Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

克卜勒超新星的威力超乎預期?

臺北天文館_96
・2012/09/17 ・1274字 ・閱讀時間約 2 分鐘 ・SR值 577 ・九年級

-----廣告,請繼續往下閱讀-----

1604年,夜空出現一顆新星,比木星亮許多,數個星期之後才逐漸變暗。這個SN 1604超新星爆炸事件,被包括著名天文學家克卜勒(Johannes Kepler)在內的許多觀星者目睹並予以記錄。故數個世紀之後,來自這顆爆炸恆星的殘骸,被暱稱為「克卜勒超新星殘骸(Kepler supernova remnant)」,另一編號為蛇夫座V843變星(V 843 Ophiuchi)。

發現至今,天文學家長久研究克卜勒超新星殘骸,並試圖找出當超新爆炸時,到底發生了什麼事。利用錢卓X射線觀測衛星(Chandra X-ray Observatory)資料所做的最新分析顯示:這顆超新星爆炸的威力遠大於先前估計,但由於其真實距離比較原本預期的遠,才讓天文學家低估了它的爆炸威力。

上圖是錢卓累積了8天多的觀測結果,紅、黃、綠、藍和紫,代表從低到高的不同X射線能量。將這些X射線觀測結果和數位巡天計畫(Digitized Sky Survey)的可見光觀測結果(淺黃和藍色)結合後,可將背景星野也顯現出來。

先前利用錢卓影像分析顯示克卜勒超新星屬於所謂的Ia型超新星(Type Ia supernova),為雙星系統裡的白矮星子星,從伴星處掠奪質量,或與另一顆白矮星子星合併,當質量超過1.4倍太陽質量時將導致它不穩定而驟然發生熱核爆炸。

-----廣告,請繼續往下閱讀-----

和其他較著名的Ia型超新星及其殘骸不同,克卜勒超新星殘骸的形狀強烈受到它所衝入的環境影響。絕大部分Ia型超新星殘骸都非常對稱,但克卜勒超新星殘骸並不對稱,在其北側區域有個明亮的X射線光弧。這表示超新星爆炸後,其殘骸向外擴張的過程中,被這顆已死亡恆星周圍的氣體和塵埃阻擋限制。

這到明亮的X射線光弧有兩種解釋方式。其中一種理論模型認為:超新星爆發之前的恆星及其伴星在星際氣體之間移動,使得它們以明顯可見的速率喪失質量,因而產生一個所謂的弓狀震波(bow shock wave),類似在水中移動的船隻前方所出現的密集水波。另一個理論認為X射線光弧是爆炸殘骸向外擴張時,進入一個密度逐漸增加的星際雲氣所致。

其中弓狀震波理論推測克卜勒超新星殘骸距離地球遠於23,000光年;而星際雲氣密度漸增的理論則認為這個超新星殘骸的距離約在16,000到20,000光年之間。兩種理論所推定的距離,都比先前認定的13,000光年還遠得多。

無論上述哪種理論,X射線光譜(X-ray spectrum)—即不同能量等級的X射線量—都呈現出有大量鐵元素出現,顯現它的爆炸威力超過一般Ia型超新星的平均威力。此外,為了解釋理論模型中的X射線光譜,恆星爆炸之前,其周圍必須就已經先清空而形成一個小空腔;這個小空腔的直徑僅有現在超新星爆炸殘骸的1/10,可能是白矮星爆炸之前,來自白矮星表面快速且稠密的物質流向外衝出的結果。某些Ia型超新星理論也曾預測過會出現這種因物質流而形成空腔的狀況。

-----廣告,請繼續往下閱讀-----

錢卓和其他可見光望遠鏡之前也曾觀測到另一個威力比預期還強的Ia型超新星。這個研究是採用回光(light echo)觀測而得;回光是爆炸時所發出的光,被周圍氣體雲陸續反射的現象。這個特別的Ia型超新星位在16萬光年遠的大麥哲倫星系(Large Magellanic Cloud)中,因此比克卜勒超新星遠得多,當然也更難以研究。

資料來源:Kepler’s Supernova Remnant: Was Kepler’s Supernova Unusually Powerful? NASA

轉載自 網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

7
5

文字

分享

0
7
5
宇宙「新」光──新星、超新星與千級新星
全國大學天文社聯盟
・2022/03/30 ・4272字 ・閱讀時間約 8 分鐘

  • 文/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

看星星,是大多數人接觸天文的契機。現今,看見滿天星斗對於被光害荼毒的都市人而言是一種奢侈,相較於古時夜無燈火,總有許多靜謐無光的夜晚,能讓人們一同仰望星空,思索空中的奧秘。多數星星安靜地閃爍,被人類賦予神話故事,成了現在為人所知的「星座」。另外,有少數幾顆不安分地移動著,它們的移動方式看似有規則,有時候卻會逆行,這些在天空中漫遊的星星,我們就稱之為「行星」 。

在極少數的情況,我們會發現過去未曾注意到的星點,猶如初來乍到的旅客,古時中國稱之為「客星」 [註一]。現在我們知道,這些看似新生的星,實則氣數已盡。利用強大的各波段望遠鏡,人類偵測到大量「新」光,並提出多種機制來解釋星光快速且劇烈改變的現象。

本文將介紹 3+1 種天文現象,分別為「新星(Nova)」、「超新星(Supernova)」和「極亮超新星(Superluminous supernova / Hypernova)」,以及「千級新星(Kilonova)」。前兩者的觀測歷史源遠流長,後兩者則歸功於現代發達的觀測技術,才讓我們得以一探究竟。

蟹狀星雲,古時中國稱之為天關客星,為西元 1054 年的超新星爆炸殘骸。圖/NASA, ESA, J. Hester and A. Loll (Arizona State University)

新星:我可一點都不年輕!

新星(Nova)來自拉丁文,有 「new」 之意。過去,人們仰望寧靜無波(一成不變)的星空時,若是偶然發現從未見過的星星,便稱之為「新星」。但如今我們知道,新星其實不是剛誕生的星,而是古老的小質量恆星,會在它們的生命終章──白矮星時期,突然變得異常明亮。

-----廣告,請繼續往下閱讀-----

白矮星是小質量恆星死亡後的產物,緻密、溫度高,但亮度低,平常不易觀測。一般而言,白矮星是非常穩定的天體,但如果身邊有個伴,情況就不同了。若是白矮星和伴星互繞的距離過近,使得伴星的氫被吸向白矮星表面,並在其表面點燃核融合反應,產生劇烈的光度變化,讓白矮星成為用肉眼可見的「新星」。

近年,天文學家發現,新星的出現經常伴隨強烈的伽瑪射線,推測是來自新星爆發時產生的衝擊波。後續研究指出,新星的高光度也是以衝擊波作用為主,而不是來自表面的核融合反應,打破了以往既有的觀點。

藝術家繪製的假想圖。右側的白矮星吸走左側伴星的氫,成為亮度極高的新星。圖/NASA/M.Weiss

超新星──宇宙中的燦爛花火

超新星(Supernova)顧名思義是新星的 Super 版,比「新星」更亮的星星──天文名詞總是取得如此淺顯易懂。超新星的光度遠超越新星,其形成機制也有所不同。

目前科學界認為超新星有兩種不同的形成機制,分別為「熱核超新星(Thermonuclear supernova)」與「核心塌縮超新星(Core-collapse supernova)」。

「熱核超新星(Thermonuclear supernova)」前身和新星一樣是白矮星,差別在於熱核超新星爆炸極具毀滅性。當白矮星的質量增加到「錢德拉賽卡極限(Chanfrasekhar limit)」,也就是臨界值時,引爆其核心的碳元素將劇烈爆炸,將使白矮星灰飛湮滅。質量增加是因為白矮星身邊有個伴,可能是兩個白矮星白頭偕老、最終合併,也可能和新星一樣是老少配,然後白矮星吸走年輕伴星的表面物質。但究竟是哪種配對導致熱核超新星爆炸,天文學家還在熱議。

-----廣告,請繼續往下閱讀-----

「核心塌縮超新星(Core-collapse supernova)」則來自大質量恆星核心塌縮後造成的熱壓爆炸。當大質量恆星的核心燃料用罄,無法支撐極強的重力而塌縮時,就會產生巨量的熱能,並向外爆發。整個過程僅以秒計。爆發後,周圍形成漂亮的超新星殘骸,核心則塌縮成中子星或黑洞。

值得一提的是,超新星是少數能夠串聯古今天文學的研究領域。歷史上數個著名的超新星爆發事件,在世界各地的文明史料中皆能發現記錄。目前推測人類文明見過最亮的超新星事件是 SN1006(西元 1006 年),最亮時甚至比啟明更亮 [註二],即使在白天仍可用肉眼看見,而且持續長達數星期。著名的梅西爾天體 M1(蟹狀星雲)也是超新星爆炸後的殘骸,自 1054 年的超新星爆發中產生,相關記錄散見史冊,而且至今仍是天文界炙手可熱的研究對象。

蟹狀星雲之心。 圖/NASA and ESA

+1 的部分:極亮超新星

現代觀測技術的進步使超新星事件變得常見,有多部自動望遠鏡凝視著宇宙虛空,在星際間搜尋著超新星的亮光,這類計畫稱為巡天(Survey)計畫。在眾多的觀測數據中,天文學家注意到一類特別明亮的「極亮超新星」(令人不禁想吐槽天文學家如此單純的命名邏輯),這些超新星比一般情況亮了 2 個數量級以上,並且非常罕見。

到 2017 年止,人類僅觀測到約 100 顆極亮超新星。由於數據過少,天文學家對其形成機制的想像可謂瞎子摸象、暫無定論,目前仍歸類為超新星。那麼,極亮超新星究竟是超新星的超級版,抑或是來自不同的形成機制,唯有持續探向更遙遠無垠的古老宇宙,才有機會揭發這個謎團了。

-----廣告,請繼續往下閱讀-----

千級新星──看見宇宙之音

「千級新星」是非常新的天文研究領域,研究過程也極具戲劇性。故事得從科學家研究重力波開始說起。

重力波是重力作用產生的時空漣漪。百年前,愛因斯坦的理論便預測其存在,但重力波非常微弱,連愛因斯坦本人都不相信人類有朝一日能偵測到重力波。直到 2015 年,人類才首次「聽」到兩顆黑洞合併產生的重力波 [註三]。不過,重力波的訊號指向性不佳,難以「聽音辨位」,也就是用重力波訊號回推事件發生地點。若我們能同時「看」到電磁輻射訊號(該事件發出的電磁波),便可蒐集更多更精確的數據,以了解究竟是在宇宙何處發生了什麼事。

令人難過的是,兩顆黑洞合併幾乎不會產生電磁輻射,因此無法用上述的方法獲得更多資訊。

後來,科學家發現,當兩顆中子星合併、或一顆中子星與一顆黑洞合併時,發出的重力波訊號雖較兩顆黑洞合併更弱、也更難偵測,但這兩種事件不只會產生重力波,也會發出電磁輻射,因此是重力波干涉儀的重要偵測目標。2010 年,天文物理學家探討了這兩種合併事件可能的電磁輻射樣態,得出的結論是和新星事件一樣會有劇烈的光度改變,而且最大亮度約是新星的千倍,於是命名為「千級新星(Kilonova)」。

藝術家以動畫展示兩顆中子星通過重力波合併,然後爆炸成千級新星的過程。影/ESO/L. Calçada.

千級新星的發光機制和超新星不同:超新星的光度主要來自爆炸產生的放射性鎳元素衰變,而千級新星則主要來自兩顆中子星,或中子星與黑洞碰撞合併時,大量發生的核反應——「中子捕獲作用」,此類核反應僅在極端物理環境下產生,是形成金、銀、鉛等重元素的重要機制。過去科學家認為宇宙中重元素的生產者是超新星,然而超新星爆炸的觀測數據卻發現,超新星事件發生的中子捕獲作用的「產能」並不足以支撐現有的重金屬比例,因此千級新星便躍上研究舞台,被認為是重元素的主要產地。

-----廣告,請繼續往下閱讀-----

2017 年,LIGO 及 VIRGO 重力波干涉儀共同偵測到人類史上第一場雙中子星合併事件 GW170817。當時,世界各地的望遠鏡幾乎都暫時放下常規任務,爭相投入這場觀測馬拉松。最終的成果令人振奮,不但同時偵測到重力波與相應的電磁波源,分析結果也與千級新星理論預測的訊號相符,這代表我們首次觀測到了千級新星!

重力波 GW170817的可見光訊號。圖/Soares-Santos et al. and DES Collaboration

這場盛會更昭示了「多信使天文學」時代的來臨 [註四]。重力波探測與多波段電磁觀測的結合,替人類的宇宙探索之旅翻開嶄新的一頁。今日,科學家們正期待著下一對共舞的緻密天體搖響精密儀器的銀鈴,讓更多未解之謎得以撥雲見日。

藝術家繪製的 GW170817 雙中子星合併事件想像圖。圖/LIGO-Virgo/Frank Elavsky/Northwestern University

宇宙看似恆常不變,然而在無盡好奇的驅使下,人類以最新科技突破既有的感官極限。我們洞見宇宙深邃瞬變的幽光,聆聽時空悠遠微弱的呢喃。宇宙「新」光的無盡奧秘,還有待來日的勤奮深掘。

註解

註一:客星指新出現的星,意義上包含彗星等在太陽系內遊走的天體,惟不在本文範疇。

註二:金星是地球的夜空中最明亮的星,清晨及黃昏也可見。古時稱金星出現於黃昏為「太白」、「長庚」,出現於清晨為「啟明」。

-----廣告,請繼續往下閱讀-----

註三:人類聽見的聲音主要來自空氣分子的震盪,只要震盪頻率在 20~20000 Hz 的範圍,並且經由介質傳遞使耳膜震動,我們就能聽見。雖然重力波是時空震盪,無法直接以耳朵聽見,但概念上類似,因此常見到科學家將重力波訊號轉換成「音訊」,方便人們感受。

註四:多信使天文學(Multi-messenger astronomy)指利用多種訊號探索宇宙的現象。不同於早期僅以可見光探看宇宙,人類如今能夠探測光子、電磁波、微中子、重力波和宇宙射線等高能帶電粒子。透過這些訊號,可以傳達不同面向的資訊,協助我們拼湊出單一宇宙現象更細緻的原貌。GW170817 事件除了以重力波和電磁輻射觀測,亦有微中子觀測站參與,只是沒有找到相關聯的微中子訊號,因此理論在這方面尚未證實,有待解惑。

延伸閱讀

  1. Li, KL., Metzger, B.D., Chomiuk, L. et al. (2017). A nova outburst powered by shocks. Nat Astron 1, 697–702. https://doi.org/10.1038/s41550-017-0222-1
  2. Aydi, E., Sokolovsky, K.V., Chomiuk, L. et al. Direct evidence for shock-powered optical emission in a nova. Nat Astron 4, 776–780 (2020). https://doi.org/10.1038/s41550-020-1070-y
  3. Gal-Yam, A. (2019). The most luminous supernova. Annual Review of Astronomy and Astrophysics, 57, 305–333. https://doi.org/10.1146/annurev-astro-081817-051819
  4. Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.. (2010). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 406(4), 2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x
  5. Smartt, S., Chen, TW., Jerkstrand, A. et al. (2017). A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 55175–79 . https://doi.org/10.1038/nature24303
-----廣告,請繼續往下閱讀-----
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲

0

2
1

文字

分享

0
2
1
恆星將如何死去?——《解密黑洞與人類未來》
天下文化_96
・2022/01/01 ・2403字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 海諾.法爾克 (Heino Falcke)、約格.羅默(Jörg Römer)
  • 譯者 / 姚若潔

發生在天上的死亡事件:超新星爆炸

公元 1054 年,全世界的人都驚訝的仰望天空。有些人可能擔心巨大的災難即將發生。中國北宋的天文學家精確記下這場天空中的驚人事件,記錄到蒼穹中有顆與金星(太白)一樣明亮的「客星」。一名阿拉伯醫生甚至認為這是一顆新星而記錄下來。

左下方的亮點是位在 NGC 4526 星系的一顆「客星」,名為 SN 1994D。圖/WIKIPEDIA by NASA/ESA

在歐洲,雖然並未留下確鑿的目擊紀錄,人們或許也驚訝的看著占據午後天空的「明亮圓盤」。那麼,到底是什麼驚人事件,讓世界各地都有人記下這個現象?

其實是超新星,一種規模巨大的恆星爆炸事件。它發生在我們的銀河系內,距我們六千光年之遙。培布羅長者曾坐著之處的岩石雕刻中,顯示了半圓形的月亮,以紅色畫在黃色的峭壁表面。在半月旁,是一顆清晰可見的巨大星星,圓形四周射出光芒——就像小孩子可能畫出的表現方式。它幾乎和月亮一樣大。公園解說員告訴我們,這就是當時美洲原住民藝術家所描繪的超新星。我們這群天文學家並沒有完全被說服。專家仍在爭論這幅畫到底是不是在描繪 1054 年的超新星爆炸。但我同時也覺得,他們不太可能沒注意到如此不尋常的事件。

太陽將如何死去?

你可以把恆星想像為一個熱氣球。核心的熱讓它保持充氣狀態。一旦燃料用盡,裡面的氣體冷卻下來,壓力降低,氣球便開始扁掉。恆星以類似方式面臨自己的終結。一旦燃料燒完後,恆星便塌縮。不過恆星如何及何時「死去」,要視其質量而定。較輕的恆星(大多數恆星都屬於這類)在經過漫長的一生後消耗殆盡,最後悶燒熄滅。

-----廣告,請繼續往下閱讀-----

我們的太陽擁有一般的壽命。當它開始向內部塌陷時,仍能夠啟動自己的後燃器。在恆星的中央,核融合的灰燼(高熱的氦核)會累積起來。在恆星內爆的內部高壓之下,溫度再次上升,氦會融合為碳,釋放出最後所存的能量,「表皮」因此開始膨脹。就在壽命即將終結之時,太陽會膨脹,變成一顆紅巨星,吞噬掉水星、金星,可能甚至包括地球。

太陽成為紅巨星時會誇張的膨脹。圖為的當前太陽和將來成為紅巨星時的大小比較。圖/WIKIPEDIA by Oona Räisänen

白矮星的誕生

質量大於我們太陽的恆星,在臨終喘息時會向外噴出氣體和電漿。行星狀星雲形成,將死的恆星從內部提供光照,呈現出美妙的形狀與色彩。這個奇景對宇宙來說只是一眨眼的時間;數千年後,這些行星狀星雲便會褪色。行星狀星雲這名稱有點誤導,因為它和行星毫無關係,只是因為在十八世紀發現到時,從當時的望遠鏡中看起來很像是由氣體構成的遠方行星。

在中心位置,是核融合的壓縮灰燼,整個恆星的重量都集中在此。壓力變得如此之大,使得原子逐漸擠在一起,直到摩肩接踵而完全沒有空間留下。然後電子壓力讓這顆星無法繼續塌縮。在恆星核心處繞行原子核的電子稱為「費米子」(fermion)。費米子是物理界的獨行俠,它不會與任何其他費米子同床共枕。當周遭變得太擠時,費米子抗衡了重力帶來的壓力,因而阻止了燃燒殆盡的核心完全崩塌。

如果恆星的外層已經脫去,那麼剩下來的就是一顆體積小、緊緊壓縮、發出亮光的碳核,也就是白矮星(white dwarf),大小相當於地球,但重量相當於太陽。我們的太陽再過數十億年後會變成白矮星,白矮星的組成物只要一茶匙就重達九噸,相當於一輛貨車。白矮星的表面十分酷熱,在很長的時間中會繼續把熱能輻射到太空,直至最後,這顆死星終於變成一顆冰冷、完美球型的碳結晶,成為太空中的巨大鑽石。

-----廣告,請繼續往下閱讀-----
哈伯太空望遠鏡拍攝的天狼星 A 和 B。天狼星 B 是一顆白矮星,位在非常明亮的天狼星 A 左下方。圖/WIKIPEDIA

這個過程有不同的量子力學效應參與,印度物理學家錢卓塞卡(Subrahmanyan Chandrasekhar)曾對此進行計算。1930 年,年僅十九歲的錢卓塞卡搭船前往英格蘭,以便在劍橋繼續他在印度時即已開始的物理學研究。在航程中他的時間很多,因此決定著手計算白矮星可能的最大質量,並得到 1.44 太陽質量的結論。

不過,如果一顆恆星比我們的太陽更大又重上許多,其壓力提高到根本無法承受的程度時,又會發生什麼事?一顆重量比我們太陽大超過八倍的恆星,會點燃更多後燃器而避免塌縮。這顆巨大太陽的核心像洋蔥般,一層又一層燒掉自己。愈接近核心的內層愈熱,在燃燒各層的灰燼時,除了把每一層所儲存的能量釋放出來之外,也形成更大的原子核。氫變成氦,氦變成碳,碳和氦變成氧,氧變成矽,而矽變成鐵。每一個燃燒過程都比前一個更快。氦要燒成碳需要一百萬年,然而全部的矽融合成鐵只需要幾天時間。

然後,事情到此為止!從能量的角度而言,鐵具有自然界中最為緊實的原子核。如果壓力夠大,鐵還能融掉而形成更多新的元素,但這個過程不會再產生更多新能量,反而需要吸收能量。忽然間,增加壓力以便從原子裡擠出更多能量的單純伎倆不再管用。就這樣,原子不再升溫,而是進入降溫過程;壓力不再提高,而是降低。這顆垂垂老矣的星星終於喪失最後的勉強支撐,墮入死亡。幾分鐘之內核心內爆——這顆步入死亡的星星再也無法承受自己的重力。

——本文摘自《解密黑洞與人類未來》/ 海諾.法爾克、約格.羅默,2022 年 1 月,天下文化

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。