Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

輕鬆使用Android裝置控制樂高機器人:多點觸控

馥林文化_96
・2012/08/21 ・2658字 ・閱讀時間約 5 分鐘 ・SR值 560 ・八年級

文/曾吉弘(CAVE教育團隊

最近溫度屢破新高,還是做一台機器人幫您分勞解憂吧!本期CAVE的App Inventor機器人專欄延續了七月號的[單點觸控],但這次要請您使用左右手的姆指來控制樂高機器人,左手拇指控制機器人左側馬達正反轉動,右手就是右側馬達囉。本範例使用了兩個畫布Canvas元件,分別追蹤畫布上的觸控點的Y軸向變化量後轉換為馬達電力。因此相較於[單點觸控]還用到了atan、sin與cos等三角函數,本次的程式相較之下簡單多了。

圖1  使用左右手拇指在螢幕上滑動。

首先請把NXT機器人準備好,並將左側馬達接在NXT的輸出端B,右側則是輸出端C(註1)。請確認NXT主機的藍牙是啟動的,接著將NXT主機與Android手機進行藍牙配對(註2),完成之後就可以把機器人放到一邊了,啟動藍牙之後您可以從NXT主機的螢幕左上角看到藍牙的符號。

-----廣告,請繼續往下閱讀-----

接下來依序介紹程式的各個功能:

STEP1  登入畫面:

首次進入程式的畫面如圖2a,這時觸控板被隱藏起來了,只有 [連線]按鈕可以按,其它所有按鈕都無法操作。點選[連線]按鈕後進入藍牙裝置清單(圖2b),請找到剛剛配對完成的NXT主機名稱(本範例為abc),點選之後就會由Android裝置對NXT主機發起藍牙連線。順利連線成功的話,就可以看到兩個黃色的觸控板出現了,還有可愛的CAVE小圖案(圖2c)。

圖2a(左)  程式首次執行的畫面

-----廣告,請繼續往下閱讀-----

圖2b(中)  點選連線按鈕後進入藍牙裝置清單

圖2c(右)  連線成功後出現觸控板

 

STEP2  程式初始化:

接著是在程式初始化(Screen1.Initialize事件)時,將NXTList清單指定為藍牙配對裝置清單(圖3a)。在連線之前之所以無法看到黃色觸控板,是因為我們先將它隱藏起來了,要等到連線成功之後(圖3b)才會顯示觸控板,原本無法按下的「停止」、「Orientation ON」以及「斷線」等按鈕這時也都可以操作了。

-----廣告,請繼續往下閱讀-----

圖3a  指定藍牙配對裝置清單並隱藏觸控板。

圖3b  連線成功後開啟觸控板。

 

STEP3  根據方位感測器來旋轉CAVE小圖案:

本次程式多了一個附加功能,就是讓CAVE小圖案根據手機的指向來轉動,這是藉由擷取Android裝置上的方位感測器(Orientation sensor)的Z軸數值所完成的。只要方位感測器的值發生變化,azimuth這個變數就會自動更新,我們將它指定為CAVE小圖案的指向欄位就可以了(ImageSprite_L.Heading與ImageSprite_R.Heading)。

-----廣告,請繼續往下閱讀-----

圖4  根據方位感測器值來改變小圖案指向。

 

STEP4  計算馬達電力:

我們使用了兩個Canvas,分別控制機器人的左右兩顆馬達。由於兩側的觸控程式概念是相同的,在此僅說明左側的Canvas_L.Dragged拖拉事件:

1.將Lpower設為(150-CurrentY) / 150,CurrentY就是觸控點的Y座標,Canvas的高度為300像素,這樣一來當手指頭在畫布中央時,Lpower為0,向上移動為正,向下則為負。接著將Lpower數值顯示在標籤LabelB上。

-----廣告,請繼續往下閱讀-----

2.使用ImageSprite.MoveTo指令,將XY欄位指定為20與CurrentY-30,這樣就能用手指拉著可愛的CAVE小圖案走。CurrentY-30的原因是因為CAVE小圖案的尺寸為60 x 60,需要30像素的修正量。

注意:由於本範例只使用觸控點的Y軸向變化,因此將X欄位固定為20,即便您左右移動姆指,CAVE小圖案也不會移動。

3.最後將B馬達電力指定為Lpower變數值就可以了,這樣當我們在黃色觸控板上移動左手拇指時,B馬達就會轉動,向上移動為正轉,向下則為反轉,手指頭離螢幕中心愈遠轉愈快。

圖5a  左側Canvas.Dragged拖拉事件。

-----廣告,請繼續往下閱讀-----

圖5b  右側Canvas.Dragged拖拉事件。

注意:在右側拖拉事件中我們多使用了一個ceiling四捨五入指令,將計算結果直接取整數。您可以從圖9a~圖9c中看到沒有使用ceiling指令的Lpower值是會有小數點的,Rpower則無小數點。

 

STEP5  /關方位感測器

覺得CAVE小圖案轉來轉去有點頭暈嗎?新增一個Button_Orientation按鈕來開/關方位感測器(OrientationSensor1.Enabled指令),一旦方位感測器被關閉之後,小圖案就會自動歸正(Heading欄位設為0)。請注意,在此我們只是設定方位感測器是否可用,您還是可以拉動CAVE小圖案來控制機器人。

-----廣告,請繼續往下閱讀-----

圖6a  藉由Button_Orientation按鈕來開關方位感測器。

圖6b  方位感測器開,CAVE小圖案會根據手機指向而轉動。

圖6c  方位感測器關,CAVE小圖案自動歸正。

 

STEP6  按下停止按鈕:

按下[停止]按鈕之後,會執行三件事:1. 停下機器人;2. 將標籤數值歸零以及3. 使兩個CAVE小圖案歸位。

圖7  按下停止按鈕停下機器人並使ImageSprite歸位。

 

STEP7  斷線:

按下[斷線]按鈕之後,會中止藍牙連線(BluetoothClient.Disconnect指令),並使按鈕恢復到未連線時的狀態,黃色的觸控板也看不到了。這時候您可以再次發起連線。

圖8  按下[斷線]按鈕時中斷藍牙連線。

 

操作:

實際執行的時候,請先確認NXT已經開機且藍牙也啟動了。接著在您的Android裝置上點選程式畫面中的「連線」按鈕,會進到如圖2a的藍牙清單畫面,點選NXT主機名稱連線成功後就會出現兩個黃色觸控板。分別在畫面上移動左右拇指就會讓機器人動起來了,操作方式相當直覺,您一定會喜歡。從觸碰板下方的標籤看到左右馬達的電力值,範圍是-100~100之間。操作過程中您可以隨時點選Button_Orientation按鈕來開關方位感測器。

圖9a  兩個姆指同時往上,機器人前進(方位感測器關閉)。

圖9b  兩個姆指同時往下,機器人後退(方位感測器開啟)。

圖9c  兩個姆指左下右上,機器人原地右轉(方位感測器開啟)。

絕大部分的Android裝置都有多點觸碰的功能,因此我們特別以兩次專欄來介紹如何以單點與雙點來控制樂高機器人的動作。雙點觸控其實只取個別觸控點的Y軸變化,因此程式結構上是比較簡單的。本範例另外新增了方位感測器來使CAVE小圖案跟著手機指向旋轉,我們也可以使用Android手機上的感測器來控制機器人,請繼續注意CAVE的機器人專欄唷!

 

歡迎大家從這連結下載本程式來玩玩看

或掃描以下的QRCode也可以唷!更多有趣的機器人app請在Google Play搜尋「CAVE教育團隊」就找得到了。

註1:機器人運動方向有可能因為車頭指向而和程式設定相反,只要將左右馬達電線互換即可。

註2:將Android手機設定為可安裝非Market下載的程式以及讓手機與樂高NXT主機連線等說明請參考連結

註3: 與NXT連線後如果出現[Error 402]之錯誤訊息請不必理會,程式依然能正確執行。

文章原文刊載於《ROBOCON》國際中文版2012/9月號

 

-----廣告,請繼續往下閱讀-----
文章難易度
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

5
2

文字

分享

0
5
2
史上第一個全裸出演電影的好萊塢巨星,也是Wi-Fi與藍牙技術的奠基者——海蒂.拉瑪
椀濘_96
・2022/03/14 ・2501字 ・閱讀時間約 5 分鐘

做測驗,就有機會獲得免費特製手搖飲品,現場還有大獎等你抽!

她是全球知名好萊塢影星,同時也是發明「展頻技術」(Spread Spectrum;過去稱為秘密通訊系統)的關鍵人物,更被人尊稱為「Wifi 之母」、「藍牙之母」,鮮明的性格、亮麗的外表(她真的很漂亮)、才能與智慧,造就了海蒂.拉瑪戲劇性的一生。

海蒂.拉瑪(Hedy Lamarr,1914-2000)的原名為海德薇希.愛娃.瑪麗亞.基斯勒(Hedwig Eva Maria Kiesler),是個出生於奧地利的匈牙利猶太後裔,父親是維也納知名的銀行家,母親則為一名鋼琴家。

Hedy Lamarr(1914-2000)。圖/Wikipedia

為夢想勇敢前進電影產業

少女時期的海蒂.拉瑪被電影吸引,便毅然決然放棄了當時仍在學習的通訊專業,退學後的她學了鋼琴、芭蕾,幸運地被導演馬克斯.萊因哈特挖掘,將她帶到了位於柏林的表演學校,先是由場記員做起,闖蕩電影界。

1930 年,年僅 17 歲的海蒂.拉瑪出演了她的第一部電影,之後陸陸續續拍攝了多部作品,其中讓她從此聲名大噪的,是在 1933 年的捷克電影《神魂顛倒》(Ecstasy),劇中她不畏世俗眼光,為戲裸泳及全裸在森林奔跑,這也使她成為了第一位在螢光幕前全裸出鏡的女主角。事後海蒂.拉瑪回憶起這部作品:「你用你的想像力,便可以看到任何女演員及她的裸體。」

成名不久後,她便結識了第一任丈夫——弗里茨.曼德爾,是一名奧地利的軍火商。由於生意上的往來,海蒂.拉瑪因此可以在招待客戶時,從旁聽聞丈夫與買賣方之間的交談,這便促成了她擁有無線電通訊知識的機緣。

-----廣告,請繼續往下閱讀-----

儘管生活富裕,然而婚後的海蒂.拉瑪並不快樂,處處遭受限制,甚至連熱愛的電影產業也被禁止涉足。1930 年代納粹滲透奧地利,海蒂.拉瑪堅決反對納粹,但身為猶太人的丈夫卻與希特勒及墨索里尼等法西斯主義份子做交易、打交道,終於讓海蒂.拉瑪下定決心逃離不愉快的婚姻生活。

在逃離到倫敦後,結識了老牌電影公司米高梅創始人之一路易.梅耶,他與海蒂.拉瑪簽訂了一份長達七年的影視合約,前往美國踏上好萊塢演藝之路。她由於電影《神魂顛倒》受到不少批評,也是在此時將名字改為我們所熟知的海蒂.拉瑪。隨後便在好萊塢參與多部影視作品,出演許多受人歡迎的電影,成為家喻戶曉的女星,紅極一時。

重新踏入電影產業的海蒂.拉瑪。圖/Wikipedia

1940 年海蒂.拉瑪在聚會上認識了鋼琴家喬治.安塞爾,就在兩人聊天時,她想起了軍火商前夫曾與納粹官員談起如何操控魚雷的內容……。

發明展頻技術

就在某次聽安塞爾彈奏鋼琴時,看著按壓不同琴鍵就能使聲音有所變化,於是海蒂.拉瑪聯想起,直接用無線遙控魚雷,就很容易使之被相同頻率的信號干擾,造成魚雷偏離目標,既然改變鋼琴鍵能直接改變聲音,那麼同理,如果是直接改變無線電信號的頻率就能改變發出的信號!若不停地隨機改變信號頻率,因敵人干擾而影響魚雷的機會就會減少很多。

做為專業且優秀的音樂家,安塞爾想出了具體的實施方法,他曾使用了 16 架自動演奏鋼琴創作了《機械芭蕾》(Ballet Mecanique)一曲,而自動鋼琴的原理為,以打孔紙卷來記錄音譜,透過裝置捲動紙軸,紙卷上的孔位與驅動機械連動,使相對應的裝置擊琴鍵,從而演奏出音樂。

-----廣告,請繼續往下閱讀-----

運用自動演奏鋼琴的原理,在魚雷的接收器和艦船發射器內安裝相同編碼的滾筒,在兩者同步運轉時調整頻率,就可以達成透過載波快速切換不同頻率,使得接收端與發射端產生偽隨機(後稱此技術為跳頻展頻;Frequency-hopping spread spectrum, FHSS)。

兩人在 1941 年時向美國專利商標局(USPTO)提出專利申請,並將這項技術發明命名為「秘密通訊系統」(Secret Communications System),隔年順利通過,專利號為 2292387,就是我們現在的展頻技術(Spread Spectrum),值得一提的是,他們共使用了 88 種頻率,而鋼琴鍵數就是 88。

藉由聽鋼琴演奏發明展頻技術。圖/Pexels

由於該技術是由演員與音樂家所發明的,期望為戰爭貢獻心力的兩人,此項發想在當時難以說服軍方使用。但兩人還是將專利無償提供給美國軍方使用,也自行支付相關的專利維護費用,而當時的電子科技發展仍無法支持這樣的技術,一直到冷戰時期,電晶體發明後才真正被運用於軍事上。

成為無線電通信技術發展的基礎

日後展頻技術被應用到眾多無線電通信中,分碼多工存取(Code Division Multiple Acces, CDMA)、無線區域網路(WLAN)、Wi-Fi 與藍牙都是基於此技術發明出的。

-----廣告,請繼續往下閱讀-----

海蒂.拉瑪與安塞爾並沒有繼續深入研究他們的發明,而上述新技術與海蒂與安塞爾的專利雖有相通之處,但都沒有觸及其專利權,兩人終其一生未因此專利獲得任一分錢,即便至近年 ,這項技術還是被許多專利所引用。

在這項發明專利公布的 56 年後,1997 年兩人的成就才終於獲得電子前線基金會(Electronic Frontier Foundation;EFF)榮譽技術獎章殊榮,2014 年兩人被選入美國發明家名人堂,直到現代,海蒂.拉瑪才真正獲得世人廣泛的認同。

後記:

在讀完海蒂.拉瑪的故事後,筆者思考起,儘管海蒂.拉瑪不像大眾所熟悉的發明家、科學家,擁有豐富的學識背景,甚至是圈子裡優秀出眾的學者,然而她從生活中發現了他人不曾想過的,也確實把它實踐了,讓以為距離遙遠的科學發明,也有了浪漫親近的一面。

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
輕鬆使用Android裝置控制樂高機器人:「說」出機器人感測器的狀態
馥林文化_96
・2013/04/22 ・2764字 ・閱讀時間約 5 分鐘 ・SR值 523 ・七年級

文/曾吉弘(CAVE教育團隊

我們已經在前兩期的專欄中(2013年1月號、2013年3月號)介紹如何用Android手機上的姿態感測器來控制樂高機器人。搭配手機的感測器,您可以像玩Wii遊戲機一樣,以體感的方式來與機器人互動。本次專欄將使用App Inventor中的TextToSpeech元件(本文後簡稱TTS元件),讓手機「說」出機器人感測器的狀態(圖1)。程式執行的過程中,我們還可以即時更改感測器的類型,是很實用的功能呢!

App Inventor的TextToSpeech元件可以讓Android手機以語音方式輸出指定的文字或數值內容,本範例就是讓手機每秒播報一次感測器數值。除此之外還可指定語系與國家,預設值是eng(英語)與USA(美國),代表美式英語。您可以參考App Inventor中文學習網來改為其他歐陸語系,例如德語、法語或義大利語,會有更有趣的效果。

圖1 讓TextToSpeech元件說「hello」。

-----廣告,請繼續往下閱讀-----

請注意!目前App Inventor不支援中文等亞洲語系的語音輸出。

開始玩機器人

請把NXT機器人組裝好,並將左側馬達接在NXT的輸出端B,右側則是輸出端C(註1)。請確認NXT主機的藍牙是啟動的,接著將NXT主機與Android手機進行藍牙配對(註2),完成之後就可以把機器人放到一邊了。啟動藍牙之後您可以從NXT主機的螢幕左上角看到藍牙的符號。

接下來依序介紹程式的各個功能:

STEP1  登入畫面:

-----廣告,請繼續往下閱讀-----

首次進入程式的畫面如圖2a,只有「NXT裝置清單/連線」按鈕可以按,其它所有按鈕都無法操作。點選[NXT裝置清單/連線]按鈕後進入藍牙裝置清單(圖2b),請找到剛剛配對完成的NXT主機名稱(本範例為abc),點選之後就會由Android裝置對NXT主機發起藍牙連線。順利連線成功的話,就可接續選擇感測器類型(圖2c)。

圖2a 程式首次執行的畫面。 圖2b 點選連線按鈕後進入藍牙裝置清單。 圖2c 連線成功後才可選擇感測器類型。

STEP2  程式初始化:

在點選連線清單之前(ListPickerConnect的BeforePicking事件),需先將清單內容指定為Android裝置上的藍牙配對清單(圖3a)。點選之後則先測試連線是否成功,成功則將「選擇感測器」與「開始念/停止」設為可點選(圖3b)。

-----廣告,請繼續往下閱讀-----

圖3a 指定藍牙配對裝置清單。

圖3b 連線成功後啟動相關元件。

STEP3 選擇感測器類型:

為了節省畫面空間,我們使用了Listpicker搭配清單來達到下拉式選單的效果。首先需要宣告一個清單,內容為(color.jpg, sound.jpg, light.jpg, ultra.jpg),就是使用的感測器圖檔名稱(圖4a)。編號index則依序由1到4。本範例就是使用這個編號來更改顯示的圖片與感測器類型。

-----廣告,請繼續往下閱讀-----

由圖4b中可看到當我們點選了要使用的感測器之後,就要把「開始念/停止」按鈕設為可點選,代表我們準備好要念出感測器數值了。另外還把這個編號所代表的項目內容顯示在畫面上,最後則將Image元件的圖片換成這個編號所代表的圖檔(select list item指令)。例如圖4a中的sensorList清單中的第3號的項目內容就是「light.jpg」。

圖4a 宣告一個陣列來存放圖檔。

圖4b 點選感測器類型之前與之後事件。

注意!List清單實際上就是一般程式語言中的陣列(array),App Inventor使用了較為親民的用語。另外n個項目的陣列其項目編號是由0到n-1,App Inventor則是1到n。

-----廣告,請繼續往下閱讀-----

STEP4  根據選擇的感測器類型來控制TTS元件播報內容:

選擇感測器類型,實際上就是在ListPicker_SensorList中點選了某個項目,接著就要根據這個項目的編號index(請注意,不是項目內容!)來決定TTS元件的播報內容。在此我們使用一個副程式say來管理程式,讓程式更簡明易懂。在say副程式中,它會藉由接收到的sensor參數(也就是傳入的編號index)來決定TTS元件的播報內容與TextBox/Label的顯示內容。請看圖5說明:

圖5 say副程式中透過使用者所點選的項目編號來決定執行內容。

STEP5  使用Clock元件來控制TTS元件:

-----廣告,請繼續往下閱讀-----

我們將Clock元件的TimerInterval設定為2000毫秒,代表每兩秒呼叫一次say副程式,並傳入剛才所點選的感測器類型編號(SelectionIndex)。這樣就能控制TTS元件的播報內容與TextBox/Label的顯示內容(圖6)。

圖6 透過點選項目的編號來呼叫say副程式。

STEP6  開始/停止播報感測器數值:

如果在尚未建立與機器人的藍牙連線之前就要TTS念些什麼的話,就會得到-1 這個討厭的數值。所以我們使用「開始念/停止」按鈕來啟動或關閉Clock元件,並將現在的播報狀態(STOPSPEAKING)顯示在手機的狀態列。您可以隨時用這個按鈕來決定停止或繼續播報資料(圖7)。

-----廣告,請繼續往下閱讀-----

圖7點選按鈕來啟動/關閉計時器。

STEP7  斷線:

按下「斷線」按鈕之後,會中止藍牙連線(BluetoothClient.Disconnect指令),並使按鈕恢復到未連線時的狀態(圖8)。

圖8 按下「斷線」按鈕時中斷藍牙連線。

操作

實際執行的時候,請先確認NXT已經開機且藍牙也啟動了,並將顏色、聲音、光與超音波感測器依序接在NXT主機的1到4號輸入端。接著在您的Android裝置上點選程式畫面中的「連線」按鈕,會進到如圖4b的藍牙清單畫面,點選您所要的NXT主機名稱並連線成功後,接著選擇感測器類型,點選之後會顯示對應的感測器圖片與名稱,如圖9所示。

圖9 連線成功後,可選擇不同的感測器,會顯示不同圖案與字樣。

最後點選旁邊的「開始念/停止」按鈕就可以聽到手機把感測器數值念出來了。以下是選擇超音波感測器時的畫面,畫面也會同時顯示數值為58(圖10)。

圖10 手機開始唸出感測器數值,並顯示在畫面上。

TTS元件是用來語音輸出的元件,它可以說出我們所指定的內容,包括文字與數字。您可以讓機器人用說的方式來呈現它的狀況,例如撞到牆壁時,可以說出「Ouch!」等趣味效果。期待您從本期專欄的內容來激盪出更多有趣的火花。請繼續關注CAVE的機器人專欄唷!

 

歡迎大家由此連結下載本程式來玩玩看,或掃描以下的QRCode也可以直接將檔案下載到手機。或到App Inventor中文教學網上直接下載本範例的App Inventor原始檔與apk安裝檔。本程式已上架Google play,請到Google Play搜尋「CAVE教育團隊」就找得到我們的樂高機器人系列app了。

註1:想學如何開發App Inventor程式嗎?請到App Inventor中文學習網與我們一同學習。
註2:將Android手機設定為可安裝非Google Play下載的程式以及讓手機與樂高NXT主機連線等說明請參考此連結
註3:與NXT連線後如果出現[Error 402]之錯誤訊息請不必理會,程式依然能正確執行。

文章原文刊載於《ROBOCON》國際中文版2013/5月號

-----廣告,請繼續往下閱讀-----
馥林文化_96
54 篇文章 ・ 5 位粉絲
馥林文化是由泰電電業股份有限公司於2002年成立的出版部門,有鑒於21世紀將是數位、科技、人文融合互動的世代,馥林亦出版科技機械類雜誌及相關書籍。馥林文化出版書籍http://www.fullon.com.tw/