0

0
0

文字

分享

0
0
0

發現兩個和銀河系一樣有大型衛星星系的河外星系

臺北天文館_96
・2012/08/27 ・1042字 ・閱讀時間約 2 分鐘 ・SR值 514 ・六年級

在這之前,天文學家還未發現其他河外星系像銀河系一樣,擁有大麥哲倫星系和小麥哲倫星系這樣鄰近的大型衛星星系對。不過,天文學家利用電波望遠鏡進行巡天觀測,終於發現兩個看起來和我們所在的銀河系幾乎一模一樣的星系,不僅僅是擁有旋臂的螺旋狀外觀,還包含這個星系周遭環境的狀況;除此之外,他們還發現了幾個雖不是完全一樣但還算相似的星系。右圖是他們發現的兩個與銀河系幾乎一樣的星系中較大的一個,編號為GAMA202627。

位在南天的大麥哲倫星系和小麥哲倫星系,是我們銀河系最大的兩個衛星星系,環繞銀河系公轉。國際電波天文學研究中心(International Centre for Radio Astronomy Research,ICRAR)Aaron Robotham等人利用迄今最詳細的局部宇宙(local Universe)分佈圖來進行GAMA( Galaxy and Mass Assembly survey)巡天工作,結果發現像大小麥哲倫這樣的大型衛星星系相當稀少,不過發現的這兩個擁有類似大小麥哲倫星系的螺旋星系都與銀河系類似,顯示我們必定是在剛好的時間點、恰好的位置,才能擁有這樣的夜空景象。

天文學家利用電腦模擬星系如何形成的過程,可是很少能產生類似目前銀河系及大小麥哲倫等衛星星系這樣現況的結果,因此這些天文學家認為銀河系及大小麥哲倫星系這樣的情況必定相當稀少,但無法確定稀少到什麼程度。

不過,經由Robotham等人搜尋過數十萬個星系之後的研究成果,發現約有11.9%的星系擁有靠得比較近、質量與大麥哲倫星系相當的衛星星系,其中只有約14個星系系統與銀河系類似;而在其中,只有2個星系擁有2個質量與小麥哲倫星系相當的衛星星系。顯示擁有這種組合僅有約3.4%而已。但是,若是將銀河系與大小麥哲倫的質量也考慮進去,則「銀河系+大小麥哲倫星系」的組合,將僅有0.4%而已。這是第一次確認這樣的稀有性是稀少到什麼程度。

-----廣告,請繼續往下閱讀-----

Robotham博士表示:我們以前從未發現過像「銀河系+大小麥哲倫星系」這樣組合的其他星系,因此不難想像找到這兩個星系是多困難的事。近期的天文發展,包括夠靈敏且能大範圍搜尋的電波望遠鏡,才終於得以讓天文學家們發現與銀河系類似的星系族群。許多星系都擁有衛星星系環繞運行,而且我們所在的銀河系是非常典型的螺旋星系,但像鄰近銀河系的大小麥哲倫星系這樣大型的衛星星系卻相當罕見,可能是因為它們能以現在模樣存在的時間並不長,大約只有數十億年而已。

Robotham等人計畫繼續申請澳洲新南威爾斯省和智利等地的電波望遠鏡的觀測時間,以便能詳細瞭解他們所發現的這些與銀河系類似的星系們。

資料來源:The Milky Way now has a twin (or two). icrar.org [5 September, 2012 ]

轉載自 網路天文館

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
0

文字

分享

0
4
0
大麥哲倫星系觸發,銀河系部分結構的反應運動
臺北天文館_96
・2021/02/22 ・3126字 ・閱讀時間約 6 分鐘 ・SR值 608 ・十年級

  • 本文轉載自臺北天文館,《臺北星空》第 99 期
  • 文/美國夏威夷大學天文研究所 泛星計畫博士後研究員|林建爭
  • 校稿/美國夏威夷 專案文物修復師|王品方

來自愛丁堡大學的天文學家 Michael S .Petersen 與 Jorge Peñarrubia 近期在自然 (Nature) 期刊中,針對銀河系與大麥哲倫星系 (The Large Magellanic Cloud) 的交互運動,有了新的發現。這份最新的研究指出受到大麥哲倫星系重力場的影響,銀河盤面發生偏移,透過測量銀暈(銀河系的主要部分向外延伸,大致成球形的結構)上不同類型恆星的運動,發現銀河盤面正朝著大麥哲倫星系過往的軌跡方向移動,這個觀測結果與數值模擬的模型相符。

銀河系最大的衛星星系——大麥哲倫星系

大麥哲倫星系是銀河系最大的衛星星系,其質量超過銀河系的十分之一,近期觀測發現,它正以高達每秒 327 公里的速度從銀河系旁通過,離銀河系中心距離僅約 16 萬光年(註:銀河半徑約 5 萬光年),是最接近銀河系的。這樣規模的衛星星系在如此近的距離下高速經過銀河系帶來重力場的變化,使銀河盤面相對於質量中心產生偏移,然而銀暈與盤面受到衛星星系重力牽引的影響不同,位於銀暈越外圍的恆星需要較長的時間尺度才能將重力場的變化反應在運動軌跡上。

當一個外力突然進入一穩定旋轉的慣性系統,如同用手去觸碰正在旋轉的陀螺會使它產生偏移,銀河盤面因大麥哲倫重力場影響而會發生偏移且朝某一方向移動,銀暈的運動軌跡也會出現變化以維持動態平衡,這個銀暈因受盤面偏移而產生的運動改變稱作反應運動 (reflex motion)。

銀暈模擬圖。圖/Wikipedia

其實反應運動的測量在恆星尺度上也被拿來當作尋找系外行星的工具之一,如圖 1 所示,反應運動主要與系統中質點的質量比有關,舉例來說,一個質量越大的行星繞著母恆星旋轉,母恆星的反應運動越大(繞系統質心的旋轉半徑越大);因此,天文學家們可藉由觀測恆星的反應運動來發現周圍的未知行星,隨著觀測技術的進步,可以偵測到的自行運動越來越小,距離量測也越趨準確,未來藉由反應運動的測量將有機會發現更小質量的系外行星。

-----廣告,請繼續往下閱讀-----
圖1. 系外行星系統。母恆星受到系外行星重力場影響而有些微偏移質量中心的圓周運動,紅色圈是母恆星的軌道,藍色圈是系外行星軌道,此系外行星系統質量中心在正中央。由於系外行星與母恆星亮度對比太大不易直接觀測,因此藉由精確測量母恆星的反應運動,可以間接推測此系統是否有行星的存在。模擬動畫/Movie of a star’s reflex motion
圖2. 銀河系與大麥哲倫星系交互運動模擬截圖。紅色是大麥哲倫星系及其軌跡,藍色是銀河系盤面受到大麥哲倫星系重力場影響的軌跡,銀河系盤面正朝大麥哲倫星系過去的移動軌跡移動。圖/The Milky Way in disequilibrium | Nature Portfolio Astronomy Community

那如何藉由反應運動的測量來分析銀河盤面與大麥哲倫星系的交互運動呢?天文學家 Petersen 等人利用銀暈上的 K 型巨星 (K Giants)、藍水平分支星 (Blue Horizontal Branchs) 和衛星星系來分析銀河盤面的移動速度。這三個分類中,資料樣本數量龐大的亮星來源 K 型巨星,擁有較精確的自行運動測量數值,有助於將盤面移動速度限縮在較小的範圍內,如圖 3 紅色區域所示。

圖3. 銀河系盤面運動方向投影圖。陰影輪廓由淺至深分別表示 67%、90%和 95%銀河盤面運動方向的機率,不同顏色表示不同星體推估出來的機率分佈,淺灰色是綜合統計結果、紅色是 K 型巨星 (K Giants)、藍色是藍水平分支星 (Blue Horizontal Branchs)、橘色是衛星星系 (Satellites)。黑白背景是 Pan-STARRS DR1 和 Gaia DR2 的RR天琴變星的密度分佈圖。LMC是大麥哲倫星系,周圍兩個質量較小的衛星星系分別是:小麥哲倫星系 (SMC) 和人馬座矮星系 (Sgr) ,白色虛線表示大麥哲倫星系過去的運動軌跡。圖/Detection of the Milky Way reflex motion due to the Large Magellanic Cloud infall

綜合分析三類不同來源恆星的觀測資料後,Petersen 等人發現目前銀河盤面正以相對於外圍銀暈(離銀河中心 13-39 萬光年範圍)約每秒 32 公里的速度,朝向大麥哲倫星系早期通過銀河系的軌跡方向移動,而不是朝向大麥哲倫星系當前的位置移動,如圖 2 的模擬圖以及圖 3 觀測資料的結果所示。這樣的現象主要是因為大麥哲倫星系移動的速度太快,使得銀河盤面在重力牽引導致的位移上發生延遲,這個觀測結果與數值模擬銀河系與大麥哲倫星系的交互運動模型一致。

Petersen等人透過六項恆星參數的測量,包含有距離 (heliocentric distances)、銀河座標 (Galactocentric coordinates)、自行運動 (proper motion) 與視向速度 (line-of-sight velocities),估算出銀暈上恆星的反應運動;這個觀測結果說明了在模擬銀河系的動態模型時,大麥哲倫星系接近銀河系時所帶來的重力擾動是不可忽略的。此外,在觀測銀暈上的恆星時所使用的參考座標系,也必須針對銀河盤面產生的反應運動進行校正。

研究人員更進一步地利用貝氏擬合 (Bayesian-fitting) 的技術(註:將模型參數看成隨機變量,利用馬可夫鍊蒙地卡羅法來估算出模型參數的一種統計解法)來測試目前銀河系與大麥哲倫星系的數值模型,發現從銀河系現有的反應運動所對應到的是一個較大質量的大麥哲倫星系,這個結果暗示著大麥哲倫星系在接近時可能伴隨著帶有暗物質的星系暈。他們認為未來光譜觀測的巡天計畫與 Gaia 資料的公開,將有助於更精確的模擬大麥哲倫星系通過銀河系時的軌跡,甚至有機會進一步了解暗物質在銀河系與大麥哲倫星系中的分佈與結構。

-----廣告,請繼續往下閱讀-----

更加精準的測量數據 揭開星系間的奧秘

這項研究結果也指出,我們不能單純的將銀河系當是做一個動態平衡系統。觀測者需要校正重力擾動對盤面質心位移所產生的非慣性效應;儘管我們目前已針對太陽的反應運動進行校正,但銀河盤面與其他星系的動力學研究,如大麥哲倫星系造成銀河系的反應運動,仍不可忽略。

總和來說,這份研究探討了位於銀暈外圍(半徑大於 13 萬光年)的恆星運動因銀河盤面位移而產生反應運動,位於較小半徑內,反應運動的程度幾乎可以忽略。此外,這份研究也指出,受到銀河系和大麥哲倫星系相互重力牽引的影響,這兩星系間的系統位能也隨著時間變化,若我們能更了解這部分動態的能量轉移,許多問題將有望被一一解開,例如大麥哲倫星系的接近軌跡與暗物質如何影響其路徑?大麥哲倫會在接近銀河系時因潮汐力而流失其暗物質嗎?這些暗物質又會往何處去呢?

隨著近期 Gaia 資料的公開,在自行運動上有更大範圍且準確的測量,綜合一些大型望遠鏡的光譜巡天計畫,例如 LAMOST、4MOST 及 VLT-MOONS,銀暈上恆星的視向速度測量資料將會更加準確,也有助於我們了解大麥哲倫星系接近銀河系的軌跡與其潮汐碎片 (tidal debries) 的位置。於此,在接下來的幾十年中,我們將有機會一揭銀河系與星系周圍動態運動的神秘面紗。

大小麥哲倫星系。圖/林建爭

原文及參考資料

延伸閱讀

-----廣告,請繼續往下閱讀-----
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!