Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

璀璨的疏散星團NGC 2100

臺北天文館_96
・2011/09/12 ・882字 ・閱讀時間約 1 分鐘 ・SR值 496 ・六年級

右圖是歐南天文台(ESO)位在智利La Silla觀測站的新技術望遠鏡(New Technology Telescope,NTT)捕捉到的疏散星團NGC 2100的影像。這個璀璨的星團年齡僅約1500萬年而已,位在銀河系最大的衛星星系—大麥哲倫星系(Large Magellanic Cloud,LMC)中,距離約17萬光年。

這個明亮的星團被一團氣體包圍,由於恰在著名且相當明亮的蜘蛛星雲(Tarantula Nebula)外緣之處,被蜘蛛星雲和星雲中的RMC 136星團搶盡鋒頭,使得天文觀測者常常會忽略這個星團。影像右方中間還有一團更小、更容易被忽略的NGC 2092星團。

這幅影像是由EMMI相機上數個不同濾鏡的影像所組成,恆星的顏色基本上接近自然顏色,另外再以氫離子(H+,以紅色顯現)和氧離子(O2+,以藍色顯現)的影像疊加。星雲的顏色基本上與照亮它們的恆星溫度有關。蜘蛛星雲RMC 136星團是個由熾熱年輕恆星組成的超級星團,位在這幅影像的右上角以外之處,這些熾熱年輕恆星所發出的強烈輻射足以讓星雲中的氧原子被游離而發光。而在NGC 2100星團下方的紅色雲氣,則顯示此處大抵位在RMC 136勢力範圍的末端,或是附近僅有溫度較低、較老的恆星的輻射讓氫原子游離而發光。而NGC 2100裡的恆星們,就是輻射量較低、年齡較老的恆星,所以幾乎沒什麼雲氣伴隨在旁。

星團是由恆星聚集而成的團體,這些恆星幾乎都是由同一團氣體塵埃雲收縮而誕生,所以年齡相差無幾。但因質量不同,演化的程度也不同。通常星團中心的恆星數量比較多、質量比較高,愈往星團外側的恆星愈少且質量愈低,所以整個星團的中間區域比外圍亮得多。

-----廣告,請繼續往下閱讀-----

NGC 2100是個疏散星團,意味著成員星之間的重力束縛比較弱。目前天文學家研究認為這個星團的壽命僅約數千萬到數億年,之後就會逐漸解體,各自散佈到太空中。相對地,另一種所謂的「球狀星團(Globular clusters)」由數量非常龐大的老恆星所組成,且彼此距離緊密,重力束縛強,不易逸散,整個星團的壽命可達數十億到一百多億年之久,有些球狀星團甚至幾乎與宇宙同歲。因此,雖然NGC 2100的年齡可能比鄰近的其他LMC的星團老一些,但與球狀星團相較之下,還是算「幼齒」級的了。

資料來源:Young Stars Take a Turn in the Spotlight

轉載自台北天文館之網路天文網網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

12
5

文字

分享

0
12
5
活躍黑洞的炙熱遺跡:費米泡泡
EASY天文地科小站_96
・2022/04/29 ・4611字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星
圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team.

你看過銀河嗎?

如果你在晴朗的夏日午夜旅行到沒有光害的山上,將會看到天上有一條淡淡的、若有似無的亮帶,好像一條薄薄的雲橫跨夜空,它正是我們所居住的星系 ── 銀河系(Milky Way)的盤面。在數位相機的加持之下,我們還能看到這薄薄的盤面上,其實布滿恆星、星雲、以及塵埃帶,複雜、深邃而美麗。

美麗的銀河。圖/陳子翔(CC BY-NC-ND 4.0)拍攝於清境。

但如果,你有一雙能夠看到「伽瑪射線」的眼睛,你將看到兩個視角高 50 度、寬 40 度的巨大橢圓形「泡泡」,矗立於銀河盤面兩側。它們名為「費米泡泡 Fermi Bubbles」,是銀河系中巨大且神祕的結構之一。

費米泡泡的起源,以及存在的意義,一直是過去十多年來,天文學家相當關注的研究主題。

費米泡泡示意圖。圖/NASA’s Goddard Space Flight Center

最近(2022 年 3 月),一篇刊登於《自然天文學》(Nature Astronomy)的研究顯示,壯闊的費米泡泡很可能源自兩百多萬年前,銀河系中心超大質量黑洞的一次能量爆發。

-----廣告,請繼續往下閱讀-----

費米泡泡的發現

當我們一聽到「費米泡泡」這個詞,腦海中浮現的第一個問題往往是:

「費米是誰?這個泡泡跟他有什麼關係?」

在物理界,恩里科.費米(Enrico Fermi)這個名字可謂家喻戶曉。他是 20 世紀初最重要的物理學家之一,曾參與曼哈頓計畫,設計與建造世上第一個核子反應爐和原子彈;並且在量子力學、核子物理、粒子物理和統計力學都貢獻卓越。後世以他命名的物理概念、研究計畫不計其數。這之中,就包含「費米伽瑪射線太空望遠鏡 Fermi Gamma-ray Space Telescope」。

費米太空望遠鏡。圖/NASA

正如其名,費米是一座專門用於觀測伽瑪射線的太空望遠鏡,它於 2008 年發射升空,是軌道上最好的伽瑪射線太空望遠鏡之一。比起前輩們,費米擁有更大的視野、更高的靈敏度和空間解析度,可以看得更廣、更暗、更清楚。

它的主要任務,是不斷的掃視整片天空,繪製伽瑪射線的全天地圖(all sky map),研究黑洞、中子星、超新星等宇宙中最高能的天體。

費米太空望遠鏡的十週年科學成果紀念海報。圖片中橢圓形的區域,就是費米拍攝的伽瑪射線全天圖,以等面積投影法投影成二維的圖。中間的水平亮帶源自銀河盤面上的氣體,上下兩個泡泡狀結構就是費米泡泡的示意圖。圖/NASA

費米太空望遠鏡升空短短兩年後,天文學家就從觀測資料中發現,如果我們將費米的全天伽瑪射線圖中已知的星體(比如銀河系的瀰散氣體、中子星、其他星系等)全部扣除,將會看到銀河中心的上下兩側,各有一對高 50 度、寬 40 度的巨大橢圓形區域,而這是從未發現過的銀河系新結構!

-----廣告,請繼續往下閱讀-----

天文學家於是將它命名為「費米泡泡 Fermi Bubble」,以紀念費米太空望遠鏡的重要貢獻。

相對於銀河系中的瀰散氣體,費米泡泡的亮度其實並不高。因此天文學家必須先小心翼翼的將其他伽瑪射線的來源建模並扣除,才能看到這巨大但黯淡的構造。影/NASA Video

而除了在伽瑪射線看到的費米泡泡之外,天文學家也在微波和 X 射線波段看到了相似的結構。

在微波波段,威爾金森微波各向異性探測器(WMAP)和普朗克衛星(Planck)都在費米泡泡的位置觀測到兩片橢圓形的明亮區域,天文學家稱之為「微波薄霧 microwave haze」。而在 X 射線波段,2019 年才昇空的義羅西塔(eROSITA)衛星則發現了與費米泡泡相似,但是更大的泡泡狀結構,被稱為「eROSITA 泡泡」。

另外,在紫外線波段,雖然沒辦法直接看見泡泡狀的結構,但天文學家藉由遙遠天體通過費米泡泡中的稀薄氣體時產生的吸收譜線,可以計算出費米泡泡的膨脹速率,大約是每秒數百到數千公里的等級。

綜合以上資料,天文學家認為費米泡泡應該是源自數百萬至一千萬年前,銀河系中心的一次巨大爆炸。這場爆炸大約釋放了 1048 – 1049 焦耳的龐大能量(相當於太陽終其一生釋放的能量,再乘以 10000 倍以上),並加熱了銀河系中心的氣體,使其以每秒數千公里的速度劇烈膨脹。百萬年後的今天,就成為了橫跨數萬光年巨大泡泡。

-----廣告,請繼續往下閱讀-----

但是,這張錯綜複雜的拼圖,還缺少了最核心的一塊:

這麼龐大的能量,究竟是從何而來?

超新星爆發還是黑洞噴流?費米泡泡的身世之謎

費米泡泡剛被發現不久,天文學家就對驅動費米泡泡的核心引擎,提出了兩位候選人:

第一種觀點,認為銀河系中心在數千萬年前可能曾有大量的恆星形成,其中年輕的恆星由於壽命短暫,很快的就走完它的一生,並發生超新星爆炸,釋放出巨大的能量。

另一種觀點,則認為銀河系中心的超大質量黑洞在數百萬年前可能短時間內吃進了大量氣體,並在過程中將能量以噴流(jet)或外流(outflow)的形式釋放出來。

-----廣告,請繼續往下閱讀-----

兩種說法聽起來都頗有可能,而且天文學家都有在其他星系看過類似的現象,那該怎麼知道哪邊才是對的呢?這時,天文學家們就兵分兩路,觀測學家們繼續對費米泡泡進行更多觀測,尋找更多可能的隱藏線索;理論學家則利用電腦模擬,嘗試在電腦中重現出觀測結果。

劇烈的超新星爆發(如左圖的 M82)與黑洞噴流(如右圖的 Centaurus A)都可能產生類似費米泡泡的結構。圖/NASA, ESA, CXC, and JPL-CaltechNASA/CXC/SAO, Rolf Olsen, JPL-Caltech, NRAO/AUI/NSF/Univ.Hertfordshire/M.Hardcastle

早年,兩派假說各有各的優勢,也有各自難以解釋的弱點。但隨著觀測資料的不斷累積,天文學家漸漸發現黑洞的噴流假說似乎更符合觀測結果,因此更具說服力。但即使如此,想要在電腦模擬中一次重現費米泡泡所有的觀測特徵,仍是相當困難的挑戰。

三個願望,一次滿足

然而今(2022)年三月,清大天文所楊湘怡教授利用三維磁流體力學電腦模擬(MHD Simulation),就一次重現了費米泡泡、義羅西塔泡泡與微波薄霧三個重要的觀測特徵。

他們假設銀河系中心的超大質量黑洞,在 260 萬年前曾經朝著銀河系盤面的上下兩側噴出兩道噴流。噴流帶有 1050 焦耳的強大能量,其中含有大量以接近光速運動的高能電子。當這些高能電子與低能量的光子碰撞時,電子會將能量傳遞給光子,就好像被保齡球打到的球瓶一樣,讓光子從低能量的可見光,變成高能量的伽瑪射線。這個被稱為「逆康普頓散射 Inverse Compton Scattering」的機制,讓我們能在伽瑪射線看到費米泡泡。

-----廣告,請繼續往下閱讀-----

與此同時,這些高能電子在銀河系的磁場中運動時,會以「同步輻射 Synchrotron Radiation」的方式放出微波與無線電波,形成我們看到的微波薄霧。最後,強大的噴流在撞擊銀河系中的氣體時,會產生以每秒數千公里高速移動的震波(Shock Wave)。震波所到之處,受到壓縮而加溫的氣體就會釋放出 X 射線,成為我們看到的義羅西塔泡泡。而且氣體運動的速度,也與紫外線觀測的結果相符。

這個研究結果,將伽瑪射線、X 光、紫外線到微波的所有觀測結果,用黑洞噴流漂亮的一次重現,這無疑是我們對費米泡泡理解的一大進展。

將理論模擬的費米泡泡投影到銀河系的可見光影像上。圖中可以清楚的看到費米泡泡(Cosmic rays)、義羅西塔泡泡(Shocks)以及它們跟太陽到銀河系中心的距離(28000 光年)的大小比較。圖/ESA/Gaia/DPAC; H.-Y. Karen Yang; NASA visualization team

未來展望

那麼,費米泡泡的身世之迷,就此蓋棺論定了嗎?

嗯⋯⋯還沒這麼快。

-----廣告,請繼續往下閱讀-----

無論多麼精細的模擬,終究是對真實世界的近似與簡化,理論學家永遠可以繼續考慮更多的物理機制,計算出更精細的結果。觀測天文學家也會不斷拿出更多、更好的儀器,挑戰模擬的結果。

更宏觀的看,如果銀河系中心的超大質量黑洞在兩百多萬年前真的曾經如此活躍,它釋放出的龐大的能量,是否曾對銀河系造成其他的影響?我們是否能夠從中學到更多關於銀河系的歷史,以及黑洞跟星系間複雜的共同演化機制?這些都有待天文學家的持續探索。

費米泡泡的故事,仍未完結。

銘謝

感謝論文第一作者、清大天文所楊湘怡老師對本文的指導與建議。

參考資料(學術論文)

-----廣告,請繼續往下閱讀-----
  1. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole | Nature Astronomy
  2. Unveiling the Origin of the Fermi Bubbles – NASA/ADS
  3. X-Ray and Gamma-Ray Observations of the Fermi Bubbles and NPS/Loop I Structures – NASA/ADS
  4. Fermi Gamma-ray Space Telescope: High-Energy Results from the First Year

延伸閱讀(報導與科普文章)

  1. 本次研究相關
  2. 費米泡泡相關
  3. 其他相關天文物理科普文章
-----廣告,請繼續往下閱讀-----
EASY天文地科小站_96
23 篇文章 ・ 1583 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

6
1

文字

分享

0
6
1
謎樣的「超快自旋小行星」——什麼原因讓它自旋這麼快而不崩解?
科技大觀園_96
・2021/12/23 ・2604字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

超快自旋小行星的自旋週期小於兩小時。圖/沈佩泠繪

科學家相信,一顆小行星的內部可能是由一堆大大小小的碎片組成,這些碎片靠著彼此的重力聚集成一顆小行星,這就是所謂的「瓦礫堆模型」。瓦礫堆小行星無法自旋太快,如果自旋速度超過一個極限,整顆小行星就會遭受強大的離心力而崩解。瓦礫堆模型可以解釋為什麼小行星有一個自旋週期 2 小時的極限,因為超過這個極限,小行星就會瓦解。 

圖中的黑點是一般小行星,圖中虛線是 2 小時的自旋週期,藍色圓點是超快自旋小行星,它們的自旋週期比一般小行星快,短於 2 小時。圖/章展誥提供

「凡事都有例外」,這句話在小行星的自旋週期上也適用。2002 年,科學家發現一顆特別的小行星,它的長度大約 700 公尺,自旋週期只有半小時!這種小行星被稱為「超快自旋小行星」。這個例外讓天文學家感到困惑,是什麼原因讓它自旋這麼快而不崩解?瓦礫堆模型不適用了嗎?還有其他更多的超快自旋小行星嗎?這些問題就成了章展誥的研究主題。

如何量測小行星的自旋週期?

小行星本身不發光,只會反射太陽光。假設小行星的形狀是長橢圓形,當太陽照射到面積最大那一側,小行星看起來最亮;當太陽照射面積最小那一側,小行星看起來最暗。從小行星的亮度變化就可以知道它的自旋週期。 

從小行星的亮度變化可以推算出它的自旋週期。圖/沈佩泠繪

章展誥於 2011 年取得中央大學天文所博士學位,當時是跟隨高仲明教授研究銀河系結構。畢業後他先留在原團隊做博士後研究,後來轉跟隨葉永烜教授,與美國加州理工學院合作研究小行星的旋轉與結構模型,自此與超快自旋小行星結緣。

-----廣告,請繼續往下閱讀-----

為了尋找其他的超快自旋小行星,章展誥利用加州理工學院帕洛馬瞬變工廠(Palomar Transient Factory)的 1.2 公尺廣視野望遠鏡,進行大量小行星自旋週期的測量。2014 年春季,他發現一顆疑似超快自旋小行星,這顆小行星的亮度相當暗,無法確定它是不是真的轉得很快,就像聽音樂時,音量很低,很難聽清楚是哪一首歌;這時如果你有一對大象般巨大的耳朵,就可以把旋律聽得清楚。音樂和光一樣都是一種訊號,章展誥需要大口徑的望遠鏡,進一步確認這顆小行星是不是真的轉得很快。 

加州理工學院帕洛馬瞬變工廠的執行地——帕洛馬天文台。圖/Wikipedia

當時他正在加州理工學院訪問,便與加州理工學院的合作者使用他們的 5 公尺口徑望遠鏡進行自旋週期確認,結果顯示它確實是一顆超快自旋小行星。這顆超快自旋小行星的發現,證實了 2002 年發現的第一顆超快自旋小行星並不孤單,超快自旋小行星是一個族群。 

提到那次經驗,章展誥心中除了喜悅還有震撼,原來美國一流名校是這樣做研究的!取得 5 公尺望遠鏡的使用時間就像是走到對街買杯奶茶一樣容易,資源如此豐富,做研究自然得心應手。

除了轉得快,與其他小行星有什麼不同?

因為超快自旋小行星的相關研究成果,在 2017 年 4 月舉行的「小行星、彗星、流星國際研討會」(Asteroids, Comets, Meteors 2017, ACM 2017)上,國際天文學會(IAU)宣布將編號 10679 的小行星命名為 Chankaochang——章展誥小行星。到 2020 年 3 月為止,已知的超快自旋小行星一共有 26 顆,其中的 23 顆是章展誥的團隊發現的。除了尋找更多超快自旋小行星,章展誥還進一步研究它們的組成和分佈,比較它們與其他小行星有什麼異同。

-----廣告,請繼續往下閱讀-----

小行星距離我們那麼遠,天文學家要如何研究小行星的組成呢?假設建築工地裡有三種建材,分別是磚頭、水泥和大理石,如果它們放在手碰不到的距離,要如何分辨?你一定知道從顏色就可以分辨它們的材質,紅色是磚頭,灰色是水泥,白色是大理石。實際上天文學家也用類似的方法,他們用小行星的顏色來分辨它們的組成。章展誥的研究發現,這些超快自旋小行星的組成與一般的小行星並沒有不同。

小行星主要分佈在火星與木星的軌道之間,這些小行星分佈的區域稱為小行星帶。超快自旋小行星在小行星帶的分佈位置有什麼特別的地方嗎?它們比較靠近火星或木星?章展誥發現超快自旋小行星分佈的位置並不特別,與其他小行星分佈的位置很相似。

超快自旋小行星除了自旋得超快,它們的組成與分佈跟其他小行星並沒有什麼不同。至於為什麼它們可以轉得超快而不裂解,目前仍是未解之謎,期待未來章展誥能夠解開謎團,告訴我們答案。 

章展誥目前是中央大學天文所的助理研究學者。圖/章展誥提供

從星團到小行星 章展誥繞著天文轉

章展誥大學是念中央大學物理系,修過普通天文學後,覺得天文容易上手,後來進入天文所蔡文祥教授的研究室做暑期學生,開始他的天文研究之路。當時的時空背景,大多數的大學生畢業後都會選擇念碩士班,章展誥覺得天文比較親近,所以選擇報考天文所。考上中央大學天文所,繼續跟隨蔡文祥教授研究球狀星團。

-----廣告,請繼續往下閱讀-----

碩士班畢業後,章展誥到成功大學物理系許瑞榮教授實驗室協助研究紅色精靈,紅色精靈是一種高空閃電現象,他參與的團隊很幸運地拍到紅色精靈,這是臺灣首次記錄這種特殊、罕見的現象。

離開成大後,章展誥曾經到科技業工作,後來覺得不同部門之間,對解決問題方式存在很大的差異,因此在一年後離開企業界,回到中央大學擔任高仲明教授的研究助理,工作是用大量的天文數據和影像建構虛擬天文台。處理大數據的經驗,讓他可以幫助學弟解決研究上的問題,這讓章展誥興起攻讀博士的念頭。於是在 2006 年,他進入中央大學天文所博士班就讀,研究銀河系;博士後一直到現在,則聚焦在小行星。

從球狀星團、紅色精靈、虛擬天文台、銀河系到小行星,章展誥跨足天文、太空多個研究領域,至於未來,且讓我們拭目以待!

-----廣告,請繼續往下閱讀-----
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。