0

0
0

文字

分享

0
0
0

電子顯微鏡可追蹤石墨烯差排結構

NanoScience
・2012/08/03 ・974字 ・閱讀時間約 2 分鐘 ・SR值 596 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

英國與日本研究人員聯手合作,利用穿透式電子顯微鏡以前所未有的解析度追蹤石墨烯(graphene)內的差排(dislocation)結構。此研究有助於科學家更佳瞭解 2 維材料的可塑性(plasticity)以及差排移動如何影響石墨烯的機械性質。

圖片來源:nanotechweb.org

材料因負載而造成的形變程度與方式通常與材料內差排的移動情形有關。雖然科學家們已以高解析穿透式電子顯微鏡(HRTEM)研究過 3 維樣本材料內的差排結構,但對於像石墨烯這種 2 維材料而言,研究其差排是一項更為艱難的挑戰。這是因為電子顯微鏡所使用的高能電子會迅速地破壞石墨烯等奈米碳材的結構。若要避免此類破壞,顯微鏡的電子加速電壓需降至 80 kV。然而,如此低的電子能量會造成顯微鏡球面像差以及色差的增加,因而導致成像模糊以及降低空間解析度。雖然新型電子顯微鏡內建可修正球面像差的硬體設備,但是由於色差效應的存在,此解析度依然不足以讓科學家們能判別石墨烯內單一碳原子的確切位置。

最近,英國牛津(Oxford)大學的 Jamie Warner 研究團隊與日本電子公司(Japan Electron Optics Laboratory)合作發現一個能減少色差效應的新方法。他們使電子探測樣本前先經過一單色儀,此步驟會縮減電子能量範圍並因而有效增進空間解析度。解析度的提升使得該團隊能首次以真實原子級解析度來研究石墨烯內的刃差排(edge dislocation)。刃差排是材料內一種特別的缺陷形式,會造成晶格結構的扭曲。

研究人員亦能測量出差排內碳原子間鍵結長度的伸縮量,並利用一種名為幾何相位分析(geometrical phase analysis, GPA)的影像處理技術繪製出因差排所造成的應變張量(strain tensor)。此外,他們也探討了當差排在晶格內移動時,應力場的變化情形。實驗所得之張力地圖與福爾曼(Foreman)差排模型所預測的理論結果大致相符。

實驗結果提供一詳細地圖,描述了石墨烯差排內原子的排列情形,並且有助於更加暸解材料的可塑性如何產生。他們最近正研究石墨烯內單一置換雜質(susbstitutional impurity)原子,以及這些原子如何在晶格中造成張力。Warner 補充說明,他們發現僅有數種缺陷結構會穩定存在。他們能在石墨烯中創造出高度無序區域,但在許多情況下,這些區域最終會恢復到原本的晶格狀態。該研究團隊目前正在製作關於碳材料中缺陷與雜質的類別目錄。詳見 Science|DOI: 10.1126/science.1217529。

譯者:劉家銘(逢甲大學光電學系)
責任編輯:劉家銘
原文網址:TEM tracks dislocations in graphene—nanotechweb.org [2012-07-13]

本文來自 NanoScience 奈米科學網 [2012-07-30]

文章難易度
NanoScience
69 篇文章 ・ 2 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

1
0

文字

分享

0
1
0
準備出國啦!Surfshark VPN 快趁黑五買起來,上網購物最安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/11/01 ・2113字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 Surfshark VPN 贊助。

兩、三年以來的防疫生活,終於迎來全面 0+7 的這一天啦!返國之後不再需要隔離的一天來了,冰友們,你是不是已經收拾好心情、收拾好行李,在進行機+酒的比價了呢?除了規劃好出國行程、找好景點與美食店家,想要讓自己不可或缺的網路生活也更加安全,一定要趁即將到來了感恩節黑五期間,把超優惠的 Surfshark VPN 服務買起來,為自己的網路生活加買最平安的保險!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

在疫情下,網購成為了更多人的日常。不僅各樣的在地購物節為網友帶來眾多優惠,全球化的購物活動,台灣當然也不會缺席!美國感恩節(Thanksgiving)都是 11 月第四個星期四,但是感恩節後的週五,便是聖誕節前的購物佳期啟動日,這一天通常都會業績超標(在收支表上呈現正向收入(顯示為黑色字體,而非赤字的紅色字體),各家的瘋狂優惠都會在黑五祭出!相信許多精打細算的朋友,對黑五購物節絕對不陌生(很可能還搶過很多優惠!!)

網購怎能漏掉「亞馬遜」!

雅虎奇摩之於台灣,就像是亞馬遜(Amazon.com)之於美國那麼的有名!絕對也是什麼都賣、什麼都不奇怪的最佳代表。

如果你平常就很喜愛一些美國品牌,趁著黑五的日子到亞馬遜清空購物車,覺對優惠不會讓你失望。這時候,透過 Surfshark 連線到亞馬遜美國站,絕對會顯示的價格絕對讓你眼睛為之一亮,這時候最新搭載 M2 晶片的 iPad Pro,獨家支援動態島顯示的 iPhone 14 Pro,絕對是最好入手的時機。除此之外,亞馬遜平台經典的 Kindle 閱讀器,也是超合適的禮物,送禮自用兩相宜啊!另外要特別留意,購買時可以確認商品有沒有幫忙送到台灣,如果還沒有,可以先跟美國的朋友確認一下,邀請他們回國時幫你一起帶回來!

跨國追劇最爽快

對於喜愛追劇的朋友,品味可能相當豐富且多元,畢竟欣賞優秀影視作品,不現語言,更是不限地區啊!只不過,若是你訂閱 Netflix 等跨國 OTT 服務,都會有各地不同的上架影視作品,可能會讓你無法在第一時間就能夠立即「追」到劇,讓你等得心癢癢!還好這一切只要連上 Surfshark VPN 都能解決,Surfshark 支援超過 100 國的 VPN 連線,無論你想看韓國、日本還是哪一國的最新戲劇,通通讓你一秒追到最新進度!

Surfshark 黑五限時 18 折折扣,額外加送兩個月

專屬連結:https://lihi2.cc/8XwRN

出差大陸翻牆超方便

在過往出國、返國都需要隔離的階段,肯定讓不少工作上需要經常往返多國之間的朋友,感到生活驟變。所幸,在防疫政策解封之後,一切都可逐漸恢復正常。對於經常有需要到中國大陸出差的朋友,肯定都會感受到網路斷聯的不方便,因為無論是 LINE、Facebook Messenger、YouTube、Gmail 等你可很能天天都在使用的網路服務,大陸都無法使用。這還不打緊,連跟家人、朋友報平安也很不便。這時候 Surfshark 連上,就可以幫助你輕鬆「翻牆」,跟台灣親人網路無距離!

 

上網不留痕跡,不被追蹤最自由

對於一個人來說,最私密的資料之一,除了你的個資,就屬我們每天耗費大量時間逗留的網路。我們所在網路上留下的痕跡,絕對是超真實的自己,當然你不會期待這樣的自己被「搜尋引擎」、「網路廣告」公司了解得太透徹,好像你在網路上的一言一行,都被監視著。

..0000000\0;也可隱藏IP位置,避免被廣告商追蹤;更可以為你我阻擋惡意程式、釣魚軟體等,讓你防止被攻擊,以及被網路充斥的廣告打擾,好處多又多!

如果對於 Surfshark 還覺得不夠熟悉的話,不得不告訴大家,今年 Surfshark 榮獲第六屆 CyberSecurity Breakthrough 頒發的「VPN 年度最佳解決方案」(VPN Solution of the Year),也就是成為今年最推薦的 VPN 方案。CyberSecurity Breakthrough 是全球領先的獨立市場情報組織,致力於表揚當今全球資訊安全市場上的頂尖企業、技術和產品。有了他們「掛保證」,代表 Surfshark 絕對是品質、信譽都讓你安心的VPN 服務。

講了這麼多,是不是讓你感到很心動了。如果你原本就是網路重度使用者,用來上網的設備是樣樣都有,Surfshark 一個帳號就能支援所有設備,CP 值超高!趁著年度超狂黑五購物節的到來,送給你自己兩年安心無虞的網路生活,肯定是送自己的最好禮物!

Surfshark 黑五限時 18 折折扣,額外加送兩個月
專屬連結:https://lihi2.cc/8XwRN

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
155 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

4
0

文字

分享

0
4
0
物聯網世代資安保護的熱門選擇——新型「加密金鑰」PUF 技術
科技大觀園_96
・2022/02/06 ・1831字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

隨著萬物聯網時代到來,越來越多數據以數位化方式儲存共享,架構安全性也越來越受到重視。就在今年 5 月,美國賓州大學研究團隊開發出一種基於石墨烯的 PUF(Physically Unclonable Function),能夠有效防範利用 AI 模型的新型攻擊,使加密金鑰更難以被破解。

石墨烯是一種由碳原子以 sp2 混成軌域組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。圖/pixabay

什麼是 PUF?

要解釋什麼是 PUF,就得先理解物聯網(Internet of Things , IoT)的概念。簡單來說,物聯網就是讓設備裝上感測器、軟體及技術來相互連接傳輸資料所形成的網路,是很多產業智慧化的基礎,然而很容易就可以想像這種便利性同時也帶來更高的資安風險,由於物聯網設備涵蓋的領域相當廣泛,駭客從許多層面都可以發動攻擊。

物聯網是讓設備相互連接傳輸資料所形成的網路。圖/pixabay

過去談到物聯網的資訊安全,許多人都會先想到軟體及網路加密連線,但其實除了網路層面的安全防護,實體設備同樣存在著威脅。一旦出現仿冒晶片或其他問題,駭客就可能透過網路遠端控制設備獲得金鑰和其他敏感資訊,進而造成企業損失。以軟體為主的資安設計已不再足以提供全面保障,這也是為什麼基於硬體的安全技術開始逐年受到青睞。

全名為「物理不可仿製功能」 的 PUF 就是這樣一種硬體安全技術。透過半導體製程中引入的隨機變數,讓晶片在微觀結構上產生些許差異,在變數無法預測及控制的情況下,複製該晶片成為幾乎不可能的事,減少遭人逆向工程或操作的擔憂。這樣的隨機性、唯一性及不可複製性,讓 PUF 彷彿成為一種「晶片指紋」的存在,因此自然也變成新世代資安「零信任」(Zero Trust)架構下的熱門選擇。

不同於傳統資訊加密技術將密鑰儲存在設備的方式,PUF 技術主要使用一個客製應用積體電路(Application Specific Integrated Circuit , ASIC)或現場可程式閘陣列(Field Programmable Gate Array , FPGA)就可以完成,透過製造時挑戰/反應數據庫(Challenge/Response)的建立,便能在無須加密認證演算法的情況下對設備進行驗證,防止身分被竊取、竄改的同時,也免除了將私鑰儲存在設備的額外成本以及金鑰遺失的風險。

自 2013 年開始,PUF 已經開始逐漸受到重視,只是就像所有的密碼學應用一樣,儘管 PUF 技術存在著這些驚人特性,駭客攻擊手法也仍在持續演化中。國外一些研究已經證明,透過機器學習,AI 技術還是可能預測出密鑰並獲取數據,因此針對 PUF 技術的改良研發也仍在持續進步中。

以賓州大學團隊 5 月公布在《 Nature Electronics 》的最新研究為例,工程科學與力學助理教授 Saptarshi Das 就進一步結合了石墨烯(Graphene)的諸多特性,開發出一種新型低功耗、可擴展及可重構的 PUF,在面對 AI 攻擊時也能保持顯著彈性不易被入侵。

據研究人員表示,透過石墨烯獨特的物理和電學性質,新型 PUF 更加節能、可延展,即使受到 AI 攻擊試圖預測金鑰,受損的系統也可以在不需要額外硬體或更換元件的情況下重新配置過程並生成新密鑰,藉此有效抵抗對傳統矽製 PUF 構成威脅的 AI 攻擊。

隨著物聯網走入各大產業、設備數量大規模增長,可想見更嚴峻的資安挑戰也即將到來。目前國內廠商及研究團隊許多針對 PUF 的努力正在進行,除了矽智財知名大廠力旺開發的 NeoPUF 技術,成功大學電機系張順志教授進行的研究也是其中之一。

在「具高安全性且低耗能之物聯網晶片電路及系統之分析、設計及實作」整合型計劃中,張教授希望透過超低功耗之類比數位轉換器設計技術及內建物理密鑰技術、 AI 輔助訊號轉換電路設計技術的研發,來提升物聯網晶片的安全性與穩定性。據了解,該項目已經進入後期階段,將基於先前的經驗嘗試完成整個物聯網系統的實體整合與量測驗證。

資料來源

  1. 初探物聯網安全趨勢下PUF晶片安全發展機會|跨域資安強化產業推動計畫網站 ACW
  2. 具高安全性且低耗能之物聯網晶片電路及系統之分析、設計及實作-子計畫三:應用於高安全性且低耗能物聯網系統的類比至數位轉換器之研製( I )
  3. Stabilization in Physically Unclonable Constants
  4. Graphene key for novel hardware security | Penn State University

科技大觀園_96
82 篇文章 ・ 1104 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

10
3

文字

分享

0
10
3
什麼是「近場光學顯微術」?為何它是開啟奈米世界大門的關鍵?
科技大觀園_96
・2021/12/01 ・2708字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

近場光學顯微術可突破繞射極限,使我們看到奈米等級的光學影像。圖/孔瀞慧繪

傳統光學顯微技術發展幾個世紀之後,從 20 世紀後半⾄今,突破光學繞射極限成為顯微技術的重要課題。繞射極限是光波所能聚焦的最⼩尺寸(約為光波長的⼀半,以可⾒光來說約 200-350 nm),仍遠⼤於分⼦和奈米材料。顯微鏡的發明是進入微觀世界的⾥程碑,⽽突破光學繞射極限後就能開啟進入奈米世界的可能性。 

突破光學繞射極限的超⾼解析度顯微技術⼤致上可以分為遠場(far field)與近場(near field)兩⼤類,這兩者的差別在於是否利⽤探針在靠近樣品距離遠⼩於⼀個波長(約數⼗奈米)處進⾏量測,若有則為近場,其餘則屬於遠場。⽽遠場顯微技術若要達到奈米級別的超⾼解析度, 需要以特殊螢光標定加上大量電腦計算來輔助。 

中央研究院應⽤科學研究中⼼研究員陳祺,專攻近場光學顯微術,屬於探針掃描顯微術(Scanning probe microscopy, SPM)中與光學相結合的分⽀。 

探針掃描顯微術,家族成員眾多 

探針掃描顯微術泛指使⽤探針來掃描樣品的顯微技術,依照原理的差別再細分成多個類別。在整個探針掃描顯微術家族中,最早的成員為 1981 年問世的掃描穿隧顯微鏡(Scanning tunneling microscope, STM),其主要機制是偵測探針與待測物表⾯間的量⼦穿隧電流(註1),作為回饋訊號來控制針尖與待測物的距離,⽽得到待測物表⾯次原⼦級別的高低起伏。1986 年發明的原⼦⼒顯微鏡(Atomic force microscope, AFM)則是⽬前最廣為應⽤的探針顯微技術,其以針尖接觸(contact)或輕敲(tapping)物體,藉由偵測針尖和物體表⾯間之凡得瓦⼒,得知物體表⾯的高低起伏。 

探針掃描顯微術(SPM)家族。僅示意,並未包含所有的成員。圖/劉馨香製圖,資料來源:陳祺

在探針掃描顯微術中,控制針尖與物體的相對距離是重要的課題,STM 可控制距離在一奈米以下,AFM 則可在一奈米到數十奈米間變化。此外,要在奈米世界「移動」並不是⼀件簡單的事。因為⼀般以機械⽅式的「移動」,其尺度都會在微米級別以上,這就像是我們沒有辦法要求⼤象邁出螞蟻的⼀⼩步⼀樣。所幸 1880 年居禮兄弟發現壓電材料會因為外加電場,⽽導致晶格長度的伸長或者收縮,即可造成奈米級別的「移動」。⽬前所有的探針顯微術都是以壓電效應達成對針尖或樣品「移動」的控制。 

近場光學顯微術,探針加上光 

依 STM/AFM 控制針尖的技術基礎,外加光源於針尖上,即為近場光學顯微術(Scanning near-field optical microscopy, SNOM),依照光源形式的不同可區分為兩⼤類: 

1. 微孔式近場光學顯微術(aperture SNOM,簡稱 a-SNOM) 
2. 散射式近場光學顯微術(scattering SNOM,簡稱 s-SNOM)

a-SNOM 是利用透明的 AFM 針尖,先鍍上⼀層⾦屬薄膜,並打上⼩洞,讓光從⼤約 50-100nm 左右的⼩洞穿出,得到⼩於光學繞射極限的光訊號。s-SNOM 則是外加雷射光源聚焦於針尖上,並量測散射後的光訊號。其中,針尖增強拉曼散射光譜顯微鏡(Tip-enhanced Raman spectroscopy, TERS)是屬於 s-SNOM 的⼀種特殊近場光學模式,主要為量測拉曼散射光譜,即可識別分⼦鍵結的種類。由於拉曼訊號相對微弱,透過探針鍍上⾦屬薄膜,即可利⽤針尖端局域電場的放⼤效果,來增強待測物的拉曼訊號,並利用針尖的移動來得到奈米級空間解析度的拉曼成像。 

(左)a-SNOM 所使用的探針,針尖上有微孔。(中)a-SNOM 原理:綠色箭頭表示光從上方經微孔射入樣品,紅色箭頭表示偵測器接收光訊號。(右)s-SNOM 原理:綠色箭頭表示光聚焦於針尖,紅色箭頭表示偵測器接收光訊號。光源與偵測器的位置可互換。圖/陳祺提供

陳祺的研究歷程與觀點

在陳祺就讀博士期間,其研究領域主要為結合低溫超高真空 STM 的單分子光學量測,需要極度精進探針掃描顯微鏡的穩定與解析度。畢業之後將⽬標轉向室溫室壓下的探針掃描顯微術與光學的結合,用以量測更多種類和不導電樣品。

陳祺在博⼠後期間的⼯作以 TERS 為主,曾發表解析度⾼達 2 奈米以下的成果,維基百科的 TERS 條⽬,也引⽤了陳祺當時發表在《Nature Communication》的論⽂。回國進入中研院之後,陳祺也開始 a-SNOM 的研究。

無論 TERS 或 a-SNOM,兩者的實驗設計都是建構在 AFM 上,因此陳祺會⾃⾏架設更精準的 AFM,以達成近場光學顯微術更佳的穩定性。 

近場光學實驗操作上的困難除了針尖的製作之外,穩定的 AFM 掃描其實也相當不容易,是維持針尖品質的關鍵。傳統上 a-SNOM 都是以接觸式(contact mode)的 AFM 方式掃描,以防止輕敲式(tapping mode)起伏會干擾光訊號,代價就是 AFM 的解析度極差。陳祺將⾃架的近場光學實驗放進⼿套箱裡,能讓針尖在輕敲式時維持極⼩的振幅(在⼀個奈米以下),可以大幅提高 AFM 的形貌解析度,也幾乎不損傷針尖。由於陳祺有非常豐富⾃架儀器的經驗,才能很⼤程度突破⼀般商⽤儀器的限制。 

不同的顯微影像比較。樣品為一種二維材料異質結構,左為結構示意圖,中為 AFM 影像,右為 a-SNOM 影像。AFM 能精確解析樣品的高低起伏,然而 a-SNOM 可解析樣品的光學特性。圖/陳祺提供

⼀般認為 TERS 有較佳的解析度,但由於 TERS 在散射訊號影像上有很大程度的不確定性,經常導致假訊號或假解析度的發生。近年來陳祺反⽽把研究的主軸轉向 a-SNOM,因為她更看重是否能由 AFM 得到的材料結構和高度,來解釋近場光學所量測的結果,以期研究材料背後的物理或化學現象。

另外,陳祺近期最重要的突破是在⽔中完成 a-SNOM 的量測,將針尖與光學元件整合在自製的腔體(cage system)之中,得以在保持生物樣品的活性之下得到超高解析度的影像,這將是開啟利用近場光學研究⽣物課題的重要⾥程碑。

最後,⾝為擁有兩個孩⼦的女性研究員,「如何兼顧⼯作與家庭」或許是⼀般新聞媒體會問的問題。然⽽,陳祺分享⾃⼰的⼼得:「是不可能兼顧的啦!先集中精神做好⼀件事,等另⼀件要爆掉的時候再去救它。」可能坦承⾃⼰沒有辦法做好每件事, 反⽽讓陳祺在實驗上永遠能找到促使⾃⼰改進的動⼒。 

註解

註 1:量⼦穿隧電流:在量⼦世界中,物質同時具有波動和粒⼦的特性。因具有波動的性質, 當電⼦撞擊⼀層很薄的障礙物時,有不為零的機率穿過去,並產⽣穿隧電流(tunneling current )。穿隧電流與障礙物厚度成指數函數遞減,因此可藉由量測穿隧電流強度計算出待測物表⾯極微⼩的⾼低起伏。

科技大觀園_96
82 篇文章 ・ 1104 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。