0

0
0

文字

分享

0
0
0

加國研究預測:無法逆轉的行星崩潰近在眼前

國科會 國際合作簡訊網
・2012/08/03 ・1720字 ・閱讀時間約 3 分鐘 ・SR值 588 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

圖片來源:PIX-JOCKEY@Flickr,根據創用CC-By 2.0條款使用

包括加拿大 SFU 大學(Simon Fraser University)的科學家在內的 21 名科學家利用科學理論、玩具生態系統模型(toy ecosystem modeling)和古生物學證據,預測我們將遭遇到比目前所認為與孕育萬物的大自然發生衝突的更糟路線。

發表於自然(Nature)期刊一篇題為〈接近地球生物圈中的狀態轉變〉(Approaching a state-shift in Earth’s biosphere)的論文中,跨領域的作者認為地球的生態系統正急速接近一個即將發生且不可逆轉的崩潰(collapse)。

地球的生物多樣性在加速損失,氣候波動愈來愈劇烈,生態系統間關連性的增長,以及其總能量收支(energy budget)完全改變,這些都是行星的狀態達到極限或引爆點的前兆。

作者預測在這個世紀就會遇到,一旦發生這種情況,我們所知道的地球生態系統可能在轉瞬間就崩潰,且這個過程是不可逆的。

Arne Mooers 表示,「地球歷史上前一次的引爆點發生在約 1 萬 2 千年前,當地球還在冰河時代,前一次持續了 10 萬年,才到目前的間冰期(interglacial)狀態。一旦到達了引爆點,最極端的生物變化,會導致僅在 1 千年內就到達我們目前的狀態。這就像是在不到一年的時間內快速從嬰兒長大變成年人。更重要的是現在這個星球的變化更快。」

SFU 大學的生物多樣性教授是這篇論文的作者之一。他表示,「這個機率是非常高的,下一個全球性狀態改變將嚴重破壞我們的文明。請記得我們是從狩獵採集一路走來,才在地球歷史上最穩定及良好的時期登陸月球的。」

「一旦發生極限引起的行星狀態轉變,就不能逆轉回到從前。因此,如果一個系統因為加入了大量的能量,而切換到一個新的狀態,即使你清除新的能量,它也不會恢復到舊系統。這個星球沒有從前狀態的記憶。」

這些預測與普遍持有的信念相反:一般認為人類活動引起的壓力,如氣候變化,正在摧毀我們星球的論點仍然是有爭議的,而且任何崩潰都會是漸進的、還會是好幾個世紀以後的事。

這項研究得出的結論是,地球表面的大量轉變最好不要超過 50%,否則我們將無法拖延、更遑論避免行星崩潰。

我們將景觀轉變成農業和城市地區的比例,已經達到 43% 的關卡,使地球越來越容易受到環境流行病的影響。

Mooers 表示,「總之,人類沒有做過什麼真正重要的事來避免最壞的情況,因為能使大有可為之作法實行的社會結構並不存在。我那些研究地球歷史上氣候引起的變化的同事非常擔心。事實上,有些同事還極度恐慌。」

研究預期即將發生不可逆的行星塌縮

這篇論文的作者來自於智利、加拿大、芬蘭、英國、西班牙及美國,最初他們 2010 年在加州大學柏克萊分校(University of California Berkeley)進行跨領域的會議來集思廣益。

他們檢查了各種生物學科理論及概念性的研究記錄,以尋找新的方法應對現在地球上正在發生的前所未有的變化。

人類產生的壓力,又稱為全球性的強制機制(global-scale forcing mechanisms),正在快速改變地球的大氣層、海洋和氣候,這些壓力有可能在我們的有生之年,就迫使生態系統和生物多樣性逼近我們生存的關鍵極限。

研究中提到,「當今全球性的強制機制,包括了人口前所未有的增長速率及幅度,與隨之而來的資源消耗、棲息地的改造與破碎、能源生產和消耗,以及氣候變化。」

人類活動驅使全球性強制機制變得比過去更多。結果我們現在看到的氣候變化速度,超過 1 萬 2 千年前地球從冰河時期到間冰期狀態時的極端行星狀態變化速度。你必須要回到恐龍時代結束時的流星災難末期,才能找到過去的先例。

地球現有物種滅絕呈指數增加、過去罕見物種佔有優勢地位,及極端氣候波動的發生,與上一次行星大轉變的關鍵改變類似。當各種擾動都反映在玩具生態系統模型內,可以看到這些系統迅速傾覆且不可逆轉的情況。

作者建議,如果我們希望拖延或減少行星狀態轉變,各國政府應立即採取五項行動。作者 SFU 大學生物多樣性教授 Arne Mooers 的總結如下。

「全球社會必須一同下定決心,快速且大幅降低我們的人口。更多人需要移動到較高密度的最佳地區,讓部分地球得以恢復。至少在短期內像我們這樣的人必須被迫減少物質生活。我們還需要在開發技術上投入更多,在不消耗更多土地及野生物種的情況下,生產並分配食物。這是一項非常艱鉅的任務。」

作者:駐加拿大台北經濟文化代表處科技組
資料來源:Study predicts imminent irreversible planetary collapse—Siomon Fraser University, SFU [2012-06-06]

轉載自國科會國際合作簡訊網 [2012-07-30]

文章難易度
國科會 國際合作簡訊網
47 篇文章 ・ 2 位粉絲

1

5
2

文字

分享

1
5
2
低調卻又無所不在:你我身邊熟悉的陌生人,臺灣森林裡的「野生釀酒酵母菌」
研之有物│中央研究院_96
・2022/07/11 ・6154字 ・閱讀時間約 12 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波、簡克志
  • 美術設計/蔡宛潔

臺灣「野生釀酒酵母」的多樣性研究

釀酒酵母,一種被人類廣泛利用的微生物,釀酒、做麵包都會用到,此外也被大量用於科學研究。可以說不論在食品或學術上,釀酒酵母早已進入你我的生活。然而,釀酒酵母除了人類常用菌株(strain)是來自原有已知的幾個馴化譜系(domesticated lineage)之外,其實還有非常多野生譜系不為人知。中央研究院「研之有物」專訪院內生物多樣性研究中心蔡怡陞副研究員,他與研究團隊尋覓臺灣野生的釀酒酵母,意外發現臺灣島的面積雖然相比之下較小,野生釀酒酵母的遺傳多樣性卻是世界最高!論文已於 2022 年 3 月 31 日發表於《基因組研究》(Genome Research)。

不管釀酒還是做麵包,都不可或缺的釀酒酵母

釀酒酵母的學名叫作 Saccharomyces cerevisiae(簡稱 S. cerevisiae),它在釀酒或烘焙等食品業中最具代表性,也是最常見的模式生物之一。釀酒酵母作為單細胞真核生物的代表,大量用於學術研究,蔡怡陞團隊的成果即是一例。

至於釀酒酵母的產業應用,例如常見的愛爾(Ale)與拉格(Lager)啤酒來說,前者發酵溫度在 20℃ 左右,菌株就是上述的 S. cerevisiae,味道較濃郁;後者的特色是低溫發酵 10℃ 左右,菌株是人類特別選殖的雜交品系(註 1),味道較清爽。

常溫發酵的愛爾啤酒較濃郁、顏色深,低溫發酵的拉格啤酒較清淡、顏色淺。圖/Pexels

有趣的是,世界各地的人、歷史與文化也許有別,愛酒的心卻都一樣,歐洲培育出發酵啤酒的品系,日本也獨立馴化獲得釀造清酒的酵母菌。

除了釀酒之外,製作麵包也需要釀酒酵母,故 S. cerevisiae 也稱作麵包酵母。仰賴小規模手工業的古時候,麵包師都有自己的獨家酵母,師傅教徒弟時,傳承的不只技術,也包括酵母麵團。

邁入近代社會以後,各行各業都走向標準化,釀酒酵母也不例外。如今不同麵包師大都使用同一種量產酵母。

釀酒酵母不只用於釀酒,烘焙業也常拿來讓麵團發酵,做出好吃的麵包。圖/Unsplash

啤酒與麵包這些案例鮮活地說明,釀酒酵母深受人類影響,這也是大部分酵母菌演化研究關注的主題。

然而蔡怡陞實驗室則不同,他關心的對象是處於人類影響以外、還沒有被馴化的野生釀酒酵母們。這些野生釀酒酵母們和食品業常用的菌株是同一物種(species),學名都是 S. cerevisiae,但是為不同菌株(strain)。

由於釀酒酵母的產業運用和微觀機制探討已經相當成熟,但是人們對於釀酒酵母在生態中的角色依然所知有限,以前人們甚至懷疑過,真的有野生的釀酒酵母嗎?後來才知道不但有,而且多樣性還不小,與人類密切接觸的只是少數幾款。

那麼,蔡怡陞團隊是如何找出低調的臺灣野生釀酒酵母呢?

看不到卻無所不在:臺灣野生釀酒酵母的探尋之旅

蔡怡陞過去就對酵母菌相當有興趣,因為這是他在倫敦帝國學院就讀博士班的起家主題!當時他研究的是釀酒酵母最近的親戚 Saccharomyces paradoxus

回到中研院後,他決定在臺灣再度開啟野生釀酒酵母的研究,與博士生李佳燁、助理劉育菁、柳韋安等人多年奮鬥後,有了出乎意料的發現!如今回首 6 年來的探索過程,並不容易。

要研究野生的釀酒酵母,第一步當然是去野外採集,可是人的眼睛看不見酵母菌,所以沒辦法用視覺辨識直接採樣,要把樣本帶回實驗室,初步處理後浸入培養液,等待兩個星期才能得知結果:釀酒酵母是否存在。

實驗室使用特製培養液,有利於釀酒酵母生長,不利其他微生物。理想上,即使釀酒酵母原本的存在感很低,也能在培養液中放大。

因為酵母菌肉眼不可見,研究團隊需在廣大森林中採樣,並將處理後的樣本浸入培養液長達兩週,之後嘗試分離微生物並鑑定,才能確認是否成功採集到釀酒酵母。圖/研之有物(酵母菌圖源/蔡怡陞提供、腦海工作室製圖)

假如等待一段時間後,培養液長不出酵母菌, 也許是一開始就真的沒有,但是有沒有可能是因為採樣和培養時有缺失,害得酵母菌長不出來?或是釀酒酵母確實存在,卻由於數量太少而無法見到?

蔡怡陞回憶,開始這項計畫的第一年,幾乎一無所獲。根據歐洲與美洲的研究經驗,野生釀酒酵母常常於橡樹表面生長,橡樹屬於殼斗科植物,所以一開始多半以市區外圍森林,如殼斗科的樹皮為目標,卻不斷失敗。

後來往更廣的範圍採樣,並與生多中心研究人員鍾國芳黃仁磐等實驗室合作,這才克服難關,順利從多種植物的果實、樹葉、樹幹、地面、甚至是地衣等來源獲得酵母菌,並且訝異地得知,釀酒酵母在臺灣的森林其實非常普遍。

蔡怡陞歸納出的模式是:臺灣野外森林中,釀酒酵母普遍存在,但是比例非常低,可謂低調卻無所不在。

釀酒酵母在顯微鏡下的照片。釀酒酵母有人類馴化過的菌株,也有野生譜系。野生的釀酒酵母在自然界中普遍存在,但是比例相當低。
圖/Wikimedia

如何歸納出以上結論呢?這要利用如今基因體學的新工具:總體基因體學(metagenomic)。原理是取得環境樣本後,直接定序其中所有 DNA 片段,或是所有物種都有的擴增子(amplicon),再與資料庫對照;如此一來,便能估計目標佔整體的比例,蔡怡陞團隊就是去估算釀酒酵母佔其生長環境中的比例。

從環境採樣培養出釀酒酵母以後,由中研院定序核心實驗室的呂美曄,回頭定序該樣本的擴增子,接著由蔡怡陞實驗室的林渝非分析。野外採集的樣本中,絕大部分是細菌,通常高達至少 99% 之多;剩下多半為真菌(和原生生物等等),其中只有極低比例是釀酒酵母,最多也只佔 0.012%。因此同樣是細菌、真菌等微生物,釀酒酵母的存在感是低於 1% 中的 0.012% 以下,換句話說,不超過百萬分之 12!

透過總體基因體學的分析,能夠量化釀酒酵母在天然環境下的存在感。蔡怡陞也強調培養液很重要,否則無法讓低調的酵母菌現形。抓到目標後就能分離酵母菌,培育建立新的菌株,並且經由團隊成員李昕翰、柯惠棉的定序、組裝獲得完整的基因組。藉此獲得一百多個臺灣各地的菌株及其遺傳訊息,用於進一步研究。

蔡怡陞實驗室中,放入培養液和樣本的 6 支試管。培養液相當重要,負責讓低調但無處不在的釀酒酵母現身。圖/研之有物

釀酒酵母的多樣性,臺灣竟然世界最複雜?

要了解蔡怡陞實驗室新論文的意義,必須先認識別人過去的研究。

2018 年就有研究者從世界各地收集超過一千個釀酒酵母品系,探討親緣關係。分析發現野生釀酒酵母們彼此的變化差異還不小,東亞的中國為最多變之處;將所有酵母菌擺在一起畫演化樹,中國採集到的品系能歸類到不同譜系(lineages),包括與同類最早分家,差異最大的譜系。

演化樹是一種建構親緣關係的工具,所有樣本中,兩個樣本假如有最近的共同祖先,通常遺傳上的差異也會愈少,便會被歸類到一塊;這一批和其次相近的另一批樣本們,又會被歸類到一群,就這樣一直向前回溯(見下圖),形成看似樹狀的關係。而這棵樹上愈早分離的譜系,也就代表差異愈大,愈早和其他樣本分家。

演化樹與地理關係的示意圖,通常有兩種情況,左邊表示不同地點(A,B,C,D)採集的樣本,在演化樹上有明確先後次序,可推論出如何在地理上傳播;右圖表示不同地點(A,B,C,D)採集的樣本,在演化樹上無明確先後次序,傳播路徑交織在一起。圖/研之有物

中國採集的釀酒酵母們,不但有些被歸類到較晚分家的不同群,幾個樣本更自成一群,形成最早分出的演化樹枝。這些證據有力地支持:中國是釀酒酵母的起源地。然而,案情並不單純!

將臺灣的一百多個菌株擺進演化樹,驚奇的事發生了!臺灣存在的釀酒酵母們,竟然也被歸類進各大譜系,並有新的譜系,這表示臺灣的釀酒酵母多樣性,和中國一樣高。而且還有一款進入之前於中國採集到,與同類最早分家的那一群。

驚奇之處在於,擺在全世界的尺度下看,臺灣只是一個很小的島,地處東亞大陸邊緣。中國面積龐大,釀酒酵母具備全世界最高的多樣性並不意外,也被認為很可能是發源地;可是小小的臺灣,竟然也存在一樣高的複雜度。

簡化過的野生釀酒酵母演化樹示意圖,蔡怡陞團隊採集到的臺灣野生釀酒酵母譜系中,發現有一款和先前中國採集樣本都是最早分家的一群(黃框處),地理傳播也交織在一起。這表示臺灣的釀酒酵母多樣性,和中國一樣高,兩者皆為世界第一。圖/研之有物(資料來源/蔡怡陞)

有沒有可能臺灣多變的品系,並非起源自當地,而是被人類無意間帶來的呢?應該不可能,因為根據遺傳差異估計,那些野生譜系們分家後衍生的年代,都早於人類在附近活動的時間;由此可以推論,目前的分佈狀況,非常可能是自然傳播的結果(或許是隨著殼斗科森林)。

所以我們可以說,臺灣是釀酒酵母最初的起源地嗎?不行。符合已知證據,比較合理的解釋是,釀酒酵母於東亞發跡,所以在東亞地區的遺傳多樣性也最高;而臺灣也包含於此一交流範圍之內,從最早的始祖開始,從古至今逐漸分家的釀酒酵母們,可能陸續,或是在同一段交流時期進入臺灣,一直低調默默生存到現在,仍保持原鄉的面貌。

然而,好的研究不只要知道有多少已知,更要知道還有多少未知。蔡怡陞提醒我們,目前研究有個盲區:東南亞地區的取樣仍十分有限。根據已知的樣本,最早與同類分家的酵母菌,它們的後裔位於中國和臺灣,故推論東亞地區是起源地。

可是取樣匱乏的東南亞,會不會住著更早分家前輩的後裔呢?這是目前無法回答的問題。

野生釀酒酵母在中國與臺灣的實際採樣分布,發現臺灣譜系的數量是全世界同尺度地區中最高的。其中 TW1 和 CHN-IX 皆為最早分家的一群,證明了台灣是發跡地之一。小小的臺灣卻擁有如此高的多樣性,就是讓人驚奇之處。圖/研之有物(資料來源/蔡怡陞)
釀酒酵母實際的演化樹,這是從樹狀圖捲曲起來的另一種表達形式,其中 TW1 和 CHN-IX 皆為野生樣本,且是最早分家的一群。圖/研之有物(資料來源/蔡怡陞)

你我所不知道的小世界,野生釀酒酵母的生殖、生態學

總之根據現有的資訊,臺灣釀酒酵母的多樣性在同樣尺度下比較確實為世界最高

大量取樣下還能觀察到,距離非常近的採集地點,竟然同時住著遺傳上差異很大,不同譜系的菌株(甚至在同一棵樹!)。相比之下,中國酵母的多樣性也高,但是分佈並不密集,相近的地理範圍內通常存在遺傳上類似的菌株。

不同研究的手法不同,這會不會是中國研究者採集較為稀疏,取樣方式導致的偏誤呢?蔡怡陞表示,的確無法排除前述可能性;但是他反而認為過去的採集方式,說不定都忽略了微生物近距離的分佈與多樣性,所以更需要反思過往認知微生物的生物地理關係。

不過他也認為中國的釀酒酵母確實住的比較分散;因此差異大的品系住在附近這回事,搞不好真的是臺灣特色,至少是率先在臺灣觀察到。

了調查臺灣野生釀酒酵母的多樣性,蔡怡陞團隊也發現野生的釀酒酵母大部分是採取無性生殖,不同品系之間雖然會有遺傳交流,但是相當有限。圖/研之有物

另一件有趣的發現是遺傳交流。釀酒酵母是單細胞真核生物,實驗室環境下可以無性生殖,自己複製自己;也可以隨時切換成有性生殖,和同類一起生寶寶。利用菌株間的遺傳差異,可以預測自然界的釀酒酵母,大部分時候採行無性生殖(這是蔡怡陞博士班時期努力的主題!)。

既然臺灣存在許多遺傳有別的野生品系,有時候又住的很近,它們之間會遺傳交流嗎?

比對基因組得知,會,不過不常見,大約每幾百到幾萬次無性生殖才有 1 次有性生殖。這證實蔡怡陞對酵母菌生殖的推論,替釀酒酵母生態學新添一分認識。

讓學術研究結合產業應用,找到野生釀酒酵母之後

有趣歸有趣,但是研究臺灣野生釀酒酵母有什麼意義呢?

從學術上來說,蔡怡陞指出,臺灣生態系複雜,本次透過基因體學手法得到量化證據,支持釀酒酵母這種微生物,在臺灣的多樣性很高。這項在臺灣採樣的本土研究,也大幅增進全世界對釀酒酵母的認識,並可更進一步開始探討釀酒酵母在自然界所扮演的角色。

從產業上來說,在蔡怡陞團隊的辛苦調查與記錄之後,未來我們是否可以期待廠商用臺灣在地的野生釀酒酵母做啤酒呢?

釀酒酵母是與人類互動最密切的微生物之一,但是人們對野生的釀酒酵母了解卻很有限,可謂無比熟悉的陌生人。蔡怡陞採集到眾多野生的菌株品系,不論學術研究或產業應用,都可能有進一步發展。

目前實驗室正在把這些菌株「帶」回實驗室,開始量化相關的表現型(phenotypes)。等到時機成熟,他歡迎各界合作,一起探索臺灣自然資源的潛力。

蔡怡陞與實驗室團隊合影,前排由左往右為:李佳燁、柯惠棉;後排由左往右為:蕭禎、劉育菁、蔡怡陞、林渝非。這次論文中公開的眾多野生釀酒酵母菌株,不論學術研究或產業應用,都有相當的發展潛力。圖/研之有物

註解

  1. 拉格啤酒採用的菌株是 Saccharomyces pastorianus,為 S. cerevisiae 及 S. eubayanus 兩者雜交而成。

參考資料

  1. 蔡怡陞(2017)。〈多樣性決定味覺豐富度,釀酒酵母的「萬年傳統全新感受」〉,《環境資訊中心》。
  2. Lee, T. J., Liu, Y.-C., Liu, W.-A., et al. (2022). Extensive sampling of Saccharomyces cerevisiae in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research.
  3. Peter, J., De Chiara, M., Friedrich, A. et al. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556, 339–344.
  4. Duan, S. F., Han, P. J., Wang, Q. M. et al. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun, 9, 2690.
  5. White, C., & Zainasheff, J. (2010). Yeast: The Practical Guide to Beer Fermentation. Brewers Publications.
  6. Tsai, I. J., Bensasson, D., Burt, A., & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. PNAS, 105(12), 4957–4962.

所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2201 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

17
3

文字

分享

1
17
3
生物多樣性哪裡來?臺大團隊的新研究,用現代科學檢視達爾文的天擇說與物種起源!
李承叡
・2021/04/22 ・2378字 ・閱讀時間約 4 分鐘 ・SR值 563 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文 / 李承叡|臺灣大學生態學與演化生物學研究所

還記得達爾文的演化論嗎?簡單來說,不同環境因子產生不同天擇壓力,選汰出能適應各地環境、具有不同形態的後代(圖一)。久而久之,一個物種就可能會慢慢分化成數個形態不同的物種。然而比起觀察兩個已經分家很久的物種,也許研究正在分化的族群更能讓我們釐清物種分化的過程!

美洲 pocket mice (Chaetodipus intermedius) 不同族群的毛色與與當地岩石色調相近,具有避免掠食者發現的隱蔽性。圖一/PNAS

受限於當年對遺傳學的理解,達爾文很難再進一步提出物種遺傳組成會改變的證據。之後數十年,隨著統計學、數量性狀遺傳學、與族群遺傳學的興起,人們逐漸體認到除了天擇,基因突變、族群間的遺傳交流、自然界的隨機事件、及生物的生殖模式差異等因素都是推動生物演化的重要驅動力。接著數十年又過去了,今天的科學家,可以用分子生物學與基因體學去進一步證實達爾文的想法,探究不同環境如何影響天擇力量、性狀差異、最終造成遺傳分化的這個的過程嗎?

利用野外實驗及遺傳定位證實棲地環境觀察

臺灣大學的李承叡老師團隊利用美洲洛磯山脈的野生草本植物 Boechera stricta 探究這個議題。先期研究發現這個物種內有兩個遺傳組成差距極大的群體(在此暫稱亞種),且這兩個亞種即使在距離極近的同個山脈內仍偏好分佈在不同棲地:終年潮濕的溪邊、及水分供給短暫(多為夏季融雪及短暫降雨)的山坡上。但是,這就代表環境差異本身可以直接促進遺傳分化嗎?

研究人員首先利用野外及溫室實驗補足其中的連結(圖二):在水分供給充足的溪邊,果實產量是重要的天擇壓力,且當地原生植物開花慢(開花前可累積更多養份)、花期長、花序軸粗壯(用以支持更多果實)。在水分供給短暫的山坡,存活率是最重要的因子,當地原生族群的生活史快速(但果實產量較低)以求躲避夏末的乾季。更重要的是,而就算一同種植在溫室,兩個亞種的性狀仍會表現出適應原生地的樣貌,證明此性狀差異是由遺傳而非後天環境控制的。換句話說,由迥異環境造成的選汰壓力差異已經藉由對外表型的選擇,影響了兩個亞種間的遺傳因子。後續的遺傳定位實驗也證實了這一點:在溪邊環境控制個體種子產量的基因座同時也影響了花序軸粗細,且來自當地族群的對偶基因同時具有增加後代數量以及加粗花序軸的效用,與上述生態觀察的結果相符。如果我們把眼光放到這兩個亞種的整個分布地區,更可以發現這個重要基因座裡的遺傳多樣性與各地降雨量高度相關。

美國洛磯山脈野生植物 Boechera stricta 兩個亞種(紅框及藍框)迥異的棲地環境及生殖策略。植物特寫圖為花序軸頂端,可見長角果(Silique)的數量在兩個亞種差異極大。圖二/作者提供。

可是物種分化是整個基因體都分化,你只證明一個基因座有差異啊?

沒錯,生物學家不可能針對所有與土壤水分含量有關的性狀做基因定位,而且與一般認知的孟德爾遺傳學不同,自然界不少性狀是由眾多基因控制的。在這個狀況下,每個基因對外表型僅有少量影響,而個體間的差異是許多基因的影響共同累積而成的。我們有沒有辦法一次快速地掃描整個基因體,找出與自然環境(而不是特定性狀)相關的許多基因座,再看看他們是不是在兩個亞種間有強烈的分化呢?

這時候就要借助近年在人類遺傳學很常用的技巧了:全基因體關聯性定位(圖三)。簡單來說,有了一群個體的基因體資訊後,我們就能計算他們的性狀(可以是類別或是數量性狀)和基因體中每一個位點的相關性,得知基因體中哪些位置會影響性狀,這個邏輯在植物當然也通用。換個角度想,如果今天我們有一群在不同環境採集的野生動植物,再把採集地點的環境資料(如氣溫或雨量)當成一個「性狀」去做分析,是不是就能直接找到和適應不同環境有關的這些基因呢?

全基因體關聯性定位的基本概念。這邊先假定生物為單倍體,圖中每條粗黑橫線代表一個個體的染色體,小方框內為染色體上五個位點的基因型。此方法藉由測試基因體內每個位點與類別性狀(人類得病與否)、數量性狀(人類身高或植物開花天數)、甚至環境因子(棲地雨量)的關聯,找出控制性狀或棲地適應的基因。圖三/作者提供

當然研究人員這邊想做的並不只是找出和環境相關的基因這麼簡單。如果這兩個亞種對各自棲地水分含量的適應會導致眾多性狀的演化,進而促進基因體中許多位置的分化,最後各自形成不同物種的話,我們利用全基因體關聯性定位找出跟雨量相關的這許多基因,他們在兩個亞種之間的分化程度應該會比基因體其他位置的分化程度更高。相對地,如果一個環境因子(如氣溫)和族群分化無關,那與其相關的眾多基因應該不會有類似的狀況。當然,這也是這篇研究所發現的。研究人員在此證實了,生存環境差異會促進基因體內許多與環境適應相關的基因座產生分化,帶動整個基因體產生差異,促進物種分化。

演化生物學的新方向:統合野外生態實驗,基因座定位,及基因體學

達爾文認為生存環境差異會造成物種分化。然而要完全證明這一點,科學家必須釐清許多環節:不同生存環境會產生怎樣的天擇壓力?不同天擇壓力能否影響性狀的演化,背後牽涉哪些基因?這樣的環境壓力只牽涉到少數幾個基因,還是會影響許多基因,最後促進整個基因體的分化?過去的研究探討這個過程的不同環節,而本研究結合生物學的眾多領域,完整串連了演化生物學的一個重要議題。

本計劃蒙科技部年輕學者養成計劃之哥倫布計畫補助,特此致謝。

論文原文請見:The ecological, genetic and genomic architecture of local adaptation and population differentiation in Boechera stricta

所有討論 1
李承叡
3 篇文章 ・ 8 位粉絲

1

20
0

文字

分享

1
20
0
「澳洲森林大火」你該知道的事:可能的起火原因?對生態有何影響?人類該有何作為?
林大利_96
・2020/11/16 ・4196字 ・閱讀時間約 8 分鐘 ・SR值 540 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

熊熊燃燒的地球

2019 年,是野火嚴重衝擊全球森林的一年。

當年 8 月,南美洲亞馬遜雨林的大火特別嚴重,導致大面積的雨林燒毀,也引起全球關注。2019 年 8 月 23 日的中午(當地時間),亞馬遜大火的濃煙讓遠在 3 千公里外的巴西首都聖保羅壟罩在暗無天日的黑煙當中。

在好萊塢演員李奧納多 (Leonardo DiCaprio) 和知名脫口秀主持人艾倫 (Ellen DeGeneres) 於社群網站 Twitter 分享之下,Amazon Fires 和 Praying for the Amazon 成為 8 月下旬的熱門主題標籤 (hashtag) 。

2019 年 8 月,亞馬遜大火導致大面積雨林燒毀。圖/flickr

在來自全球的輿論及諸多科學家和保育團體等社群的呼籲之下,七個亞馬遜雨林國家,包括波利維亞、巴西、哥倫比亞、厄瓜多爾、法屬圭亞納、秘魯和蘇利南,於2019 年 9 月 6 日共同簽署「萊蒂西亞協議 (the Leticia Pact)」,期望能以更有效的合作方式來保護亞馬遜雨林 (Prist et al. 2019)。

起火燃燒的澳洲,波及受脅物種

2019 年 9 月至 2020 年 1 月間,澳洲東南部也引起森林大火,範圍遍及昆士蘭省(Queensland) 東南部、新南威爾斯省 (New South Wales) 東南部、以及維多利亞省 (Victoria) 南部,主要都在大分水嶺的東側迎風面,菲利浦島 (Philip Island) 也有嚴重災情,總面積達 97,000 平方公里 (Lindenmayer et al. 2020; Ward et al., 2020),面積將近三個臺灣島。

澳大利亞東海岸大火的煙霧衛星圖,於2019年11月12日拍攝。/Wikimedia Common

這樣的規模是加州大火的 50 倍、亞馬遜大火的 5 倍。長達 2,000 小時的熊熊烈火,影響了超過十億隻野生動物。

計算下來,共波及 832 種物種,其中包含 21 種受脅物種,例如黃紋吸蜜鳥 (Regent Honeyeater, Anthocharea phrygia) 、華麗琴鳥 (Superb Lyrebird, Menura novaehollandiae) 、東方吸蜜鶇 (Eastern Bristlebird, Dasyornis brachypterus) 、輝黑鳳頭鸚鵡 (Glossy Black-Cockatoo, Calyptorhynchus lathami) 和南方斑紋鷯鶯 (Southern Emu Wren, Stipiturus malach) ,都是受到衝擊的受脅鳥種。

華麗琴鳥 Menura novaehollandiae 為受脅物種,也受到澳洲森林大火的波及。圖/EOL

森林大火對生態的衝擊,不只是野生動物被燒死

澳洲大火對野生動物的衝擊,通常可能會想像是野生動物被大火燒死,但其實不盡然如此。森林大火對野生動物最主要的衝擊是食物資源和繁殖場域的消失。由於大部分的植被被大火燒毀,導致大多數的植食性動物或初級消費者大量失去植物性食物資源,例如花蜜、果實、嫩葉和樹液。

同時,依賴樹木作為各種繁殖場域的野生動物也容易受到衝擊,尤其是在樹上築巢或以樹洞為巢的動物,更是首當其衝。

此外,大火之後也較容易引發傳染病病蟲害外來入侵種擴張,可以說是改變整個生態系的運作結構。

森林大火使動物失去主要食物資源以及繁殖場域。圖/Wikimedia Commons

當時,我在布里斯本 (Brisbane) 的昆士蘭大學校園,都能明顯感受到空氣品質變差, PM2.5 的濃度為每立方公尺 150.8 微克,窗外的霧霾景像,不禁令人感覺到一股熟悉的家鄉味。然而,後續幾個月的全球焦點轉到新型冠狀病毒引起的嚴重特殊傳染性肺炎 (COVID-19) 的疫情上,但是又有數百萬公頃的澳洲森林持續被燒毀。

2019 年 12 月雪梨歌劇院,被森林大火的煙霧壟罩。圖/Wikimedia Commons

這場大火,對澳洲多樣性高又獨特的野生動物帶來空前的危害。而且澳洲的動物相(動物群)又非常特殊,有許多特有的生物種類和類群。因此,澳洲大夥同樣急於需要人類介入幫助。

可能的起火原因?

為了避免相關的災情再次發生,澳洲各地的政府機關、地主、科學家和決策者熱烈的討論引發澳洲林火的可能原因。不可避免的,各種猜疑、臆測和恐慌,也跟著喧囂塵上。

大多數的討論多歸咎於人類所造成的氣候變遷,但是,過度砍伐森林的影響卻鮮少有所討論。

極端天氣造成的惡性循環

其中一個說法是 2019 年的夏天非常乾燥炎熱,幾乎沒有下雨。這裡是指南半球的夏天,大概是從 10 月到隔年 2 月。布里斯本是位於澳洲東部、大分水嶺東側迎風面的沿海城市,冬天是乾季,夏天是雨季。

我在 2018年10 月第一次到布里斯本的時候,三個星期內只有幾天的晴天,其他時間都在下雨,打亂了我的賞鳥行程,實在是有點困擾。但是, 2019 年的十月,卻幾乎繼續延續冬天陽光普照的天氣,只是冬季的暖陽變成夏季的烈日。

原本澳洲的十月份應為雨季,但 2019 年的十月卻烈陽高照。圖/Pexels

不僅如此,澳洲的夏天一年比一年炎熱,2019 年的夏天也不遑多讓。當時的高溫,讓許多集體日棲於市區綠地的蝙蝠因為高溫大量死亡,公園裡遍地死屍。

不僅如此,森林大火現場的濃煙大量累積在空中,往往容易形成「火積雲 (pyrocumulonimbus cloud)」。這種雲層型態就像積雨雲一樣,看起來濃厚而紮實。不久之後,可能會在附近地區降下強度大的超大豪雨,也可能形成「火龍捲風(fire tornado)」。

這些極端天氣都會對當地居民和經濟產業帶來嚴重損失。最麻煩的是,火積雲也會帶著雷電,閃電很容易在乾燥的地面引發另一起森林大火,接著再形成新的火積雲。這樣的惡性循環,也是澳洲森林大火延續時間相當長的原因之一。

伐林使森林面積流失、物種名列受脅名單

澳洲的伐林史可追溯到歐洲人剛從澳洲登陸的時代,可說是非常漫長的歷史。依據2001 年的澳洲天然植群評估報告 (Australian Native Vegetation Assessment),在這段歷史中,至少有 30% 的桉樹(尤加利樹)森林和 30% 的雨林消失,大多集中在 19 世紀下半葉。

然而,2018年,澳洲森林國家報告 (Australia’s State of the Forests Report) 指出,1996 年到 2018 年間,整個澳洲失去了 1 億 6 千 1 百萬立方公尺的天然林木材。這樣的衝擊,讓 181 種仰賴森林的物種,名列於澳洲的受脅物種名錄之上 (Kearney et al. 2019) ,而且,這只是低估的狀況 (Walsh et al., 2012) 。

此外,開闢道路所導致的森林破碎化,雖然森林流失面積較小,但是森林破碎化所帶來的衝擊也相當嚴重。以維多利亞省的中央高地來說,伐林現場距離原始林的平均距離只有 71 公尺,而在保護區內,則是平均有 1,700 公尺的距離 (Taylor & Lindenmayer 2020)。

主要的原因在於,伐林過後的現場,會留下非常大量的殘材。這些殘材,包括各種無法進一步加工的小樹、細枝條、以及枯枝落葉。估計下來,平均大約是每公頃450 頓 (Raison & Forest 2008) 。

這些殘材,就會成為森林大火的燃料,會增加森林大火發生的機率,也會助長火勢和森林大火延燒的範圍。不僅如此,伐林作業過後的新生林地,通常也不耐火勢。這些新生的同齡林(even-aged stand,每棵樹年齡差不多的森林),也會成為助長火勢的燃料。

伐林後的森林會留下大量殘材,和新生的同齡林同樣會成為助長火勢的燃料。圖/flickr

因此,進而導致森林自然更新不易,在這樣的狀況下,森林大火很快就蔓延到附近的原始林。這裡的原始林不是開玩笑的,最老可追溯的岡瓦納大陸時代就存在的森林(約 2 億年前,Kooyman et al 2014)。對於原野地造成的衝擊,可不容小覷。

大火之後,我們應該做什麼?

目前,大部分的政策決策者都能理解到氣候變遷和森林大火之間交互作用之下,導致林火影響整個澳洲大陸。

隨著火勢趨緩,目前澳洲政府和相關領域的科學家正在討論一些可行的補救和預防措施,包括移除殘材、減少破碎的森林區塊、建置野生動物的林火避庇護所、推動地主的林火預防教育、以及造林工作納入林業公司的作業規範。移除伐林現場的殘材,是首要進行的預防工作,可以避免火勢蔓延,也可以助長火勢。

同時,針對目前的森林現況,提高破碎森林區塊的連結度,復育成大而完整的連續森林。除了有助於減緩火勢,也能夠提供較多野生動物遇到森林大火時的庇護所,其他還有減緩氣候變遷、調節水文循環和加強其他森林生態系功能。

大火過後,提高目前破碎森林的連結度,復育完整的森林,能夠提供動物作為庇護所。圖/Pexels

此外,由於這次許多林火發生於私有的農場和牧場,政府也正在規劃適合地主的林火防治教育,以避免未來森林火災發生,以及發生當下的因應作為。同時,針對林業公司,不能就只是伐林從森林中獲益,也要將森林復育和造林工作綁在一起。

砍了多少森林,就要種回多少新的苗木,作為林業公司伐採森林的條件。

就澳洲林火的經驗,雖然對台灣來說背後的氣候和環境條件差異甚大,也相對容易受到聖嬰現象和反聖嬰現象的衝擊。

但是,還是有些值得我們參考的林火預防措施。

  1. 執行伐木作業之後,適當移除容易引起林火的殘材,例如松樹類等。
  2. 規劃伐木作業時,盡可能保留原先森林區塊的完整性,避免形成零星的小碎塊。
  3. 注意伐木作業時間,避免於乾季、聖嬰年或降雨量較少的期間進行。

這樣的追根究柢,是要知道我們有那些作為可以預防和解決這樣大規模的生態衝擊,而不是輕易的歸咎到氣候變遷,然後說你我都推了一把,就無所作為了。

引用文獻

  1. Kearney SG et al. 2018. The threats to Australia’s imperilled species and implications for a national conservation response. Pacific Conservation Biology 25(3) 231-244.  https://doi.org/10.1071/PC18024 
  2. Kooyman RM. 2020. Paleo‐Antarctic rainforest into the modern Old World tropics: The rich past and threatened future of the “southern wet forest survivors. Boteny 101: 2121-2135. 
  3. Lindenmayer D. et al. 2020. Recent Australian wildfires made worse by logging and associated forest management. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-1195-5
  4. Prist P. et al. 2019. Cross-boundary collaboration is crucial for mitigating the impacts of deforestation and fires in the Amazon. Science 366(6466):699-700. link
  5. Raison, J. & Squire, R. O. Forest Management in Australia: Implications for Carbon Budgets (Australian Greenhouse Office, 2008).
  6. Taylor C, Lindemayer DB. 2020. Temporal fragmentation of a critically endangered forest ecosystem. Austral Ecology 45(3): 340-354.  
  7. Ward M. et al. 2020. Impact of 2019-2020 mega-fires on Australian fauna habitat. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-020-1251-1 
所有討論 1
林大利_96
19 篇文章 ・ 7 位粉絲
來自森林系,目前於特有生物研究保育中心服務。興趣廣泛,主要研究小鳥、森林和野生動物的棲地。出門一定要帶書、對著地圖發呆很久、算清楚自己看過幾種鳥。是個龜毛的讀者,認為龜毛是一種科學寫作的美德。