5

7
2

文字

分享

5
7
2

改了又改的科技部,又要回復成國科會了!聽聽三位前任首長怎麼說——《科學月刊》

科學月刊_96
・2021/01/08 ・6496字 ・閱讀時間約 13 分鐘 ・SR值 567 ・九年級

-----廣告,請繼續往下閱讀-----

科技部回復成國科會 臺灣科學發展會更好嗎?

  • 廖英凱/非典型的不務正業者、興致使然地從事科普工作、科學教育與科技政策研究。對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心理史學。

行政院於去(2020)年啟動組織改造,預計將廢除科技部並回復為國家科學委員會。從過去的長科會,一路改制為國科會,再到科技部,接著要再改回國科會。藉由訪談三位過去擔任過國科會與科技部的首長,道出臺灣科研發展與產業未來的走向,找尋帶領國家科技政策的最佳解答。

去年 11 月初,媒體報導行政院將啟動組織改造,預計廢除科技部,回復成過去的國家科學委員會(簡稱國科會),並將部分業務移轉給新設立的「數位發展部」。在人事布局上,國科會主委預計將由負責督導科技業務的科技政委兼任,若組織改造順利完成立法,則 2014 年才成立的科技部將成為歷時最短的部會。

科技部部址:科技大樓。圖/wikipedia

無論是科技部或國科會,以及與科技發展密切相關的行政院科技會報,對我國科學研究、科技發展與產業應用皆影響甚鉅。《科學月刊》本次訪談了陳建仁、張善政與陳良基三位歷任國科會與科技部首長,以了解過去國科會改組成科技部的原因與影響,以及他們對目前科技部再改組回國科會規畫的觀點。

從「長科會」到「科技部」

科學發展是國家長期實力提升的基石,開發完善的國家,無不成立負責科學發展,擬定國家長期科學計畫的專屬行政組織。如美國國會在 1950 年創立美國國家科學基金會(National Science Foundation, NSF),是美國聯邦政府支持與贊助科學、工程及技術等學科基礎研究與教育發展的獨立政府機構。

1958 年,胡適就任中央研究院院長,在吳大猷的協助下,擬定〈國家發展科學培植人才的五年計劃的綱領草案〉,促成行政院在次年成立「國家長期發展科學委員會(簡稱長科會)」,由中研院院長胡適兼任主任委員,教育部長梅貽琦兼任副主任委員。

-----廣告,請繼續往下閱讀-----
胡適(攝於1960年)。圖/wikipedia

1967 年初,「動員戡亂時期國家安全會議」成立,下設「科學發展指導委員會(簡稱科導會,現已廢除)」。科導會建議將長科會的職權擴大,於同年將長科會改制為「行政院國家科學委員會」。國科會是委員會性質,由行政院遴聘政務委員、中央相關機關首長(如交通部、經濟部與衛福部等)、研究機構首長(如中研院院長)及學者專家組成,具跨部會、跨產官學性質,擁有穩定的經費且專注於學術研究,是臺灣半世紀以來科學發展的基礎。

2006~2008 年間,陳建仁院士擔任國科會主委,彼時行政院開始組織改造的討論,立法委員呂學樟以重視科技發展為由,力主成立「科技部」。經過多年討論與協商,於 2014 年將國科會改制為科技部,由時任科技政委張善政轉任首任科技部部長。

去年 5 月,科技部部長陳良基卸任後,由時任科技政委兼科技會報副召集人吳政忠轉任科技部部長。同年年底,政府宣布預計將科技部改制回國科會,國科會主委由科技政委兼任,具體細節仍規畫中尚未定案。

從基礎研究到商業應用

關於逾半世紀的國科會與科技部兩組織的主要業務目標,三位歷任首長的觀點相似。陳建仁認為,國科會在看待科技預算與科技發展,須從上游的基礎研究、科學發展;中游的科學轉譯、將科學化為技術;下游的技術商品化、產業化,三層面並重且銜接。陳良基也認為無論以何為名,科技主管機關的三大關鍵業務,分別是主導國家長遠的科技發展計畫;協助國家應用新興科技,並妥善分配與審查科技預算;以及管理科學園區。此外,科技的發展從來沒有速成的路徑,應著重以數年為期的長期深耕。張善政也提出國科會的一重大任務,就是要提出國家的科技白皮書,訂定國家長期科技發展策略,絕不能短視近利尋求速成。

陳建仁
最高學歷:約翰霍普金斯大學公衛博士
部分經歷:中研院院士、世界科學院院士、美國國家科學院外籍院士、臺大公衛學院院長、中研院副院長、副總統、中研院基因體研究中心特聘研究員
國科會/科技部任期:第12任國科會主委,2006/01/25~2008/05/19
圖/《科學月刊

然而,科學知識的探索與科技產業的應用是截然不同的施政邏輯。近年來國家的科技預算分配中,最大宗是科技部以數百億的規模,支持科學技術的研發;其次則是經濟部技術處也有數百億的規模,支持產業技術的商業應用。兩種不同施政邏輯與相關組織如何有效合作,成了基礎研究到商業應用是否一氣呵成的關鍵。張善政認為,科技部大部分的司處應聚焦在學術研究的補助與國家科技預算的管理,不宜分神處理跨部會協調、跨部會預算分配和產業開發。對於科研成果的應用,可透過與產業相關的公家法人協助,如由工研院檢視學術研究成果,協助大學申請專利或成立公司。

-----廣告,請繼續往下閱讀-----

但對於更大規模或全新領域的科研發展,陳建仁則強調了「國家型科技計畫」的重要。國家型科技計畫仰賴各部會資源與預算的投入,需要一個跨部會的組織,整合來自學術研究上中下游的多方資源。

陳建仁以「生技醫藥國家型科技計畫」所支持的臺灣特定疾病臨床試驗合作聯盟(TCTC)為例,TCTC 是一個兼有科學研究、臨床應用與產業開發的聯盟組織,無法單純從學術補助或產業扶植即可完整建立,生技醫藥的發展規畫更須仰賴跨越數年的前瞻眼光。

面向學校的學術補助,和以國家之力推動的國家型科技計畫,意味著兩種科技發展的方向。陳建仁認為基礎研究絕不能少,但也必須同時構思轉化為科技應用的方式。

支持基礎研究的學術補助本質是一種由下而上(bottom-up)的科研方式,目的在持續推動基礎研究,由學術研究者自發設想最前瞻的研究主題,國家更應確保每年有 3~5% 的經費成長,可視為一種探索未知的科學精神實踐。

而國家型科技計畫則是一種由上而下(top-down)的科研方式,如今日的前瞻建設、5G 科技,或是早期的防災科技與肝炎防治等,必須由政府擬定重點研究方向,規畫鉅額專用預算,協調跨部會分工,是一種目標明確志在實踐的政策工具。

然而隨著國科會改制為科技部後,國家型科技計畫即不再提新興計畫,陳建仁認為這間接導致基礎研究的經費減少。科技部也因成為一獨立部會,削弱了跨部會協調的能力,而須仰賴科技政委與科技會報的跨部會協調機制。張善政與陳良基也認為獨立成部後,並不適合干涉或管理其他部會的科技研究,這可能使科技部反而降低了對全國科技發展的掌握程度。

部與委員會的權責差異

全國性科技發展的宏觀規劃,與轉型成科技部後獨立管轄範圍的衝突。揭示了「部」與「委員會」的組織架構上的根本差異。

科技部行政團隊由部次長與轄下司處首長組成,預算由行政院決定,立法院通過,是獨立行政運作的單位。但國科會的委員會形式,委員由與科技相關組織的首長組成。國科會主委定期召開跨部會會議,具有與各部會保持密切關係的正式管道。兩種不同的組織形式,將導致跨部會運作程度的重大差異。

-----廣告,請繼續往下閱讀-----

以輔助國家科技發展的目的來說,國科會的職責在評估國家值得或有必要發展的科技方向,透過跨部會的委員會,說服其他部會實踐科技趨勢。張善政以自身在國家高速電腦中心擔任主任時,推動臺灣基礎網路建設為例,1992 年經濟部成立 SEEDNet 網路提供工商業界使用,但電信業者未提供連線國外的服務,而電信服務管理的主管機關是交通部,也尚不理解網路基礎建設的重要。當時國科會主委郭南宏即以國科會的委員會機制,邀請時任交通部長劉兆玄與會,聽取張善政簡報網路發展的必要性,而促成民用連外網路與 HiNet 的誕生。

張善政
最高學歷:康乃爾大學土木環工博士
部分經歷:臺大土木系教授、國家高速電腦中心主任、國科會企劃考核處處長、Google亞洲硬體營運總監、科技政委、行政院院長、行政院副院長
國科會/科技部任期:科技政委轉任第一任科技部部長,2014/03/03~2014/12/08
圖/《科學月刊

以同樣的經驗看待預計新設的「數位發展部」,則也有可能會遇到類似困境,陳良基認為數位發展部的重要目的,是督管隨數位科技發展而生的各種數位業務與衍生問題,如協助政府各部會處理影響甚鉅的資安問題。張善政則認為每一個部會都與社會息息相關,不可能將數位業務獨立成部,例如智慧交通與智慧醫療等專業業務,應讓既有交通部及衛福部主責,數位主管機關則應以跨部會,由政委督導的「委員會」編組形式,擬定國家長期數位發展計畫,協助各部會處理數位業務。

從國家科研經費分配的角度來看,國科會或科技部因其具有的科技專業,負有為行政院審查或管理科技預算的重大任務。張善政認為科研經費的分配與管理,取決於科技政委和科技部的分工,科技政委應負責「政策審查」,判斷政策上某一科技方向是否應該投入發展;而科技部則負責「技術審查」,對於政策上已確認執行的科研計畫,評估合理與可負擔的支持經費。陳良基則認為在科技部的架構下,科技部長並不適合審查其他部會的經費運用方式,但若是以代表行政院的角度時,比較適合對各部會科研計畫做整體規畫。這導致雖然科研經費會分配到部分部會,但理應管理經費運用的科技部,不盡然能善盡管理責任。

不是科的科經費

由於國家的科技預算並非全由科技部或國科會所使用,以108年科技預算案為例,科技部約使用 420 億,其次為經濟部使用 280 億科技預算著重於產業開發和技術商轉,中研院使用 110 億,衛福部與農委會也各有 40 多億規模的運算,負責各自業務範圍內,例如疫苗開發、傳染病防治、食品安全與農業育種等的科技研發。

對於大學端的研究者來說,陳良基認為雖近年全國的科技預算有增加,但增加的部分多支持其他部會的研究計畫,導致科技部本身的經費持平,當考量物價成長與立法院統刪預算時,就會使學術研究者的科研經費受到影響。此外,當制度上使科技主管機關無法善盡宏觀的管理之責時,將致使計畫零碎重複而虛耗資源,長期性的科研計畫也難以延續銜接,經費濫用的情形也會隨之出現。

-----廣告,請繼續往下閱讀-----
陳良基照
最高學歷:成功大學電機博士
部分經歷:臺大電機系講座教授、臺大副校長、世界科學院工程科學獎、工研院電子所所長、國家實驗研究院院長、教育部次長
國科會/科技部任期:第四任科技部部長,2017/02/08~2020/05/19,任期最長科技部長
圖/《科學月刊

從過往公開在網路上的資訊也發現,有數個中央三級機關的機關內科研計畫或科技預算編列,雖名為科技研究,但實則為該機關公關使用、新媒體經營,或是委外設計政令宣導圖文等,且該機關或計畫也不屬科技部管理。雖說政策施行需要必要的政策行銷,與科技有關的政策推動,也會仰賴科學普及與傳播等方式來做政策溝通。然而科技預算是否適用於政策行銷,又能到何種程度?對於非科技部的其他部會,又該如何以科研為前提來審查管理預算?讓科技經費有效運用在合適的地方,是接下來不論是科技部或是國科會,都無法再逃避的問題。

科技發展的雙頭馬車

國家型科技計畫的中止與科技預算的濫用,代表宏觀規畫與管理科技研發的機制失靈。既有組織設計上,僅存科技政委與科技會報能有協調各部會的高度。

科技政委可視為行政院長在科技業務上的代理者,負責督導科技部、經濟部(科技)、教育部(產學研)、國防部(產業)與智慧機械等業務。科技會報則是設置於行政院,由行政院長擔任召集人,科技政委及中央科技主管機關首長(如科技部)兼任副召集人,有中研院院長、相關部會首長與相關產學代表擔任委員,提供國家科技發展決策諮詢及專業建議,並下設「科技會報辦公室」,處理各項幕僚事務。

分析科技部、科技政委、科技會報和科技會報辦公室,則可見此四單位∕職位在制度設計對管理與規畫國家科研發展的缺陷設計:

  • 科技部擁有最充足的人力,且長期專司科研經費分配和管理,但獨立為部後僅能管理所屬研究單位和研究計畫的資源分配。
  • 科技政委擁有協調部會的高度,但僅督導四個部會,並非所有與科技研發有關的部會。
  • 科技會報與其辦公室有協調部會的高度,涉及部會也最多,負責審議國家科技政策與重大科研計畫。但陳建仁認為科技會報的本質為院長的幕僚,其編製規模不足以管理全國科技預算,也缺乏協調的功能。

在制度有所不足的狀況下,艱鉅的國家科研規畫,仰賴科技部(國科會)首長與科技政委的密切合作。若部會首長與科技政委的合作不夠流暢或有施政理念衝突時,很可能因此弱化國家科研實力。陳建仁提及在國科會主委任內,與時任科技政委林逢慶的密切合作;張善政也強調科技部長任內時,與時任科技政委蔣丙煌的交情而促成政務上的良好搭配。

-----廣告,請繼續往下閱讀-----

因此,縱然處理的是探索未知前沿的科技業務,但政通人和仍是科技主管機關的首長不可或缺的能力。更重要的是從制度上讓科技主責機關,既有謀策科研的前瞻性,亦有協調各部會的高度,還要能輔佐各部會研發應用科技,與管理全國科技預算的能力。

誰來帶領國家科技發展?

過去將國科會改制為科技部的規畫,張善政認為這是一種「大科技部」思維,認為科技太過於重要,因此將科技事務由一獨立部會包辦。然而,所有的部會都需要科技,科技發展也需要所有的部會,獨立成部的組織形式,反而阻礙了科技發展的群策群力,而不利於科技發展。

因應本次科技部改組回國科會的討論,陳建仁、張善政與陳良基三位歷任首長均支持應回復國科會形式的跨部會委員會編制,且由國科會主委兼任科技政委。陳良基認為恢復國科會形式的重要差異,是能把中研院、大學校長等地位超然的卓越學術研究者找進政府的科技決策體制中,短期來看各部會看似會減少科研相關的政績,但長期來看對國家科技發展有利。張善政則主張可以考慮把科技會報併入國科會中,但強調科技首長應充分尊重學術界,且具有跨部會協調的耐心與身段。陳建仁則認為科技首長應具備四項特質:

  1. 掌握科技,理解基礎研究、技術開發與產業製造的關鍵,了解不同科技發展趨勢和需求。
  2. 善於溝通協調,能理解不同部會的需求與原因。
  3. 能在立法院捍衛科技預算,不僅捍衛所屬科技法人、研究單位的預算,還要能捍衛其他部會的科技預算,要能在國會殿堂講道理講到通。
  4. 具有國際觀,開創與領導跨國合作的能力。

作為一個理想領導者的信念,陳建仁也引用教宗方濟各的話:「好的領導者都要像一個好的牧羊人,要沾染羊群的氣息」,科技首長要能照顧到各領域的學術研究者,還要能代表學界與社會溝通,排除科技發展的阻礙,解決科技發展的危害。

回到科技發展核心的基礎研究,經濟合作暨發展組織(OECD)定義,基礎研究的工作,是為了獲得新知識,並無特定的應用目的,是研究者在未知前沿領域的自由探索,不易有短期成效,而仰賴長期穩定的經費投入。無論未來科技主管機關的命名為何,無論國家科技政策的野望如何迭代,期許我國未來的每一任科技首長,洞悉科技發展的進程,克服部會協調的艱難,持守科學的本質,莫忘科學發展的漫長獨行與無用之用。

-----廣告,請繼續往下閱讀-----
  • 〈本文選自《科學月刊》2021 年 1 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 5
科學月刊_96
249 篇文章 ・ 3902 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
2024 臺灣科普環島列車啟程 催生科學傳播新力量
PanSci_96
・2024/10/21 ・915字 ・閱讀時間約 1 分鐘

「2024 臺灣科普環島列車」今(21)日自臺北火車站啟程,沿著西部幹線南下,將於 10 月 21 日至 26 日搭載全臺 202 所國小學生,展開 6 天的科普環島之旅。前副總統陳建仁、國科會主委吳誠文、數位發展部部長黃彥男、交通部臺灣鐵路公司副總經理賴興隆,美、荷、法、德、英國等駐臺代表、9 家車廂參與單位代表及師生們均蒞臨開幕式。

高中生成為科學傳播新力量 助力全臺科普教育

吳主委表示,自 2016 年以來,已連續 9 年舉辦科普環島列車活動,持續推動科學教育。今年活動規模擴大,火車將在 6 天內行經 17 個縣市、32 個站點,提供超過 300 項科學實驗,讓全臺學童能從小接觸科學。

更值得一提的是,近年來國科會積極邀請全臺高中學生,透過科學培訓後上車擔任「車廂關主」,帶領國小學童玩科普;高中生們由「知識接收者」轉為「科學傳播者」的角色,不僅加深其擔任小老師的使命感,也提升科學傳播、知識轉譯及組織規劃能力。

今年有 391 位來自全臺 18 所高中的學生參與培訓,其中 162 位為女學生,突破科技領域的性別刻板印象,展現女性在科學界的力量。這些科普小老師們將於 10 月 21 日至 26 日帶著全臺各縣市、鄉鎮國小學童學習更多有趣的科學實驗,為科普教育展開多面向的正循環。

-----廣告,請繼續往下閱讀-----

2024 年的科普環島列車很不一樣! 全民一起上列車、長知識

「2024 年臺灣科普環島列車」停靠站點及時刻表

今年臺灣科普環島列車首度開放全民上車體驗,活動開放報名迅速額滿,共有360位民眾參加,8節車廂搭載不同科技主題的特色實驗,包含今年最發燒的 AI 人工智慧、半導體、衛星通訊、以及與我們生活息息相關的隔震減震知識,都設計在車廂的科學實驗活動中,讓參與活動的學生、民眾能獲得最新最熱的科技知識。各車廂活動由台灣默克集團、友達永續基金會、瑞健醫療、ASM 台灣先藝科技、國家地震工程研究中心、數位發展部、緯創資通、聯華電子科技文教基金會和上銀科技等單位規劃設計。

國科會特別感謝各參與單位的支持與合作,讓此次活動更豐富多元。科普列車活動期間,在全國各地火車站及周邊地區也同時舉辦科學市集,歡迎各地民眾經過火車站時不要錯過難得的科學體驗機會!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2568 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。