0

0
0

文字

分享

0
0
0

生物關節修復! Kevin Stone: The bio-future of joint replacement

Scimage
・2011/04/21 ・691字 ・閱讀時間約 1 分鐘 ・SR值 516 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 


很多人自己或是家人朋友都有能會遇到關節問題。可是目前並沒有完善的關節修復方式,就算利用人工關節也常常有使用期限或是舒適的問題。

這影片介紹利用人或是動物的組織來修復人體組織的研究。在使用人體的組織方面,就像是其他的器官捐贈移植,有一些不錯的例子說明有效,可是組織來源太過稀少跟昂貴。利用動物組織方面,演講介紹分三類,如果只是單純作為簡單的支持性結構的,可以利用分離有用的生物物質,像是軟骨膠質,然後放入合適的載體在植入人體。如果要利用到完整組織的話,就需要作一些去除免疫的酵素處理,把抗原給去除掉,像是韌帶就可以這樣做。最後一種是利用人體的幹細胞跟動物組織的混合,一方面有再生能力,一方面可以利用動物組織給的環境條件引導幹細胞發育分化,這些研究或許在以後可以對很多疾病還是生理缺陷有所幫助!

本文原發表於科學影像Scimage演講[2010-07-24]

文章難易度
Scimage
113 篇文章 ・ 3 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

3
0

文字

分享

0
3
0
器官移植新技術───37度保存三天的肝臟
Charlotte 熊_96
・2022/06/24 ・2699字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

哪些人會需要換肝呢?

需要換肝的族群年齡分佈大致上呈兩大族群,一邊是剛出生帶有先天疾病的小朋友,一邊是後天罹病的成年人[1]。譬如說小兒科會見到的膽道閉鎖,這些小朋友天生膽道就發育不良,膽汁無法順利排到膽管,而淤積在肝臟。如果不處置,會在數個月後快速進展成肝衰竭而有生命危險。

天生膽道就發育不良的小朋友,膽汁無法順利排到膽管,而淤積在肝臟。如果不處置,會在數個月後快速進展成肝衰竭而有生命危險。圖/Pexels

成年人需要換肝的在在台灣以前常見的是因為 HBV 或 HCV 造成的猛爆性肝炎,現在可能就屬肝癌、酒精性肝炎、非酒精性脂肪肝炎、藥物中毒等最為大宗。依照巴賽隆納小細胞肝癌(hepatocellular carcinoma)治療指引[2],在肝功能還未受損太嚴重時,若腫瘤數目、大小、位置理想,肝癌病人是可以接受換肝手術,「治癒」肝癌的。這比起許多以延長幾個月的餘命為目標的癌症治療而言,是很難得的。

台灣其實是特例?國際肝臟移植的現況

據衛福部 2020 年統計數據,台灣 2005 至 2018 總計執行了 6211 例的肝臟移植,其中活體肝臟移植就佔了其中的 4915 例[3]。所謂的「活體」移植就是在幾乎相同的時間內,兩個開刀房、兩組醫護人馬,同時開刀,一邊把受贈者有問題的肝臟取下,一邊把捐贈者的部分肝臟擷取,最後接到受贈者體內。這也常常躍升至媒體,如「捐肝救父」、「捐肝救子」的佳話。

活體移植不僅考驗主刀者的技術、也考驗醫護團隊的默契。開刀只是其中一關,開刀前的配對、開刀後的術後照顧、抗排斥治療等等,皆是重重的考驗。不過台灣日本等國家活體移植的盛行,其實是國際移植界的特例。

台灣活體移植的盛行,其實在國際移植界是特例。 圖/envato

活體移植牽涉到的倫理議題,也讓台灣目前活體移植只限於親屬。若非親屬捐贈,則只能排隊,等意外死亡者的肝臟捐贈。所以在國際上行之有年、且更常見的其實是大體捐贈,一般上會是來自因意外或因疾病而腦死的病人。

肝臟從捐贈者體內被取出後,會在 2-5°C 的液態保存液中暫存,並且在數小時內必須移植到受贈者體內。這黃金數小時,是沒有血液灌流的,換句話說,肝臟組織無法有效率的得到生存所需的氧氣,以及排泄代謝廢物,所以一般來說會把這段黃金時間限縮在 12 小時內。如果算上捐贈肝臟組織的運輸以及兩個手術(捐贈以及受贈者)的時間,整個移植是一個跟時間賽跑的過程。如果到目前為止,這個任務還不夠艱鉅的話,我們可以看看美國的統計數字。

在美國大約有 17,000 人在等肝臟捐贈,但實際上每年只有約 6,500 個肝臟被捐贈[4]。所以肝臟捐贈目前還是非常短缺的,而需要換肝的人在等待過程中,存活機率也一點一滴的流失。

全新的方向:瑞士的跨領域研究

在大體捐贈以及活體移植各有其限制的狀況下,一組在瑞士的人馬開始了一個全新的肝臟移植方式[5]。這群人結合了工程、生物化學以及醫學專業,一起研發了一台機器,可以在體外模擬許多類似人體內的環境,讓肝臟在移植過程中,有最小的轉換過程。可能的環境衝擊包括溶血、血行動力學不穩、溫度控制、血糖控制、肝醣消耗、以及物理壓力造成的組織壞死。而在今年,他們發表了第一個使用此機器的人體肝臟移植案例。

肝臟組織是來自一個 29 歲的年輕病人,因為腹部硬纖維黏液瘤(desmoid fibromatosis),併發長期感染以及敗血症,為了要控制病情而必須切除部分肝臟組織。一般來說,這樣的肝臟組織是不會再捐出去的,不只因為有腫瘤病史,而且又有進行中的感染,如果腫瘤細胞在受贈者體內繼續生長,或是感染持續進行,那麼受贈者的預後一定也很慘淡。但是這組瑞士人馬,在經過捐贈、受贈者兩方同意後,決定利用手術後剩下的肝臟組織。於是這個被取下來的肝臟組織,在肝門靜脈、肝動脈、下大靜脈、以及總膽管都被恰當的接到機器上後,就開始了這個神奇的體外之旅

一切的變因都盡量模擬體內環境,包括溫度(37 度)、血液灌流速度、脈衝式血壓,並且持續抗生素(因為捐贈者有細菌以及真菌感染)。三天後,這個肝臟再重回人體中,是位 62 歲的受贈者。

瑞士的跨領域研究團隊研發了一台機器,可以在體外模擬許多類似人體內的環境,讓肝臟在移植過程中延長保存時間。圖/Pixabay

這個嘗試特別的地方在於,雖然肝臟在體外保存了三天,卻沒有在大體捐贈常見的組織再灌流傷害(是指經過一段缺血的時間後,血管重新被打通,血液帶來充足的氧氣,但同時也產生很多自由基),這是只有活體捐贈才比較能看到的優點。而且可能因為肝臟先天免疫功能的保留,後續的排斥反應並不明顯,病人術後的抗排斥藥用量逐步地降低。與此同時,體外保存期間還可以持續治療,譬如在這個例子中的抗生素治療,讓一些本來無法使用的組織,變成可以捐贈的祝福。

肝臟移植的一線曙光

雖然在台灣大體肝臟捐贈比較不常見,反而活體肝臟移植是比較盛行的做法,但活體移植仍存有道德辯證、危害健康捐贈者健康等等的疑慮。畢竟捐贈者一般都是健康人,而捐肝的大手術也是有一定的風險的。

在這個器官需求者眾、捐贈者匱乏的社會中,這個體外保存的技術絕對是一個令人興奮的新發明。只是就像任何新的醫學發明,臨床的資料需要長期而且大量病患的累積,才能有足夠的證據支持。這個幸運的受贈者已經持續被追蹤了一年,也許再五年、十年,再百個、千個病人,而有了世代研究,體外保存技術將會變成移植醫學的顯學。

在這個器官需求者眾、捐贈者匱乏的社會中,肝臟體外保存的技術絕對是一個令人興奮的新發明,幫助更多人。圖/Pexels

參考資料

  1. Kasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L. 1., Jameson, J. L., & Loscalzo, J. (2015). Harrison’s principles of internal medicine (19th edition.). New York: McGraw Hill Education.
  2. Llovet, J.M., Fuster, J. and Bruix, J. (2004), The Barcelona approach: Diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl, 10: S115-S120. 
  3. 衛福部公布:我肝移植成功率逾八成高雄長庚雙冠王
  4. https://hospital.uillinois.edu/primary-and-specialty-care/transplantation-program/liver-transplantation/your-liver-transplant-options/cadaver-liver-transplant
  5. Clavien, PA., Dutkowski, P., Mueller, M. et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat Biotechnol (2022).

Charlotte 熊_96
5 篇文章 ・ 5 位粉絲
著迷於世界的多彩,也希望帶給人對生命的熱愛。現任美國愛因斯坦醫學中心小兒科住院醫師,畢業於台大醫學系。目前最希望成為小兒心臟科醫師,也沒忘從高中就想去無國界醫生當臨時醫師的夢想。 https://www.instagram.com/charlottethesunbear/

2

4
2

文字

分享

2
4
2
「科學家也需要 Art!」持續破解果蠅大腦神經迴路的李奇鴻
研之有物│中央研究院_96
・2022/04/11 ・6084字 ・閱讀時間約 12 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/歐宇甜、黃曉君、簡克志
  • 美術設計/林洵安、蔡宛潔

神經科學與視覺

我們怎麼「看到」顏色,「察覺」東西在動?大腦如何產生視覺?中央研究院「研之有物」專訪院內細胞與個體生物學研究所所長李奇鴻,他是國際知名的神經科學家,過去長期在美國國家衛生院(National Institutes of Health)做研究,2018 年回到中研院貢獻自己所學。李奇鴻的實驗室主要是以果蠅視覺系統為模型,研究神經元如何在發育過程形成複雜的突觸連結,以及神經迴路如何產生視覺來引導動物行為。

李奇鴻是國際知名的神經科學家,研究神經迴路如何產生視覺來引導動物行為。圖/研之有物

技術帶動神經科學研究

神經系統如何運作?這對以前的科學家來說是黑盒子。由於大腦發生錯誤或出問題時,會直接表現在外在行為上,早期科學家想了解人腦運作機制,只能透過腦部哪裡受傷壞掉或中風等,知道腦部的大概功能區域,但沒辦法進入細胞層次。

「在生物學的發展上,除了需要有智慧的思考,其他都要靠技術去推動。你可能想到一個有趣的題目,但也許要 30 年後,才出現足夠的技術來解決問題。」李奇鴻舉例,從光學顯微鏡、電子顯微鏡、電生理技術、分子生物學到結構生物學發展,每個都在細胞、分子、及系統層次開啟了新的世界。

隨著顯微技術與遺傳工程日益完備,果蠅成為現今熱門的腦科學研究對象。李奇鴻指出,「果蠅的生長速度快,相較老鼠要幾個月成熟,果蠅只要兩週。果蠅的大腦複雜程度介於人和單細胞生物中間,結構跟人高度相似,成果可應用在人身上。」

因此,近 10 幾年來是神經科學大起飛時代,科學家透過遺傳學方法控制果蠅的神經元活性、觀察行為,藉此了解哪些基因會影響大腦發育和運作,逐漸破解神經迴路的奧祕。

「我在選博士後研究時,想到底要做線蟲、老鼠、魚、果蠅或其他模式生物?最後才選果蠅。回想起來,近年剛好碰到果蠅相關技術蓬勃發展,選果蠅是很正確的決定!」李奇鴻笑道。

李奇鴻引用知名神經科學家 David Marr 的三層假說(tri‐level hypothesis),認為大腦運作有三個層次:

  1. Computation level(運算):神經系統在做的事,如分辨顏色、觀察東西移動、辨認物體是圓是方、是蘋果或橘子等。
  2. Algorithm level(程序):神經系統的操作方式、程序怎麼做。 
  3. Implementation level(實行):神經系統如何透過神經元、神經網路來達成這個程序。

李奇鴻表示,「過去多數神經科學家都在討論 computation,再探究 algorithm,卻沒辦法解決 implementation 。現在因為具備技術,科學家終於能找出 implementation,再回推上層問題,甚至發現 algorithm 跟原本想的不一樣。」

視網膜感知系統怎麼運算?

關於神經系統的操作方式(Algorithm level),也有因為技術進步而解決爭議的案例。李奇鴻舉例,以前神經科學家在研究視覺系統感受物體運動的機制,曾出現幾種理論,HR 理論認為神經訊號是用乘法,另一派 BL 理論認為是用減法,爭議了很久。

近年科學家發現,原來視網膜感知系統的運算機制是混合的,一共三種,稱為 HR-BL 混合視覺運動偵測器。過去兩派都只對了一半。

關於視網膜感知系統的運算機制,過去 HR 理論和 BL 理論都只猜對其中一種方向(打勾處)。資料來源/Current Biology

Hassenstein-Reichardt(HR)模型:從昆蟲行為研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,這個信號會被延遲(時間 τ),接著右邊的光感應神經元收到訊號,兩者的訊號會同時到達下游的神經細胞(X),訊號將會相乘,生成運動訊號。
  2. 當有非偏好方向(從右到左)視覺刺激出現,兩個訊號會在不同的時間到達,不會生成運動訊號。

Barlow-Levick(BL)模型:從兔子電生理研究而來。

  1. 當有偏好方向(從左到右)的視覺刺激出現,左邊的光感應神經元收到訊號,接著右邊的光感應神經元收到訊號,但它為抑制訊號且會被延遲(時間 τ),左邊的訊號會先到達下游的神經細胞,生成運動訊號。
  2. 當非偏好方向(從右到左)視覺刺激出現,左、右兩個光感應神經元的訊號會在相同時間到達,刺激訊號和抑制訊號互相抵銷,不會生成運動訊號。

持續分析果蠅大腦的神經迴路!

近代電腦的所有運算都能用 and、or、Xor 三個邏輯閘表達,科學家想知道,大腦裡有沒有類似但更高階的神經迴路運作方式?「從感官到行為比較容易觀察和操作,目前在視覺運動方面的神經迴路運作,我們知道的最多。」

李奇鴻近年在做昆蟲視覺與行為研究,發現昆蟲在感受顏色,如綠光和紫外光時,感光細胞的處理方式是先將紫外光跟綠光的強度做比較,把兩個光的強度相減,讓原本兩個訊號變成一個訊號,所謂的「顏色拮抗」。

「這種神經迴路能解析、比較兩個顏色強度的差異性,因為大部分在視覺上最重要的正是對比。拮抗運算模組能在一片訊號裡找出哪裡最強、其他較弱。其他感官機制也一樣,像觸摸物品時有凸出來的部分較重要,聽覺上要找出哪個聲音特別高等,讓最重要的訊號能凸顯出來。」李奇鴻補充道。

2021 年李奇鴻的團隊首次發現果蠅視覺系統堆疊了多套拮抗運算模組,以達成顏色及空間接受域雙拮抗的效果,成果發表在《Current Biology》。這樣的神經迴路可以比較相鄰的顏色,產生色彩區間對比感。「沒這樣的功能,我們就看不出紅配綠很悲劇了!」李奇鴻笑道。

科學家們正努力鑽研果蠅大腦的神經運算迴路,希望逐步整理出基本運算模組。或許有一天,看似複雜的大腦功能,都可能用基礎的迴路來破解!

李奇鴻實驗室所發現的顏色及空間接受域雙拮抗神經迴路。R1-R6 是吸收頻率範圍較廣的光接收器(輸出刺激訊號),R7 是吸收紫外光的光接收器(輸出抑制訊號),R8 是吸收綠光或藍光的光接收器(輸出刺激訊號)。從 R1-R8 接收光,輸出到神經細胞 Dm8 之後,會形成顏色拮抗效果。此外,相鄰的 Dm8 之間透過特殊的氯離子通道 GluClα 中介,會產生側向抑制作用(Lateral inhibition),形成空間拮抗效果。資料來源/Current Biology

老師是怎麼走上研究大腦神經科學這條路呢?

「我滿晚才走上科學研究的道路。我對電腦有興趣、喜歡寫程式,大學上中國醫藥學院醫學系,家裡也希望我當醫生。不過在實習時,我發現自己對治療病人沒興趣,反而對問題或疾病本身更有興趣。跟幾個老師談過之後,我決定不當醫生,跑去清華大學讀生命科學,後來就到中研院。」

因為有醫學背景,一開始比較想做能立刻解決問題的研究,像是用蛋白質跟毒素的綜合體來治療癌症。但後來了解,如果沒有深刻了解致病機制、沒有鑽進基礎科學研究,很難有突破。

後來去美國洛克斐勒大學攻讀博士,在洛克斐勒讀書期間,大家常互相交流,對我有很大的啟發。那時我在鑽研結構生物學,希望了解疾病真正的生理過程,曾解開愛滋病病毒跟人體信號傳遞有關的蛋白質結構。

博士畢業前,我接觸到神經科學,感到很有興趣,就去加州大學洛杉磯分校(UCLA)讀博士後,學神經科學裡的發育學,想了解大腦在發育過程是如何用不同分子在細胞間傳遞訊息。那時我待在很大的實驗室,老師不太管學生,要自己想辦法或跟旁邊的人學習,很多人素質都很高,學習環境很好。

之後我進入美國國家衛生院(National Institutes of Health,NIH)開始開實驗室帶自己的團隊,待了 16 年,算是真正進入神經科學領域,直到現在依然在做相關研究。

每個人的人生選擇,都被以前的經歷主導,如果沒有醫學背景,恐怕我不會去學結構生物學或走入大腦神經科學領域。

老師在美國的研究很順利,那是什麼契機才決定回臺灣呢?回來後是否有不適應之處呢?

「我 26 歲出國,在美國也待 26 年,幾乎完全融入美國生活,實驗室運作得蠻好,連太太也是美國人。但在美國很多年後,內心出現一個很深感覺:我在臺灣待過這麼久,臺灣是我進入科學的起點,也許該回來教教臺灣的子弟。」

剛開始有些想法,曾受邀回臺演講幾次,但沒有下決心。後來出現一個重要轉捩點。中研院分子生物研究所 30 週年慶時邀我回來演講,那時有機會跟歷任所長聊天,這些所長中許多是我過去在中研院碰過的老師。聊了後感觸很深,發現每任所長都要面對分生所的成長或各種問題,每個所長都有獨到的見解和重要貢獻。

我看到分生所運作得很好,覺得非常感動, 內心想:也許我回來能效法他們,也許對中研院細胞與個體生物學研究所的發展能有一點點實質貢獻。

雖然如果待在美國國家衛生院,我也會有這樣一個機會,但還是想帶自己的子弟,把力氣用在自家子弟身上,讓自己的國家和組織進步。我想將在美國國家衛生院學到的經驗,像哪些組織可以運作、哪些不行,嘗試帶回臺灣。

我很清楚可能碰到的問題,像科學研究會受影響,要重新花幾年時間建立實驗室,但那次契機讓我徹底下定信心。我曾跟廖俊智院長開玩笑,就算不給我錢,我大概也會回來。因為真的覺得這是一個很好的機會,自己能為中研院、為臺灣做些事。畢竟中研院也一直都像我的家!

不過,畢竟過去在美國實驗室和家裡都是講英文,只有打電話給媽媽會說臺灣話,因此, 2018 年剛回臺灣時,國語講得不太流利,臺灣話反而比較流利。

老師覺得美國的研究環境有哪些優點?希望將什麼樣的新觀念、新風氣帶進臺灣呢?

「國外最大特點是學術交流很頻繁,雖然國內也蠻頻繁,但他們交流層次更深入。也就是說,我跟參與的老師交流之後,常能改變想法、做事方法或方向,且是正向的改變。」

國外老師受邀演講,會很積極在幾小時內一直談,在一天中完全沉浸其中,不單講出自己在做的東西,也要求聽眾給予批評或建議等,彼此有深度交流,我每次參加都覺得收穫很多並產生合作可能性。

國內我的經驗是,演講結束後比較缺乏機會跟其他老師深度溝通,領完演講費就屁股拍拍坐高鐵回來。這可能是國內的慣有模式,我覺得需要改變。現在所內我也要求大家,既然花錢請老師來,一定要做深度交流,請對方給予建議。

重要的不是形式或邀到諾貝爾獎得主之類,而是在演講結束後、這個人走出我的辦公室、這些人離開後,對我做的事或做事方法,是不是有什麼實質的改變?在其他科學家交談中是否能得到啟發,改變自己的思考或做實驗方式?或聽聽別人告訴你,你還有哪些沒想到的地方?

分享,也是一種很重要的技術,在交流過程中,當我們可以把一件事講清楚,自己也會茅塞頓開,知道問題在哪。

現在所裡的計畫是把老師分成各種不同興趣小組,組內做交流或有跨組活動。其餘像寫計劃、申請經費、經營實驗室或撰寫並發表文章,這些是基本技術問題。

做任何工作,一個是基本的核心技術,如果沒有「技」就無法生存;另一個是 「藝」(Art) , 可以驅動你一直做下去。訓練人才時,除了培養技術,還要訓練 Art。

老師提到工作上需要 Art,科學家的 Art 是指哪些部分?可以說明得更詳細嗎?

「我想在科學裡面,Art 有很多面向。例如,你怎麼選擇一個問題,怎麼找切入點,如何把一個大問題拆成幾個可攻破的部分,一步步去解開,這是一種 Art。尤其在選擇問題和切入點上,要有獨特的見解或洞燭先機才能成功。」

科學家必須創造有用的知識。什麼叫有用的知識呢?就是聽到學到後,會改變你想事情的方向或做事的方法。很多東西都可以研究,只要科學方法夠嚴謹,都可以得到一些知識。但到底要選擇什麼題目呢?什麼叫做有趣的問題呢?評斷這些就是科學的 Art 。

如果說在人類前面是一個黑暗深淵,知識像光照亮我們前面的路,科學家就像站在最前面,要知道如何踏出那一步?怎麼踏出去?這是 Art。

當科學家看到一個問題、問題成形後,最重要的關鍵是如何選擇一個核心問題去解決。就像玩拼圖時,要放下去最核心、最重要的那塊拼圖。

我回到臺灣後,覺得這裡的研究環境很好,儀器不輸人家,老師很優秀。但可能我們多半只是關注自己的研究,沒有花時間認真去思考,最重要的一塊拼圖在哪裡?當我們有更深度的交流,才能找到最核心的那一塊,做出最重要的貢獻。

李奇鴻說,科學家必須創造有用的知識,也就是會改變做事和想事情方法的知識。至於要選擇創造什麼知識,需要用 Art 來判斷。圖/研之有物

老師在國外的實驗室時是如何帶領研究團隊呢?對年輕的科學家有什麼樣的期待嗎?

「在碩士、博士訓練中最重要的關鍵,是從「讀」科學變成真正「做」科學。我們攤開一本教科書,看到裡面講這個、那個,只是讀人家的科學。即使去念了原始文章,仍然是看著科學怎麼被別人做出來而已。」

自己真正做研究才知道,教科書上每一頁、每一句,背後都可能有數千篇文章支持,那時才知道自己很渺小,懂得謙虛,了解自己一生能做的有限。

所以,每次要跨出一小步,要想該怎麼跨最有效率、得到最大效果。我認為,在碩士班或博士班,最重要的就是了解這種感覺。

有些學生可能覺得,反正我很渺小,世界這麼大,即使做一輩子,即使最成功的科學家,也不過是得到教科書上面的一句話而已,我怎麼做都沒關係啊。 但我們必須帶領學生了解,這個計畫不是老師叫你做才做,而是讓學生覺得這個計畫是自己的,有前進和發展的空間,就像自己的小孩,必須負責。

以前在碩、博士班,剛開始學會技術、實驗做出結果,或能像人家一樣發表文章,會很高興,但這很短暫,真正的轉捩點是我知道有什麼事,是全世界任何人都不知道的那種驕傲,才是真的能支持很久的。我還記得在某一天做到早上五點,從實驗室走出來,知道有個東西全世界只有我知道的喜悅!

當學生曾感受這種發現真實的快樂,你不用規定他早上幾點來、晚上幾點走,他自己就有動機做。

當一個人想這東西應該是怎樣,想辦法做實驗證明出來時,那真的是一種快樂。我想,這是任何其他行業都沒辦法比較的!

學生是要培養成未來的科學家、獨當一面,應該讓他自己走。即使在你看得到的地方,也要讓他自己走出來,而且,他自己想到的,比你告訴他來的有用。

其實,我當老師最興奮時,是學生告訴我那些我不知道的事,會覺得很喜悅,學生想到我沒想到的東西,表示他們有進步,比我還厲害,這很棒!

延伸閱讀

所有討論 2
研之有物│中央研究院_96
253 篇文章 ・ 2202 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

5

4
3

文字

分享

5
4
3
器官移植里程碑!豬心移植成功了,然後呢?
TingWei
・2022/02/13 ・4185字 ・閱讀時間約 8 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

2022/3/10 更新: 雖然本次案例中的豬心移植並未發生超級排斥反應,可謂跨過一大門檻。有了豬心,甚至讓貝內特得以回家與家人共度時光。但在進行手術兩個月後,他的病情仍舊惡化,近日報導傳出貝內特於 2022 年 3 月 8 日死亡。 目前確切的死因仍舊不明,尚待團隊發表調查結果。

新聞連結:https://www.bbc.com/news/health-60681493

2022 年 1 月,COVID-19 疫情陰影之下,器官移植的技術翻過了重大的一頁。美國馬里蘭大學宣布完成首例基改豬心移植人體的手術,至目前為止,患者尚未出現排斥現象,也創下心臟「異種移植」(Xenotransplantation)在人類身上成功的首例。

救人性命的「器官移植」面臨哪些挑戰?

細胞、組織、器官、系統,這是我們在學習人體構造的時候就耳熟能詳的層級概念。如果將動物體視作一個密切協作的機械,那麼各個器官就會像是其中的關鍵零件:心臟主要輸送血液到全身上下,肺臟從事氣體交換,腎臟將血液的雜質濾出製成尿液,肝臟則主司代謝調控身體中的各種物質。這些器官只要有一個失去功能,就會導致生物體的死亡。但既然是「零件」,現今的醫學已經可以在一定的程度上做到「更換零件」,讓生命延續下去──也就是「器官移植」。

圖/Pexels

在台灣,自從 1968 年台大醫學院李俊仁教授完成亞洲第一例活體腎臟移植手術,開啟器官移植的新頁迄今,器官的捐贈與移植已經一路擴展到心臟、肺臟、肝臟、胰臟、腸。雖然我們將器官移植比喻為換零件,然而實質上器官移植所要克服的難關,遠比機械換零件要嚴苛、複雜許多。

首先第一道難關,就是「器官排斥」。人體的免疫系統會辨識外來物質。在大多數的情況下,這些外來物屬於會讓身體生病的「病原體」,而免疫系統的工作便是不管是細菌、病毒、寄生蟲,一律加以攻擊,避免進一步感染。因此,移植時放入的器官,也會被免疫系統視作「外來物」攻擊。這樣的反應,就是一般所說的「移植排斥」(transplant rejection)或是器官排斥。

一般來說,器官移植之前,會進行幾項配對檢測,包括 ABO 血型、組織抗原(major histocompatibility complex,MHC)交叉試驗,以盡可能找到合適的配對、減少免疫反應發生的機率與嚴重程度 [註1]。而即使經過這些配對檢測,器官的受贈者也需終身服用「抗排斥藥物」免疫抑制劑,抑制原有的免疫反應,在器官排斥與外來感染間取得平衡。

此外,器官移植的另一道難關,就是如何取得合適的器官。隨著器官移植的技術發展,肝臟與腎臟尚有機會接受活體捐贈,但如心臟等器官,卻必須來自腦死判定的捐贈者,數量稀少且不穩定。以台灣 2020 年統計,共有 79 例心臟捐贈,然而全台等待移植者接近 200 人,許多患者只能坐等時間流逝,寄望大愛的遺贈能有機會降臨,拯救自己一命。

捐贈的器官不夠,以至於許多病人在等待的過程中逐步邁向死亡,這也是為什麼人們把腦筋動到其他動物身上,尤其是豬。

使用豬作為器官來源有哪些缺優點?

事實上,異種移植完全不是什麼新概念,人類利用動物製劑作為醫療材料已經超過百年。早在 1930 年代,我們就使用豬胰島素治療糖尿病;而使用豬的心臟瓣膜來修補瓣膜出現問題的人心,也已經有幾十年的歷史。然而,如前面所述,人與人之間的器官尚且有排斥的情況,更何況來自豬或者狒狒的器官,其表面的組織抗原跟人體差異更大,排斥反應會更劇烈、更難以抑制。

可是,使用豬隻作為器官來源,仍有許多優點。靈長類動物(如黑猩猩或狒狒)與人的親緣較為接近,但其飼養與繁殖相對於豬困難許多,而且靈長類多為保育類,存在更多倫理上的限制。此外,豬在生理與解剖結構上與人類足夠接近,扣除排斥的問題,豬隻的器官相當有機會勝任維繫人體功能的角色。

豬在生理與解剖結構上與人類接近,其器官有機會勝任維繫人體功能的角色。圖/Pexels

因此,長久以來豬隻基因改造(genetic modification, GM)的一個重要議題,就是如何使其更「人類化」,以避免排斥 [註2]。隨著對基因體表現的瞭解逐年深入,加上近十年來 CRISPR 技術發展,因應器官移植需求而打造的「基因編輯豬」,從科幻構想,一躍而成為發展中的現實。

使用 CRISPR-Cas9 培育出基因改造豬,登上 2017 年《Science》封面。圖/《Science》

現階段,有許多團隊都在發展供器官移植的基因改造豬,除了聯合治療公司(United Therapeutics)以外,還包括 eGenesis 研發的無豬內源性反轉錄病毒(PERV)豬、紐西蘭 NZeno 的迷你豬等,或許還有更多尚未浮現檯面的團隊。

第一例豬心移植可以告訴我們的事

2022 年 1 月 7 日,57 歲的大衛.貝內特(David Bennett)在馬里蘭大學醫學中心(UMMC)成功獲移植了一顆經基因改造的豬心,這顆豬心來自聯合治療公司旗下的生技公司 Revivicor 的基因改造豬。這個系列的基因改造豬有 10 個基因位點經過改造,其中剔除了 3 個豬原有的基因,以免引發人體免疫反應,然後加入 6 個人類基因,讓身體願意接受外來器官,最後一個改造則讓豬心不會對生長激素持續反應,讓心臟可以維持在人體所需的大小。

在此之前(2021 年),紐約大學朗格尼醫學中心(NYU Langone Medical Center)曾將同系列豬隻的腎臟接到兩位已被判定腦死的病人身上,確認了豬腎可以在人身上運作,不但沒有發生排斥反應,而且代謝運作良好。相關研究人員曾進一步向美國 FDA 申請進行豬心的臨床試驗,但是遭到駁回。根據馬里蘭大學醫學中心移植小組外科醫師曼蘇爾.莫希丁(Muhammad Mohiuddin)的說法,團隊被要求先完成 10 次豬心移植到狒狒身上的實驗,才可以進一步進行人體試驗。以靈長類動物如狒狒作為移植模型,以瞭解潛在的副作用與改進之道,是這類研究常見的作法。2000 年國際心肺移植學會(ISHLT)曾提出綱要,認為接受移植的靈長類動物需有 60% 存活超過 3 個月,存活個體至少 10 隻,且顯然有機會繼續活下去,才能考慮進入臨床試驗。

然而,貝內特的特殊狀況讓此次的豬心移植成為可能。貝內特患有心律不整,無法外接機械式的心臟輔助裝置,加上有過不遵醫囑的醫療紀錄,使其獲准得到心臟的機會微乎極微 [註3]。而貝內特的心臟狀況若不移植就只能等死,因此 FDA 特別通過了本次的豬心使用。貝內特獲得的是死中求生的機會,而對研究人員來說,則是獲得了豬心在人類患者身上如何運作的臨床資料。

使用靈長類動物進行研究一舉,讓科學家獲得許多異種移植的重要資訊,比如從針對狒狒的研究中,獲得了不少異種移植的用藥資訊,更發現早期接受移植的狒狒,都由於豬心快速生長而死亡。然而,許多研究人員或許已經非常期待將動物實驗逐步轉向臨床,因為將豬心放到健康狒狒身上所得到的數據,仍與重病纏身的人類有很大的不同。無論是免疫或藥理方面,研究人員當然更希望獲得與人體有直接關聯的資訊。

豬心移植創下先河,進入臨床仍待研究

然而,要看到豬隻的器官正式被納入臨床移植使用,恐怕還有許多問題有待釐清。這些問題包括(但不限於)使用異種器官潛藏的感染風險,縱使這些基因改造豬可以被養在高規格的飼養環境,避開一般豬隻帶有的病毒與細菌,豬隻基因體內的「內源病毒」對人體的風險仍有待釐清 [註4]。即使豬隻經過多種基因編輯,並且順利熬過異種移植的急性排斥期後,是否還有潛在的問題需要克服,目前尚無人得以逆料。

圖/Science

此外,隨著醫療設備近二十年的發展,使用血液透析(替代腎臟)或機械輔助設備協助血液運行(替代心臟)的方法亦越來越常見。或許,在等待豬心獲得臨床認可,加入器官庫的行列的同時,醫學技術亦會有所發展,使得器官需求不再如今日這般迫切。由於腎臟或肝臟可由活體移植、不似心臟需求極端迫切;因此肝腎兩者的異種移植研發進展或許將較為緩慢。目前,豬隻的器官移植還處在動物實驗的階段,尚未步入臨床,在人體的研究資料尚且闕如的情況下,相關單位應如何考量患者需求、判斷移植風險,亦將成為倫理與制度需要克服之一大考驗。

醫療技術進展,本就來自於在各種未知中承擔風險、勇敢做出前人未曾做過的事。我們感念這其中的各種參與者,不管是技術研發人員、受試者或是醫師的參與,也希望未來在器官移植的領域,能有更多的好消息,讓那些苦苦等待的人們,盡早獲得救贖。

註解

  1. 器官移植的排斥反應通常分成超急排斥反應(hyperacute rejection),發生在器官接上血管後的數分鐘到數小時內;急性排斥反應(acute rejection),發生在數周到一年內;慢性排斥反應(chronic rejeaction),發生在移植數月甚至數年之後。因此貝內特此案例之「成功」僅代表現階段並未發生排斥反應,且豬心基本上可在人體運作,未來是否可能發生慢性排斥反應尚未可知。
  2. 異種移植的排斥反應通常更劇烈也更複雜。
  3. 器官移植排序的規定各國、各州不同,有些地方的規範會考量患者遵循醫囑的程度或求生意志等。臺灣的規範可見財團法人器官捐贈移植登錄中心 – 附表(各器官分配辦法) 
  4. 2017 年已有團隊培育出內源病毒去活化的豬寶寶(詳見:豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆!),但本次的移植豬心應無經過相關的處理。

參考資料

  1. 醫學與倫理:美國首例豬心器官移植面臨的三大倫理爭議 – BBC News 中文
  2. 全球首例!豬心移植人體手術完成,可望解決器官短缺問題 – INSIDE
  3. First pig-to-human heart transplant: what can scientists learn? (nature.com)
  4. In a First, Man Receives a Heart From a Genetically Altered Pig – The New York Times (nytimes.com)
  5. 豬腎成功移植人體,異種移植會成為救命稻草嗎? | GeneOnline News
  6. 《基因編輯大革命》: 「基因編輯豬」是器官移植新希望? The News Lens 關鍵評論網
  7. 豬隻器官移植新突破:CRISPR技術攻破了「豬內源病毒」的瑪利亞之牆! – PanSci 泛科學
所有討論 5
TingWei
13 篇文章 ・ 10 位粉絲
據說一生科科的生科中人,不務正業嗜好以書櫃堆滿房間,努力養活雙貓為近期的主要人生目標。