Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

蜘蛛星雲原來是場太空碰撞車禍的結果

臺北天文館_96
・2012/08/21 ・1265字 ・閱讀時間約 2 分鐘 ・SR值 547 ・八年級

天文學家利用哈柏太空望遠鏡(Hubble Space Telescope)觀測資料,發現著名的蜘蛛星雲(Tarantula Nebula)的核心那些大質量恆星形成區,原來是兩個年齡相差了100萬年左右的星團正在碰撞合併的初期階段。

蜘蛛星雲又稱為劍魚座30星(30 Doradus)位在銀河系最大的衛星星系—大麥哲倫星系(Large Magellanic Cloud,LMC)中,距離約為170,000光年,是目前已知本星系群中最活躍的恆星形成區,天文學家已知這種活躍的恆星形成狀況已經持續了至少2500萬年之久,但不清楚這樣的活躍狀況還能維持多久。天文學家們認為:目前已知的那些最大型的星團,或許是經由比較小的星碰撞合併而形成的。

太空望遠鏡科學研究所(Space Telescope Science Institute,STScI)科學家Elena Sabbi等人一直在嘗試尋找那些從誕生地被踢出去、移動速度很快的「落跑恆星(runaway stars)」。一般認為恆星都是在星團中形成,但在劍魚座30的外圍,還有許多年輕星團,這些外圍地區不太像這樣年輕星團能誕生的地方,因此這些年輕星團或許就是被劍魚座30本身以高速向外拋擲出去的。

Sabbi等人檢視哈柏觀測劍魚座30中低質量恆星的分佈狀況後,發現一些不尋常的現象。這個星團並不是如預期般的為球形,而是類似兩個正在合併的合併星系因重力交互作用而使它們呈現狹長外形一樣。從哈柏觀測到的星團周遭環境的證據顯示,其中一個星團顯示狹長外形,應是兩個正在逐漸逼近的星團造成的結果,且經過測量,發現這兩個星團之間是有年齡落差的。

-----廣告,請繼續往下閱讀-----

根據某些理論模型,星團從中誕生的巨型氣體星雲可能會破裂成比較小的星雲,一旦這些比較小的星雲碎片中形成恆星,可能會因距離接近而彼此兼有重力交互作用,甚至互相合併而形成一個更大的星團。這個重力交互作用就是Sabbi等人認為她們在劍魚座30上看到的現象。

此外,劍魚座30裡的高速恆星多得不像話,天文學家相信這些所謂的落跑恆星是從劍魚座30的核心部分因恆星彼此間的動力交互作用(dynamical interaction)而被踢出來的。這種交互作用在所謂的核塌縮(core collapse)過程中相當普遍,當質量比較大的恆星沈向星團中心的過程中,與低質量恆星之間便會有這種動力交互作用。當許多大質量恆星抵達星團中心後,星團中心反而變得不穩定,反會讓這些大質量恆星互相抵制、拋出星團外。

劍魚座30中心的大型星團R136過於年輕,不太可能已經經歷過核塌縮的過程。然而,既然小一點的星團系統的核塌縮過程比較快,因此劍魚座30中有許多落跑恆星或許是小型星團在與R136合併的過程中拋出的。

Sabbi等人希望未來後續研究能觀察更大尺度的星團狀況,以便提供更多相關細節,看看是否有更多星團與劍魚座30有交互作用,特別是在紅外波段相當靈敏的韋柏太空望遠鏡(James Webb Space Telescope,JWST)。因為紅外波段可不受塵埃遮蔽,觀察到可見光波段會被塵埃遮蔽而不可見的部分,或許在這些原本被塵埃遮蔽而不可見的部分,還有許多溫度更低、亮度更暗的恆星隱藏在此。如能將之顯露出來,就更能瞭解劍魚座30星雲內的恆星星族分佈概況,並藉這個年輕星團來更進一步瞭解星團的形成細節,以及年輕的早期宇宙中恆星究竟是如何形成的。

-----廣告,請繼續往下閱讀-----

資料來源:Hubble Watches Star Clusters on a Collision Course. HubbleSite [AUGUST 16, 2012]

轉載自 網路天文館

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
VLT發現自轉速度最快的主序恆星
臺北天文館_96
・2011/12/08 ・1159字 ・閱讀時間約 2 分鐘 ・SR值 573 ・九年級

-----廣告,請繼續往下閱讀-----

英國北愛爾蘭皇后大學(Queen’s University)Philip Dufton等人利用歐南天文台超大望遠鏡(Very Large Telescope)發現一顆迄今自轉速度最快的恆星。這顆質量很大又很亮的年輕恆星,位在銀河系的近鄰—大麥哲倫星系(Large Magellanic Cloud,LMC)中,距離地球約16萬光年。天文學家認為這顆恆星可能擁有非常極端的過往歷史,原為雙星系統的成員之一,但被另一顆已演化至發生超新星爆炸的伴星驅趕,雙星系統因而瓦解。

這項發現是經由天文學家利用VLT在LMC中的蜘蛛星雲(Tarantula Nebula)進行最重、最亮的恆星搜尋工作(VFTS,VLT-FLAMES Tarantula Survey)中發現的。蜘蛛星雲又稱為劍魚座30號星(30 Doradus)。

在蜘蛛星雲這個恆星搖籃所孕育的眾多明亮恆星中,Dufton等人發現其中一顆光譜型為O型、編號為VFTS 102的恆星(右上圖中央箭頭所指處),自轉速度高達每秒500公里以上,甚至可達每秒600公里,相當於1秒內可從臺灣最北點通過臺灣最南點到巴士海峽中,這個速度約比太陽自轉速度快了300倍以上,瀕臨因離心力造成星體潰解的邊緣,是迄今已知自轉速度最快的一般恆星。

某些大質量恆星的生命終點,經超新星爆炸後,核心部分會演化成一顆緻密天體,如脈衝星(pulsar,脈衝星)或黑洞等,雖然其自轉速度可能比VFTS 102還快許多,但這類天體通常非常小且密度非常大,與VFTS 102這樣核心仍在進行核融合反應、還處在恆星青壯年期的主序星不同。

-----廣告,請繼續往下閱讀-----

另外,經估算,這顆恆星的質量約為25倍太陽質量,表面溫度約為38,000K,比太陽亮了100,000倍以上,且在太空中的移動速度高達每秒228公里,與其鄰近恆星空間移動速度約每秒40公里的狀況明顯不同。

自轉速度如此之快,空間移動速度也與鄰近恆星不同,讓Dufton等人不禁猜想這顆恆星曾經歷過不尋常的過去。空間移動速度不同,顯示VFTS 102是顆所謂的「落跑恆星(runaway star)」,即雙星系統中另一顆子星發生超新星爆炸過中被向外拋出的恆星。

Dufton等人藉由電腦模擬,認為VFTS 102若原本是雙星系統成員之一的可能性很大,當兩星靠得很近時,來自伴星的物質會讓VFTS 102自轉速度愈來愈快;大約經過1000萬年之後,質量較大的伴星率先發生超新星爆炸,把另一顆還在主序階段的子星VFTS 102向外拋出。

Dufton等人在距離VFTS 102約12秒差距之處,發現有顆波霎PSR J0537-6910,這是顆年輕的X射線波霎,鄰近並伴隨有性質類似蟹狀星雲的超新星殘骸B0538-691。他們認為VFTS 102與PSR J0537-6910本為一家人,只是因超新星爆炸的威力,將兩顆星都從B0538-691中震了出去。雖然這些天文學家不能非常確定上述想法是否正確,但至少可以解釋到目前為止所觀測到的現象。

-----廣告,請繼續往下閱讀-----

Dufton等人的模擬還顯示:由於VFTS 102的質量高達25倍太陽質量,在不久的將來,這顆恆星可能就會演化到發生伽瑪射線爆發(GRB)或Ic型特超新星(hypernova)的強烈爆發階段,核心殘骸將形成一個快速自轉的恆星型黑洞。這對研究極端的GRB或特超巨星等天體的天文學家而言,將是個絕佳的研究目標。

資料來源:VLT Finds Fastest Rotating Star[2011.12.05]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
蜘蛛星雲仍在長大中
臺北天文館_96
・2011/11/16 ・850字 ・閱讀時間約 1 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

位在大麥哲倫星系(Large Magellanic Cloud,LMC)中的劍魚座30(30 Doradus),俗稱蜘蛛星雲或狼蛛星雲(Tarantula Nebula),是全天空最大的恆星形成區。在星雲中心有近2400顆大質量恆星,集眾星之力的輻射及恆星風,自然強得不得了。被強烈輻射與恆星風推擠之下,星雲仍在不斷擴張中。天文學家最近利用星雲中熾熱而明亮的X射線氣泡結構來建構這個星雲的大尺度結構及演化狀況,同時發現大質量恆星產生的強烈輻射壓不再是現階段雕刻星雲的主力來源。

右圖是錢卓X射線觀測衛星(Chandra X-ray Observatory)的X射線波段資料(藍色)和史匹哲太空望遠鏡(Spitzer Space Telescope)的紅外波段資料(橘色)合成的結果。錢卓資料主要可見恆星風和超新星爆炸所產生的震波,將氣體加熱到極高溫而釋放出的X射線,因此清楚呈現被恆星風等吹出的龐大氣泡狀結構。而史匹哲資料則呈現出這個氣泡結構周邊溫度稍低的氣體和塵埃。

劍魚座30是所謂的氫離子區(HII region)。氫是由一個帶正電的質子和一個帶負電的電子組成的原子,質子在原子核中,電子環繞原子核運轉。當年輕而熾熱的恆星發出強烈輻射,將星雲中的中性氫原子(HI,I為羅馬數字1)唯一的電子打跑,使氫氣成為帶一價正電的氫離子(HII,II為羅馬數字2)。劍魚座30是整個本星系群(Local Group)規模最大、質量也最大的氫離子區。本星系群由我們的銀河系、仙女座星系、大小麥哲倫星系和其他共約30幾個星系組成的團體。而大麥哲倫星系是銀河系最大的衛星星系,距離僅約16萬光年。因此,距離近且規模龐大,讓劍魚座30成為最佳的大質量恆星演化研究室。

關於刻畫星雲形狀的主力來源,最新研究顯示不再是大質量恆星所發出的強烈輻射壓,而是周邊熾熱氣體的壓力;但是今年稍早另一篇論文卻與此結論相反,認為輻射壓,尤其是在星雲中心區域的大質量恆星附近,是主導劍魚座30演化的推手。因此,對於這個全天最大的恆星形成區的演化機制究竟為何,天文學家還得再加一把勁了。

-----廣告,請繼續往下閱讀-----

資料來源:30 Doradus and The Growing Tarantula Within[2011.11.10]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----