0

0
0

文字

分享

0
0
0

「超結構」太陽能電池效率達 10.9%

only-perception
・2012/10/24 ・1385字 ・閱讀時間約 2 分鐘 ・SR值 611 ・十年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

聽起來似乎違反直覺-將最具感光性(photosensitive)的其中一種太陽能電池材料替換成感光特性較不合意的材料,居然能改善太陽能電池的效率。不過,這正是一項新研究中所顯示的-在一種可溶液製程(solution-processable)太陽能電池中,將高度感光性二氧化鈦(TiO2)以氧化鋁(Al2O3)取代,研究者達到破紀錄的 10.9% 功率轉換效率。他們將這種高轉換效率歸因於 Al2O3 扮演了一種惰性支架(inert scaffold)的角色,迫使電子保留在其中,並透過超薄吸收層(extremely thin absorber,ETA)傳輸。

由英國牛津大學的 Henry J. Snaith 所領導的研究團隊,包含來自牛津大學、日本的桐蔭橫浜大學(Toin University of Yokohama)與日本茨城縣的 AIST(產綜研)的共同作者,已將他們高效率太陽能電池的研究發表在 Science 上。

「這是一種新技術,故在本質上就是一項新紀錄,」Snaith 表示。「所有太陽能電池技術都有不同的效率,使用 GaAs 最高可超過 28%。這並不是一項絕對的世界記錄,但卻有可能是可溶液製程固態太陽能電池中最高的。而且真正令人振奮的是,接下來幾年其所能達到的地步;它應當具有陡峭的改良曲線。」

在太陽能電池效率的貢獻程度上,電極材料的選擇在太陽能電池中是最重要的因素之一,而 TiO2 由於其優良的光激發(photoexcitation,將光子轉換成電子)能力,以及用染料或吸收劑(absorber)光敏感化(photosensitized)後,其強大的電子接受(electron-accepting)特性,常在可溶液製程太陽能電池中被當成電極材料使用。

但為了要改善太陽能電池效率,科學家在此得要解決根本的、到處出現在光伏過程(photovoltaic process,指吸收光子與產生電子的過程)的能量損耗。一如他們的解釋,能量是在下列狀況中損耗:電子–電洞對(激子/excitons)的光發電(photogeneration)、緊密結合之激子的分離,以及來自高度失序(disordered)網路之自由電子的汲取(extraction)。

為了克服這些損耗,先前的研究已探索過塗佈一層 ETA 層的用法。ETA 層厚 2 到 10 nm,位於 TiO2 電極的內部表面,以便增加電流密度與電壓。到目前為止,具 ETA 層的太陽能電池已達到 6.3% 的功率轉換效率。

在此,研究者已研究過這種可能性:TiO2 由於其電失序(electronic disorder)與低遷移率,可能阻礙 ETA 層的效用。因為Al2O3 是一種寬能隙絕緣體,研究者發現,把它當作電極使用時,光激發的電子仍保留在 ETA 層中,且不會像 TiO2 電極那樣,墜入氧化物的較低能階中

這種差異提供了幾種優勢。例如,研究者發現,使用 Al2O3 時顯著加速電子傳輸過程,迫使電子迅速通過鈣鈦礦(perovskite)ETA 層,也因而增加了電壓。這些改善,使功率轉換效率從使用 TiO2 電極的 8% 到使用 Al2O3 電極的 10.9%。因為 Al2O3 主要作為中尺度支架(meso-scale scaffold),而非在光激發中扮演某種角色,研究者稱此裝置為「中型–超結構太陽能電池(meso-superstructured solar cell,MSSC)」。「氧化鋁作用如同鈣鈦礦層支架,以及接下來的電洞型導體(hole-conductor,那被塗佈在鈣鈦礦層頂部)支架,」Snaith 說,「那不具電活性(electronically active),純粹作為一種物理性支撐。」

「非常令人驚訝而且前所未料,」他補充到,「然而,我們能後見之明(hindsight)的看見,此效益從何處獲得。真正的驚奇是,鈣鈦礦層在傳輸電荷上如此有效率,以及在太陽能電池中產生的高光伏。」

科學家預期,未來可透過各種方法更進一步改善效率,例如,以新的鈣鈦礦進行實驗,使用其他半導體,以及擴展吸收範圍。

「這項研究使低成本的可溶液製程太陽能電池大幅接近完美地晶體半導體(crystalline semiconductors)的效能,同時又對未來的研究與發展開啟廣泛的可能性,」Snaith 說。

資料來源:Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science [October 4 2012]

轉載自 only perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
將陽光轉變成電能的太陽能電池:太陽能電池不是電池——《圖解半導體》
台灣東販
・2022/11/23 ・2778字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

備受關注的再生能源

近年來,以太陽能發電的再生能源備受關注。

近年來,以太陽能發電的再生能源備受關注。圖/pexels

太陽能電池是太陽能發電的關鍵裝置,這是用半導體將陽光的能量直接轉變成電能的裝置。雖然有「電池」這個名稱,但不像乾電池那樣可以儲存電能。所以「太陽能電池」這個稱呼其實並不洽當,應該稱其為「太陽光發電元件」才對。

太陽能電池會利用到第 1 章 1-2 節提到的半導體光電效應(將光轉變成電能的現象)。不過,僅僅只透過照光,並不能從半導體中抽取出電能。要將光能轉變成電能,必須使用 pn 接面二極體(參考第 1 章 1-8 節)才行。

pn 接面二極體。圖/東販

圖 5-1(a) 為 pn 接面二極體,p 型半導體有許多電洞做為載子,n 型半導體內則有許多電子做為載子。這個 p 型與 n 型半導體接合後,接合面附近的電洞會往 n 型移動擴散,電子則會往 p 型移動擴散,如圖 5-1(b) 所示。

移動擴散之後,接面附近的電子與電洞會彼此結合,使載子消滅,這個過程稱為複合。結果會得到圖 5-1(c) 般,沒有任何載子存在的區域,這個區域就稱為空乏層。

接面附近的空乏層中,n 型半導體的帶負電電子不足,故會帶正電;另一方面,p 型半導體的帶正電電洞不足,故會帶負電(圖 5-1(d))。

因此,n 型與 p 型半導體之間的空乏層會產生名為內建電位的電位差,在接面部分形成電場。這個電場可以阻擋從 n 型半導體流出的電子,與電子從 n 型流向 p 型的力達到平衡,故可保持穩定狀態。

這種狀態為熱平衡狀態,放著不管也不會發生任何事。也就是說,接面上有內建電位差之壁,不管是電子還是電洞,都無法穿過這道牆壁。

用光發電的機制。圖/東販

在這種狀態下,如果陽光照入空乏層,半導體就會在光能下產生新的電子與電洞,如圖 5-2 所示。此時,新的電子會因為內建電場所產生的力而往 n 型半導體移動,新的電洞則往 p 型半導體移動(圖 5-2(a))。於是,電子便會在外部電路產生推動電流的力,稱為電動勢。

在光照射半導體的同時,電動勢會一直持續發生,愈來愈多電子被擠入外部電路,於外部電路供應電力。被擠出至外部電路的電子會再回到 p 型半導體,與電洞結合(圖 5-2(b))。我們可以觀察到這個過程所產生的電流。

太陽能電池的結構。圖/東販

目前太陽能電池的大部分都是由 Si 半導體製成。以 Si 結晶製成的太陽能電池結構如圖 5-3 所示。

為方便理解,前面的示意圖中,都是以細長型的 pn 接面半導體為例。但實際上,太陽能電池所產生的電流大小,與 pn 接面二極體的接面面積成正比。所以 pn 接面的面積做得愈廣愈好,就像圖 5-3 那樣呈薄型平板狀。

前面的說明提到,陽光可產生新的載子,這裡讓我們再進一步說明其原理。

pn 接面二極體的電子狀態。圖/東販

圖 5-4 為 Si 原子之電子組態的示意圖(亦可參考第 38 頁圖 1-11)。Si 原子最外層的軌道與相鄰 Si 原子以共價鍵結合,故 Si 結晶的軌道填滿了電子,沒有空位(圖 5-4(a))。

若摻雜雜質磷(P)或砷(As)等 15 族(Ⅴ族)元素,形成 n 型半導體,便會多出 1 個電子。這個電子會填入最外層電子殼層的最外側軌道(圖 5-4(b)),與共價鍵無關,故能以自由電子的狀態在結晶內自由移動。

由於電子軌道離原子核愈遠,電子的能量愈高,所以位於最外側軌道的電子擁有最高的能量(參考第 57 頁,第 1 章的專欄)。最外側軌道與最外層電子殼層的能量差,稱為能隙。

另一方面,如果是摻雜鎵(Ga)或銦(In)等 13 族(Ⅲ族)元素的 p 型半導體,會少 1 個電子,形成電洞。這個電洞位於最外層電子殼層,能量比自由電子還要低(圖 5-4(c))。

空乏層不存在自由電子或電洞等載子,此處原子的電子組態皆如圖 5-4(a) 所示。

陽光照進這個狀態下的空乏層區域時,原子的電子會獲得光能飛出,轉移到能量較高的外側軌道(圖 5-4(d))。此時的重點在於,電子從光那裡獲得的能量必須大於能隙。如果光能比能隙小的話,電子就無法移動到外側軌道。

光的能量由波長決定,波長愈短,光的能量愈高(參考第 217 頁,第 5 章專欄)。光能 E(單位為電子伏特eV)與波長 λ(單位為 nm)有以下關係。

E[eV]=1240/λ[nm]

抵達地表的陽光光譜。圖/東販

另一方面,抵達地表的陽光由許多種波長的光組成,各個波長的光強度如圖 5-5 所示。

由圖可以看出,可見光範圍內的陽光強度很強。陽光中約有52%的能量由可見光貢獻,紅外線約佔 42%,剩下的 5~6% 則是紫外線。

若能吸收所有波長的光,將它們全部轉換成電能的話,轉換效率可達到最高。不過半導體可吸收的光波長是固定的,無法吸收所有波長的光。

Si結晶的能隙為 1.12eV,對應光波長約為 1100nm,位於紅外線區域。也就是說,用 Si 結晶製造的太陽能電池,只能吸收波長小於 1100nm 的光,並將其轉換成電能。

不過,就像我們在圖 5-5 中看到的,就算只吸收波長比 1100nm 還短的光,也能吸收到幾乎所有的陽光能量。

光是看以上說明,可能會讓人覺得,如果半導體的能隙較小,應該有利於吸收波長較長的光才對。不過,並不只有能隙會影響到發電效率,圖 5-6 提到的光的吸收係數也會大幅影響發電效率。光的吸收係數代表半導體能吸收多少光,可以產生多少載子。

有幾種材料的光吸收係數特別高,譬如 Ⅲ—Ⅴ 族的砷化鎵(GaAs)。GaAs 的能隙為 1.42eV,轉換成光波長後為 870nm,可吸收的光波長範圍比 Si 還要狹窄。但因為吸收係數較高,所以用砷化鎵製作的太陽能電池的效率也比較高。

總之,GaAs 是效率相當高的太陽能電池材料。然而成本較高是它的缺點,只能用於人造衛星等特殊用途上。即使如此,研究人員們仍在努力開發出成本更低、效率更好,以化合物半導體製成的太陽能電池。

——本文摘自《圖解半導體:從設計、製程、應用一窺產業現況與展望》,2022 年 11 月,台灣東販出版,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 1 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

0

6
1

文字

分享

0
6
1
新好材料鈣鈦礦,改造太陽能電池
科技大觀園_96
・2021/06/17 ・2345字 ・閱讀時間約 4 分鐘

隨著現代科技的發展,人類對能源的需求也逐漸增加,因此科學家一直努力尋找著合適的替代能源。其中最受矚目的能源之一,莫過於取之不盡、用之不竭的太陽能,因此科學家也一直想研發出理想的太陽能電池,能夠把太陽的能量盡可能的轉化為電能,並且長時間儲存起來。

一直以來,太陽能電池的材料都以最常使用的半導體材料——矽晶為主,然而自 2009 年開始,一種特殊的有機金屬鹵化物材料「鈣鈦礦」引起了科學家的注意。「鈣鈦礦」原本是指鈣與鈦的氧化物 CaTiO3(結構可表示為 ABX3),因為有機金屬鹵化物的結構與鈣鈦礦 ABX3 同類型,所以統稱為鈣鈦礦(見圖 1)。太陽能電池用的鈣鈦礦,吸收光的效率很高,吸收光子後,可以很快地分離成電子與電洞,傳送到電極而產生電流。這樣的高效率讓科學家想到,何不用鈣鈦礦來製作太陽能電池呢?

圖 1、鈣鈦礦晶體結構示意圖。用做太陽能電池的鈣鈦礦通常為有機金屬鹵化物。(圖/林唯芳、王彥錡)

臺灣大學材料科學與工程學系教授林唯芳的研究領域一直以高分子材料為主,也研究過以有機材料來製作太陽能電池。鈣鈦礦的出現,很快就吸引了林唯芳的眼球。「鈣鈦礦這種材料簡直不得了。」談起鈣鈦礦,林唯芳透露著興奮的心情,因為和傳統的矽晶相比,以鈣鈦礦製作太陽能電池的製程簡單太多了!

製作太陽能電池,竟和刷油漆一樣簡單

首先,以矽晶做為材料時,為了減低晶格裡的缺陷數量,必須經過約 900℃ 的高溫長時間處理,然後再以半導體高真空高溫製程製作成二極體太陽能電池,工序繁瑣嚴苛。但鈣鈦礦太陽能電池是以溶液塗佈薄膜的形式來製作,所以不需這麼高溫,也不需要真空環境,只要在一般環境裡就可以製作。 

鈣鈦礦太陽能電池的結構如圖 2,在製造時,每一層都只需要簡單的塗佈,再以紅外線快速烘乾長晶[註1]即可,烘乾需要的時間甚至不到一分鐘。林唯芳形容:「整個過程就像刷油漆一樣簡單。」而因為鈣鈦礦太陽能電池的製作就像刷油漆一樣,因此比起矽晶,鈣鈦礦更容易做出大面積的太陽能電池,甚至是塗佈在各種基材上,做出可撓曲、各種色彩的太陽能電池,應用更加廣泛。

圖2、鈣鈦礦太陽能電池結構示意圖。(圖/林唯芳、王彥錡)

不過林唯芳也說,目前鈣鈦礦和矽晶相比,使用壽命短了許多,矽晶太陽能電池一般認為具有 30 年左右的壽命,但鈣鈦礦的結構大約只能維持 10 年。這是因為鈣鈦礦的晶體結構中,ABX3 各成分之間只是單純的彼此堆疊及配位鍵[註2] ,並非以共價鍵結合,鍵結不夠強的情況下,容易受到破壞。林唯芳的團隊也嘗試著用加入不同離子的方式,增加鈣鈦礦的穩定度,延長使用壽命。

鈣鈦礦與矽晶的合作無間

林唯芳強調:「我們對太陽能電池的期許,除了大面積、長壽命外,更重要的是高轉換效率。」這幾年來,在林唯芳團隊及全世界科學家的努力下,鈣鈦礦太陽能電池的光電轉換效率已經追上矽晶太陽能電池,約在 20-25% 左右。不過,鈣鈦礦和矽晶並不是對立的角色,包括林唯芳在內的許多科學家,都正在嘗試讓這兩種材料「合作」——他們將鈣鈦礦與矽晶疊起來,達到更高的光電轉換效率!

鈣鈦礦與矽晶的比較表。(圖/何庭劭繪)

這是因為鈣鈦礦能吸收轉換的光波段和矽晶不同,鈣鈦礦主要吸收較高能量的短波波段,矽晶則以較低能量的長波波段為主,所以若讓太陽光先後穿透鈣鈦礦太陽能電池與矽晶太陽能電池,就能更有效率的利用太陽光裡各種不同波段的光。

在疊層的做法上,有些研究團隊是在製作太陽能電池時,改變製程,設法將矽晶與鈣鈦礦疊層。不過林唯芳和聯合再生能源公司合作,將兩種太陽能電池獨立製作,只是將鈣鈦礦太陽能電池的電極轉換成可透光的材料,然後直接機械式的疊起。林唯芳解釋:「這樣做的好處在於可以維持現有的矽晶太陽能電池的製程,再加上簡單的鈣鈦礦太陽能電池製程,在現階段的技術上是最有商機的。而且現在鈣鈦礦太陽能電池還是比較容易損壞,如果它先損壞了,我們可以只要替換新的鈣鈦礦太陽能電池上去就好。」

圖 3、鈣鈦礦太陽能電池與矽晶太陽能電池疊層,可以增加光電轉換效率。(圖/林唯芳、吳庭慈)

談起這幾年鈣鈦礦的興起,林唯芳認為這是非常有希望的一種材料!在這幾年的積極努力下,林唯芳不但在鈣鈦礦太陽能電池的研究上有進展,還為技術的產業化努力,鼓勵畢業同學廖學中與許哲溥,創立前創科技公司,專精於鈣鈦礦太陽能電池材料的製造和生產,並和臺大機械系的黃秉鈞教授、億尚精密機械公司合作,共同研發了專門塗佈製作鈣鈦礦太陽能電池的機器(如圖 4)。另外也和生產矽晶太陽能電池的聯合再生公司合作,發展大面積高效率層疊太陽能電池,形成了上中下游完全自主整合的一條鞭生產鏈。

林唯芳說:「這對我們臺灣的產業界也帶來了貢獻,雖然我是做學術研究的,但能幫助到臺灣的產業,我也覺得很開心。」而鈣鈦礦這個「大自然的禮物」,將為太陽能以及人類生活帶來的改變,也值得我們期待。

圖 4、鈣鈦礦太陽能電池薄膜製造機。(圖/黃秉鈞)

備註

  1. 製作有結晶的鈣鈦礦薄膜。
  2. 配位鍵的鍵結能量比共價鍵低。 

科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

6
0

文字

分享

0
6
0
染料敏化太陽能電池的再突破——專訪中興化學系教授葉鎮宇
科技大觀園_96
・2021/04/21 ・3423字 ・閱讀時間約 7 分鐘 ・SR值 554 ・八年級

你可以想像嗎?未來或許有一天,整座摩天大樓的窗戶通通都可以拿來做太陽能發電!近年來,「染料敏化太陽能電池」 (dye-sensitized solar cell, DSSC) 因為成本相對便宜、結構簡單,型態可塑性高,受到各方關注。本文特別採訪中興大學化學系葉鎮宇教授,分享染敏太陽能電池的研發近況,以及太陽能電池的全新樣貌。

透明、輕薄又可撓的染料敏化太陽能電池

「一片又一片、厚重的深藍色面板,平躺在大太陽底下閃閃發光著」,這應該是大多數人對於太陽能電池最深刻的印象,而這些日常生活中常見的太陽能板們,就是當前太陽能電池產業中,發展最久、技術最成熟的「傳統矽晶太陽能電池」。

多具串聯的太陽能電池板。(圖/Wikipedia,Supertekenterprises1 的作品,CC BY-SA 3.0)

除了廣為人知的矽晶太陽能電池之外,近年來在太陽能電池界,「染料敏化太陽能電池」 (dye-sensitized solar cell, DSSC) 可謂是冉冉升起的未來之星,比起厚重、昂貴的矽晶太陽能電池,染料敏化太陽能電池(後文皆簡稱之為染敏電池)不僅相對便宜、結構簡單,甚至可以做成透明、可撓式的模樣!

來自國立中興大學化學系的葉鎮宇教授,是臺灣國內研究染敏電池的頂尖學者,2011年時,他與國際研究團隊合作,以紫質(porphyrin,卟啉)做為染料,研發出「YD」系列染料,將染敏電池的光電轉換效率從 11% 提升至 12.3% ,研究成果已刊登於該年 11 月的《科學》。

2020 年時,葉鎮宇與研究團隊又發表了新一代的紫質染料「bJS」系列,比起上一代的「YD」系列染料光電轉化效率又提高了 11.9%,刊登於 2020 年 11 月的《應用化學》期刊,並且被選為非常重要論文 (VIP, Very Important Paper) ,其重要性為該期刊前 5% 的論文。

本次科技大觀園特別採訪葉鎮宇教授,邀請葉教授與我們分享染敏太陽能電池的研發近況,帶我們看見太陽能電池的全新樣貌。

首先,葉鎮宇指出,若太陽能電池想要產業化、維持商業運轉的話,必須滿足兩個最基本的要求:高光電轉換率,以及高穩定性。光電轉換效率指的是該電池將光能轉換成電能的能力,而穩定性則是電池的耐用程度。

矽晶 vs. 染敏太陽能電池

傳統矽晶太陽能電池主要應用於太陽直射的炎熱戶外,在室外有較佳的光電轉換效率,此外,由於在陽光底下曝曬時,表面溫度可高達攝氏五、六十度,因此太陽能電池的材料必須足夠穩定,才可以在炎熱的戶外使用,以矽晶太陽能電池為例,壽命大約在二十年左右,有著很不錯的穩定性。

而染敏電池並非專門用於在太陽直射的戶外,染敏電池的穩定性並不高,主要應用於室內弱光、半戶外。在室內弱光的條件之下,染敏電池的光電轉換效率非常高,可以高達 30%。

雖然矽晶太陽能電池在戶外的光電轉換效率、穩定性目前都比染敏電池高,但矽晶太陽電池有著相當致命的缺點:太貴啦!此外,矽晶太陽能電池的製作過程相對複雜且精密,不僅需要高溫、強酸、強鹼的參與,結構也相對複雜,製作過程耗損的能量需要兩到三年才可以平衡回來。

反之,染敏電池的結構非常簡單,製程與成本也相對簡便和便宜,在家裡的廚房就可以完成,同時也是各國高中科展的常見主題,只要製作得當,親手做的太陽能電池甚至可以驅動小馬達、讓小燈泡發亮,而且只需要短短六個月,就可以把消耗的能量「賺回來」!

此外,太陽能電池的污染議題也是大家關注的重點之一,矽晶太陽能不僅製程耗能、結構複雜,也會造成不少污染和廢棄物,而染敏太陽能電池所需的染料非常少,只需要不到 10 奈米的薄薄一層,加上二氧化鈦沒有毒性、構造簡單,汙染程度遠低於矽晶,是更「乾淨」的太陽能。

染敏太陽能電池的工作原理

染料敏化太陽能電池結構示意圖。(圖/陳祉雲、李玉郎,2019

染敏電池的組成成分包含染料、工作電極、電解液以及對電極。

以葉鎮宇研究團隊所使用的染敏電池為例,它的工作電極由二氧化鈦的奈米顆粒組成,而二氧化鈦的上面會吸附一層薄薄的染料,並透過這些染料來吸收太陽光。當染料照光後,染料的電子會從基態躍遷到激發態,這些電子有機會成為自由電子跑到二氧化鈦,並隨著連接二氧化鈦的迴路到對電極,再透過電解質接收電子發生還原反應。

不難想像,染料在染敏電池中扮演舉足輕重的角色,如果染料設計得好,吸光範圍大、吸光強度又強的話,就可以吸收比較多的太陽光,也比較可能達成較高的光電轉換率。

整體而言,影響太陽能電池的光電轉換效率因素有三個:電流、電壓、填充因子。其中染料的吸光範圍會影響電流,電解液可以增加電壓,組裝的技術與填充因子有關,若電流高、電壓高、組裝技術好,光電轉換效率就會高,當前學術研究努力的方向,就是致力於找到提升電流與電壓的方式與材料。

讓電子乖乖順著跑道跑的秘密!

在染敏太陽能電池中,若是電解液太靠近二氧化鈦,二氧化鈦上應該跑向對電極的電子,有可能會「逆流」跑向電解液,造成電荷再結合,就像是形成逆電流一樣,浪費能量,並讓電流、電壓下降、降低光電轉換效率,因此科學家們必須想辦法阻止電子的「逆流」。

葉鎮宇表示,由於電解液通常是帶電荷的,就像是具備「親水性」的特徵一樣,因此在 2011 年的研究成果中,葉鎮宇與團隊的「YD」系列染料,就是利用染料中的「長碳鏈」將染料設計成「疏水性」的,如此一來,當染料吸附在二氧化碳上之後,就像是在二氧化鈦上面蓋上一層油,如此一來,電解液和二氧化碳就不容易靠近,並且能抑制電子「逆流」,提高光電轉換效率。

比起「YD」系列染料,2020 年的「bJS」系列紫質染料再度突破,將原本的長碳鏈數目增加至 2 倍,就像是把原本的一道柵欄變成兩道柵欄,讓電子更難反向偷跑,使光電轉換效率更上一層樓。

染敏太陽能電池的應用

染敏太陽電池的主力戰場在於室內的弱光,究竟為什麼「室內版本」的太陽能電池這麼值得令人期待呢?

大家不妨試想看看,未來,即將是 5G、物聯網的時代,各式各樣的物品都可能將需要連上網路、搭配不同的感應器,一棟建築物裡面甚至可能配有高達一萬多個感應器,倘若每一個感應器都需要接電線、換電池,那一定會是一場大災難!

然而,若染料敏化電池成功走向商業化,每一個感應器都可以搭配一個染敏電池、透過室內光自行發電,我們就會省去大幅的人力、時間成本,讓將來的生活更加便利。

此外染敏電池具備「可撓性」,這種可以扭曲的電池不僅可以當作電子紙的能量來源,搭配纖維的材質後,甚至可以成為可攜式電子裝置的一部分!由此可知,輕薄可扭曲的太陽能電池,很有可能會成為科技時代的重要角色之一呢。

染料敏化電池未來也許可以當作電子紙的能量來源(圖/pixabay

目前染敏電池已經可以做得非常輕薄,以玻璃為材料時,厚度大約 0.5 公分,改以軟板為材料的話,雖然光電轉換效率會降低,但厚度可以達到 0.1 公分,更加輕盈,再加上染敏電池透明的、多彩的特性,以當前的技術,染敏電池已經可以製作成各式各樣的「太陽能窗戶」,更可以搭配不同顏色的染料,做出彩色的窗戶拼貼藝術。也許,整座大樓的窗戶都能發電的未來,真的不是夢!

染敏太陽能電池的未來

雖然目前染敏太陽能電池無法完全取代矽晶,無論是光電轉換效率還是穩定性都有著很大的成長空間,但比起已經研究數十年矽晶,染敏太陽能電池還非常的「年輕」,具有相當的研究潛力,前景可期。

以現今的技術而言,染敏太陽能電池已經可以很有效率的在室內使用了,然而,在邁向商業化的道路上,染敏太陽能電池目前的價格尚有改善的餘地,需要科學家持續研發以及相關產業推廣,葉鎮宇表示,自己非常期待當染敏電池價格與一顆小電池相當的那一天!

參考文獻

科技大觀園_96
82 篇文章 ・ 1103 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。