紐約時報》( The New York Times的文章。參與研究的人有超過一半的人有黃斑部疾病的證據。黃斑部是眼睛中讓我們能看清楚細節的部位。

根據這個研究發現,使用 iPad 閱讀的人閱讀速度比印刷版的人快。此外,改善的效果在雙眼均有視力障礙的人身上更是顯著。

第二個實驗,找來一百個人以下列三種方法閱讀:

  • 看真的書
  • iPad 2 上分別以 12 點與 18 點的文字大小閱讀
  • 在 Kindle 上分別以 12 點與 18 點的文字大小閱讀

研究者們會預先把 iPad 的背景亮度調到最高。而在這個試驗中使用的 Kindle 則沒有調整背景亮度的功能,不過亞馬遜後來推出 Kindle Fire 就可以調背景亮度。

在這個實驗當中,所有使用 iPad 2 的人,閱讀速度都比使用 Kindle 閱讀的人要來得快。而這個差距在文字大小調成 18 點的時候變得更大。

-----廣告,請繼續往下閱讀-----

當 iPad 2 文字大小調為 18 點的時候,人們的閱讀速度平均每分鐘比閱讀實體書本要多了 42 個字;而 在同樣的文字大小情況底下,使用 Kindle 的閱讀速度平均每分鐘比閱讀實體書本多了 12 個字。

對比很重要

背光能提昇對比敏感度或從背景中看到物體被凸顯的能力。研究者 Daniel Roth 醫師表示許多有視力障礙的人失去了上述的能力。Daniel 是羅伯伍德強生醫學院(Robert Wood Johnson School of Medicine )臨床副教授。

他說:「這個發現適用於任何一個閱讀視力受損的人。放大的文字以及背光能改善他們的閱讀能力並提昇舒適度。」

平板裝置的操作相當友善,而有視力問題的老化嬰兒朝世代應該能熟練的使用他們。很多時候這些人為因為視力的問題而放棄閱讀,如今他們並不需要這樣,藉由平板電腦他們依然能享受閱讀的樂趣。挑選一個背光顯示的平板,接著把亮度調到最亮,最後再把文字大小放大到舒適的程度。

-----廣告,請繼續往下閱讀-----

諾克斯丘醫院(Lenox Hill Hospital)眼科醫師 Mark Fromer 說:「iPad 幾乎對每一位有視力障礙、老年黃斑部病變以及糖尿病引起的眼睛的人都有幫助。這些裝置能在文字與背景之間產生對比好讓他們不需要放大鏡也能能夠容易地閱讀。比起實體印刷物,18 點的文字大小與顯著的對比讓他們更容易看出文字的形狀。」

平板裝置也打敗其他解決方案,放大鏡跟打燈的裝置通常都太過於笨重,使用上不是那麼地方便。此外,iPad 的價格也比視力障礙輔具的價格友善,有些視力障礙輔具的售價可能在美金 3,000 元以上,而一台 iPad 價格就相對便宜許多。

延伸閱讀

背光(Backlit)

背光是一種被用於LCD顯示上的照明形式。背光式和前光式不同之處在於背光是從側邊或是背後照射,而前光顧名思義則從前方照射。他們被用來增加在低光源環境中的照明度和電腦顯示器、液晶螢幕上的亮度,以和CRT顯示類似的方式產生出光。

-----廣告,請繼續往下閱讀-----

摘自 Wikipedia

關於本文

  • 文章來源:WebMD
  • 文章標題:iPads May Help Those With ‘Low Vision’ Read Better
  • 文獻與人物:
    Mark Fromer, MD, ophthalmologist, Lenox Hill Hospital, New York City.
    Janet Sunness, MD, ophthalmologist, Baltimore.
    Daniel Roth, MD, associate clinical professor, Robert Wood Johnson School of Medicine, New Brunswick, N.J.
    American Academy of Ophthalmology, annual scientific meeting, Chicago, Nov. 10-13, 2012.
  • 整理編譯:Sidney

轉載自 營養共筆

-----廣告,請繼續往下閱讀-----
文章難易度
營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
免費字幕君!怎麼用 AI 語音辨識幫你自動生成字幕?
泛科學院_96
・2024/07/08 ・2458字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

下載 Youtube 影片、自動生成影片逐字稿、AI 智慧翻譯、匯出雙語 SRT 字幕、字幕內嵌 MP4 影片,甚至是把你的電腦當成 AI 運算伺服器、使用多模態 AI 模型來做圖片辨識……這一切的一切通通都免費,敢有可能 (Kám ū khó-lîng)?

今天的影片要來跟你分享開源 AI 套件 Ollama,這個開源套件AJ 最近上課演講工作坊逢人必教。

今天的影片,我們要手把手教你使用 Ollama 在你的電腦裡執行各種免費開源 AI 模型,希望你能跟我一樣成為 AI 暈船仔……Ollama 真香……啊扯遠了,我們沒有點數可以送。

今天的影片會分成三個部分:

-----廣告,請繼續往下閱讀-----
  1. Ollama 安裝與模型下載
  2. 結合 Memo 翻譯影片字幕
  3. 用多模態模型做圖片辨識

Ollama 安裝與模型下載

首先我們要先安裝 Ollama:

來到 ollama.com 點選 Download,下載適合自己的版本後進行安裝,安裝完畢之後,啟動 Ollama。以我的電腦來說右上角就會出現一個小小的 Ollama 圖示,這樣就成功安裝囉!

接著我們需要下載 AI 模型到你的電腦:

回到 Ollama 首頁,點選右上角 Models,這邊就會列出所有官方支援的模型,比如最近很流行的 Meta LLAMA 3、微軟的 Phi3、法國 Mistral AI 公司的 Mistral、Google Gemini 模型的開源版 Gemma 都有,你可以挑選喜歡的來測試。

-----廣告,請繼續往下閱讀-----

比如我點選 LLAMA 3 的連結,模型頁面有兩個地方要注意:一是模型大小,LLAMA3 是 4.7G,一般而言要玩大模型,電腦記憶體至少 16G,預算夠就 24G 不嫌多;如果你是使用一般文書電腦,記憶體 8G 的話,建議你現在馬上停止你的任何動作。我有測試過電腦會直接當機……不要說我沒有提醒你。

點開 Latest 選單可以依照需求選擇不同版本的模型:

不過我們直接點選最右邊複製執行指令,打開電腦的終端機程式,或著命令提示字元,貼上,這樣電腦就會開始下載並且自動安裝囉。

你可以用 ollama list 指令查看現在電腦內有哪些模型,如果硬碟容量有限,用 ollama rm 後面加上模型名稱可以刪除模型。比如:ollama rm llama3。我們這邊另外安裝 llava 模型:ollama run llava,這樣準備工作就完成囉。

-----廣告,請繼續往下閱讀-----

Ollama + memo

最近只要演講上課,我一定會分享 Memo 這套好用的軟體,我們之前也有一支影片分享他的用法。

最近 Memo 更新之後,我們就可以直接使用 Ollama 結合特定的模型來進行字幕的翻譯。舉例來說,我們打開 memo,複製 Youtube 網址;我們用這支 楊立昆 的演講,貼上網址,開始下載,下載完畢後使用電腦進行語音辨識,接著我們就可以使用 Ollama 搭配剛剛準備好的 LLama3 模型來做翻譯!


翻譯完畢之後就可以匯出 SRT 字幕


如果你本身是影片創作者,這招就可以輕鬆製作你的 SRT 字幕,再也不用花時間對字幕時間軸了。

-----廣告,請繼續往下閱讀-----

或者你要把影片字幕直接內嵌在做簡報的時候播放影片:


匯出 MP4 格式,語言選雙語。如果你還沒用過這招處理影片,我強烈建議你一定要試試看!

Ollama + Enchanted

接下來我們要分享另一套非常實用的工具——Enchanted。他也是開源,可以讓原本是文字介面的 Ollama
提供類似 ChatGPT 的對話視窗,甚至支援圖片辨識的多模態模型 llava,Mac 用戶可以直接去 App Store 免費安裝。


同時開啟 Ollama 跟 Enchanted LLM:

-----廣告,請繼續往下閱讀-----


就擁有一個漂亮的視窗介面,可以優雅的啟用各種想要測試的 AI 模型,他甚至有手機版 APP!用手機連線自己的蘋果電腦跑 AI 模型?這……這,真的可以免費用嗎?

讓我來試試看!

首先要先安裝 ngrok 這套程式,選擇自己的作業系統然後下載。Windows 用戶應該直接安裝就可以了,Mac 的用戶在終端機執行這行 Sudo 指令把程式解壓縮到 user local bin 資料夾,接著註冊一個免費的 ngrok 帳號。

複製 ngrok config 指令,貼回自己電腦的終端機,把連線金鑰寫入自己的電腦。

-----廣告,請繼續往下閱讀-----

最後一步,啟動連線,指令是:ngrok http 11434 –host-header=”localhost:11434″

一切順利的話就會看到類似這個畫面。

然後把 forwarding 的網址複製,打開 iPhone 或 iPad 的 Enchanted app,在設定 Setting 裡面把 Ollama 網址貼上,這樣就可以遠端調用電腦的 Ollama 來使用 AI 模型,比如選用稍早下載的 LLava 多模態模型。

傳一張照片,問它這是什麼?

-----廣告,請繼續往下閱讀-----


是不是非常神奇呢?
快練習把 ollama、ngrok 跟 Enchanted 串起來跟朋友炫耀吧!

總結

今天的影片跟各位分享了基於 Ollama 這個開源 AI 套件的各種有趣應用,你是否有成功在 iphone 上打造自己的 AI 服務呢?

  1. 太複雜了我決定躺平
  2. 笑話,我可是尊榮的 GPT Plus 用戶
  3. 沒有 Mac 電腦不能玩……嗚嗚嗚
  4. 你怎麼不介紹那個 ooxx Ollama 套件

如果有其他想看的 AI 工具測試或相關問題,也可以留言告訴我們~

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

0

1
1

文字

分享

0
1
1
比起文字,人類更傾向透過聲音來理解並記憶語言——《大腦這樣「聽」》
天下文化_96
・2023/02/12 ・1436字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

我們正在逐步瞭解語言學習策略如何改善腦中的聲音處理過程。

語言學習策略與大腦處理聲音的過程息息相關。圖/Envato Elements

以聲音來強化語言能力

如果,我們能在孩子蹣跚學步時,就藉由瞭解他們的聽覺神經系統來預測他們七歲時的閱讀能力,那麼我們就能預先採取行動,避免負面結果發生。

海德公園日校所使用的輔助性聽覺裝置是其中一種方法,普羅維登斯採用的穿戴式計字科技產品是另一種,默澤尼克和塔拉爾開發的聽覺訓練遊戲,以及貝納西奇研發的寶寶玩具則是提供了額外的有效途徑。

對聲音和語言之間的關係有更多瞭解之後,我們就能找出更好的方法幫助孩子發展語言能力,幫助我們可以聽得更好的科技正在蓬勃發展。

了解更多聲音和語言之間的關係,就能找出幫助孩子發展語言能力更好的方法。圖/Envato Elements

我希望看見它們成為主流,而非僅限於像海德公園日校這樣的少數地方。我有位學生是語言障礙人士,我在教學時會戴上有如項鍊的麥克風,而她所戴的輔助性聽覺裝置可以接收來自麥克風的訊號。

-----廣告,請繼續往下閱讀-----

某天下課後,我跟她交換裝置,結果令我印象深刻:她站在演講廳的另一頭說話時,我可以清楚聽見她的聲音。我能想像,在嘈雜的環境中每個人都能因這項科技而受惠,如果可以發展出更強的語言能力對每個人都有幫助。

聽覺、閱讀、有聲書

身為一個對聲音有著各種琢磨的人,我想知道體驗聲音的新方式會對我們的聽覺神經系統產生什麼影響。我之前曾提過,我結束一天的方式大部分是由我先生唸書給我聽;但我沒有提到的是,我也會聽有聲書。這對我的聲音意識會有什麼影響?我的閱讀、說話和思考方式會有什麼變化?就理解和記憶的層面而言,聽文本和讀文本的效果似乎相差不遠。

有時候,用聽的效果可能更好。

我就發現莎士比亞筆下那些古文,比起閱讀,用聽的更能讓我理解;演員在聲音中加入諷刺、幽默或其他線索,可以幫助我們對所聽到的內容有更全面的理解。

莎士比亞浪漫喜劇〈仲夏夜之夢〉(A Midsummer Night’s Dream)。圖/GIPHY

大聲朗讀也可以提升你對所讀內容的記憶程度,我認為人類的天性更傾向於透過聲音來理解並記憶語言,而不是透過文本;因為在我們開始讀跟寫之前,聽覺是幾百萬年就演化出來的能力。

-----廣告,請繼續往下閱讀-----

有聲書擴大了我們可以閱讀的環境,聽有聲書時我會戴上耳塞式耳機,一方面聆聽內容,一方面同時隔絕了我在烹飪(滋滋作響的洋蔥)、健身或搭火車時的背景噪音。

我期待進一步探究聽文本和讀文本的生物學基礎,以及個體之間的差異;我想要知道聆聽有聲書會對聲音意識的演化產生何種影響。

——本文摘自《大腦這樣「聽」:大腦如何處理聲音,並影響你對世界的認識》,2022 年 12 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
平板電腦能讓視力障礙者有更好的閱讀體驗
營養共筆
・2012/11/15 ・1754字 ・閱讀時間約 3 分鐘 ・SR值 492 ・五年級

-----廣告,請繼續往下閱讀-----

(請注意,這是在一場醫學會議上發表的研究結果。由於尚未經過同儕評審的關係,我們應該把它看待為初步的訊息。)

研究發現 iPad 與其他背光式螢幕的平板電腦也許能讓數百萬視覺障礙者閱讀地更快、更輕鬆。

視力障礙(Low vision)是對那些經過眼鏡、隱形眼鏡、藥物或甚至是手術矯正後的人在閱讀、看電視或是其他日常活動依然有困難的總稱。處在這種情況下的人,僅有的選擇就是經常使用放大鏡或是其他協助視力障礙的裝置,只是這些東西通常是笨重而且不太容易使用。

隨著 iPadKindles 與其他背光式平板的問世,這些裝置或許能為視力障礙的人們帶來新的選擇。新的研究顯示這些裝置能讓他們閱讀的更舒適地閱讀。

用背光平板電腦閱讀

這個研究是由兩個實驗所構成。第一個研究找來 62 個人來閱讀實體印刷或是 iPad 2 上 3 篇《紐約時報》( The New York Times的文章。參與研究的人有超過一半的人有黃斑部疾病的證據。黃斑部是眼睛中讓我們能看清楚細節的部位。

根據這個研究發現,使用 iPad 閱讀的人閱讀速度比印刷版的人快。此外,改善的效果在雙眼均有視力障礙的人身上更是顯著。

第二個實驗,找來一百個人以下列三種方法閱讀:

  • 看真的書
  • iPad 2 上分別以 12 點與 18 點的文字大小閱讀
  • 在 Kindle 上分別以 12 點與 18 點的文字大小閱讀

研究者們會預先把 iPad 的背景亮度調到最高。而在這個試驗中使用的 Kindle 則沒有調整背景亮度的功能,不過亞馬遜後來推出 Kindle Fire 就可以調背景亮度。

在這個實驗當中,所有使用 iPad 2 的人,閱讀速度都比使用 Kindle 閱讀的人要來得快。而這個差距在文字大小調成 18 點的時候變得更大。

-----廣告,請繼續往下閱讀-----

當 iPad 2 文字大小調為 18 點的時候,人們的閱讀速度平均每分鐘比閱讀實體書本要多了 42 個字;而 在同樣的文字大小情況底下,使用 Kindle 的閱讀速度平均每分鐘比閱讀實體書本多了 12 個字。

對比很重要

背光能提昇對比敏感度或從背景中看到物體被凸顯的能力。研究者 Daniel Roth 醫師表示許多有視力障礙的人失去了上述的能力。Daniel 是羅伯伍德強生醫學院(Robert Wood Johnson School of Medicine )臨床副教授。

他說:「這個發現適用於任何一個閱讀視力受損的人。放大的文字以及背光能改善他們的閱讀能力並提昇舒適度。」

平板裝置的操作相當友善,而有視力問題的老化嬰兒朝世代應該能熟練的使用他們。很多時候這些人為因為視力的問題而放棄閱讀,如今他們並不需要這樣,藉由平板電腦他們依然能享受閱讀的樂趣。挑選一個背光顯示的平板,接著把亮度調到最亮,最後再把文字大小放大到舒適的程度。

-----廣告,請繼續往下閱讀-----

諾克斯丘醫院(Lenox Hill Hospital)眼科醫師 Mark Fromer 說:「iPad 幾乎對每一位有視力障礙、老年黃斑部病變以及糖尿病引起的眼睛的人都有幫助。這些裝置能在文字與背景之間產生對比好讓他們不需要放大鏡也能能夠容易地閱讀。比起實體印刷物,18 點的文字大小與顯著的對比讓他們更容易看出文字的形狀。」

平板裝置也打敗其他解決方案,放大鏡跟打燈的裝置通常都太過於笨重,使用上不是那麼地方便。此外,iPad 的價格也比視力障礙輔具的價格友善,有些視力障礙輔具的售價可能在美金 3,000 元以上,而一台 iPad 價格就相對便宜許多。

延伸閱讀

背光(Backlit)

背光是一種被用於LCD顯示上的照明形式。背光式和前光式不同之處在於背光是從側邊或是背後照射,而前光顧名思義則從前方照射。他們被用來增加在低光源環境中的照明度和電腦顯示器、液晶螢幕上的亮度,以和CRT顯示類似的方式產生出光。

-----廣告,請繼續往下閱讀-----

摘自 Wikipedia

關於本文

  • 文章來源:WebMD
  • 文章標題:iPads May Help Those With ‘Low Vision’ Read Better
  • 文獻與人物:
    Mark Fromer, MD, ophthalmologist, Lenox Hill Hospital, New York City.
    Janet Sunness, MD, ophthalmologist, Baltimore.
    Daniel Roth, MD, associate clinical professor, Robert Wood Johnson School of Medicine, New Brunswick, N.J.
    American Academy of Ophthalmology, annual scientific meeting, Chicago, Nov. 10-13, 2012.
  • 整理編譯:Sidney

轉載自 營養共筆

-----廣告,請繼續往下閱讀-----
文章難易度
營養共筆
86 篇文章 ・ 3 位粉絲
應該是有幾個營養師一起寫的共筆,內容與健康議題有關。可能是新知分享、經驗分享或是有的沒的同學們~如果對寫這個共筆有興趣的話,歡迎一起豐富它的內容喔。