0

1
0

文字

分享

0
1
0

福衛七號要發射了!但你知道它上太空要幹嘛嗎?

劉馨香_96
・2019/02/19 ・2328字 ・閱讀時間約 4 分鐘 ・SR值 534 ・七年級

福衛七號在國家太空中心整裝待發,只差美國一聲通知,就能啟程前往美國佛羅里達州,由 Space X 公司的獵鷹重型號(Falcon Heavy)火箭發射升空!

但,你知道它上太空要幹嘛嗎?

自從福衛三號 2006 年升空以來,天天為全球提供天氣觀測資料,盡心盡力替台灣做好國民外交,至今也高齡十三歲了。什麼時候才能退役,過著悠閒的退休生活呢?準備多年的福衛七號就是來接棒的,等到成功就位後,就能接替福衛三號的工作囉!

福衛七號模型。圖/科技部提供

福衛七號在太空中怎麼觀測氣象呢?

福衛七號是由臺灣的國家太空中心(National Space Organization,NSPO)與美國的國家海洋暨大氣總署(National Oceanic and Atmospheric Administration,NOAA)共同執行的合作案。主要任務是延續福衛三號,以無線電掩星技術(Radio Occultation)進行氣象觀測。

那「無線電掩星技術」是什麼咧?衛星要怎麼在幾百公里的高空中觀測天氣呢?

無線電掩星技術利用的是電磁波在經過不同介質時,因為傳播速率不同,而使傳播路徑發生折射現象的原理。衛星上搭載全球定位衛星(GPS)訊號的接收器,GPS 的無線電訊號傳送到衛星前,會受到電離層與大氣層的折射,因此透過接收到的訊號回推折射情形,就能進一步計算出溫度、壓力和濕度等參數的垂直分布資訊,是我們每天氣象預報的重要資料來源呢!

福衛七號和福衛三號一樣,由 6 顆衛星構成星系,讓觀測可同時覆蓋地球各區,提供即時且完整的三維觀測資料。不同的是,福衛三號是由重約 62 公斤的微衛星組成,每顆衛星的軌道都會經過南北極,收集的資料均勻來自地球各緯度;而福衛七號的衛星每顆重約 300 公斤,部署在低傾角的軌道,衛星繞行平面和赤道平面的夾角小,因此能提供密集的中低緯度氣象觀測資料,將對台灣的氣象預報準確度帶來更大的幫助。

除了掩星觀測,還有什麼功能?

當然這麼辛苦的發射衛星上太空,如果只有一個功能就太可惜啦!福衛三號和福衛七號都有額外搭載其他科學儀器,稱為科學酬載。像是福衛七號就還有搭載離子速度儀(Ion Velocity Meter, IVM)和無線電射頻信標儀(Radio Frequency Beacon, RFB),前者的量測資料能幫助掩星資料反演的準確度,而後者則是幫助研究電離層的結構。

本次福衛七號的計畫,除了和美國合作的 6 顆任務衛星,還包含一顆自主衛星──獵風者號。這顆衛星完全由台灣自行研發,包括 4 項衛星關鍵元件、過氧化氫衛星推進模組,和全球衛星導航系統無線電反射訊號接收儀(GNSS-Reflectometry, GNSS-R)。GNSS-R 的功能為接收 GPS 的「直射訊號」和被海面反射的「反射訊號」,藉由比較兩種訊號的強度與結構差異,可推算出海面風速、波高等資料,有助於了解颱風結構的發展。再搭配前述衛星星系的掩星觀測資料,未來對於颱風強度與路徑的預測就會更準了!

未來對於颱風強度與路徑的預測就會更準了!颱風瑪莉亞。圖/中央氣象局颱風資料庫

回顧過去,展望未來

台灣從 1991 年開始發展第一期太空計畫,從無到有建立太空團隊與硬體設施,成功發射了任務為科學實驗的福衛一號、負責地球遙測的福衛二號與觀測氣象的福衛三號,奠基我國太空發展的基礎;2004 年進入第二期太空計畫,開始建立初步的自主研發能力,成功發展第一顆完全台灣自製的福衛五號,帶來高解析度光學遙測影像,並完成預計今年發射的福衛七號氣象衛星星系。

福衛一號(左起)、二號、三號及五號模型。圖/科技部提供

接著,就是最新的第三期太空計畫!接下來十年(2019-2028),科技部將投入新台幣 251 億元的經費,再接再厲發展 10 枚衛星,分別是 6 枚先導型高解析度光學遙測衛星、2 枚超高解析度智能遙測衛星與 2 枚合成孔徑雷達衛星,並推動向外太空探索的研究。

科技部預計這一系列衛星提供的即時影像與資料,對於災害監測、環境變遷、國土安全等問題帶來重要幫助,期望藉著發展這些衛星,結合產學研界研發能量,帶動尖端技術的發展,最終厚實台灣的太空產業。

你對太空計畫的方向、內容或是執行成果有什麼意見嗎?關於這些已經發射及尚在規劃的衛星們有什麼疑問嗎?

科技部長陳良基將於 2019 年 2 月 21 日(星期四)晚上 8:00,在科技部臉書直播開講,由泛科學專欄作家廖英凱擔綱主持人,談談台灣的太空計畫,歡迎來發問!

編輯報好康:只要你的問題被部長挑選回答的捧油,就有機會獲得精美禮物,甚至受邀至國家太空中心欣賞福衛七號發射實況喔!

 

參考資料:

  1. 國家太空中心:福爾摩沙衛星七號 │ 計畫簡介
  2. 中央氣象局太空天氣作業辦公室:掩星技術(Radio Occultation)
  3. 國家實驗研究院:全球衛星導航系統無線電反射訊號接收儀(GNSS-Reflectometry, GNSS-R)
  4. 進一步探索福衛七號衛星
  5. 科技部 FB,〈飛向宇宙.浩瀚無垠 第三期太空計畫啟動!

 

文章難易度
劉馨香_96
5 篇文章 ・ 0 位粉絲
生科系畢業,喜歡腦、神經與心智。

0

2
0

文字

分享

0
2
0
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
PanSci_96
1189 篇文章 ・ 1740 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

6
2

文字

分享

0
6
2
宇宙學的最大謎團!有超過90%的世界都是暗物質和暗能量,但,它們究竟是什麼?──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/08 ・3400字 ・閱讀時間約 7 分鐘

觀測星系時,科學家發現了「看不見的物質」

我們現在所看到的人類、太陽、星系以及星系群等等,所有東西都是由物質構成。「物質構成了宇宙的全部」這個概念長年以來深植於人類心中。

宇宙是由物質構成的,但究竟是由甚麼物質構成的呢?圖 / twenty20photos

不過,後來我們了解到,宇宙中存在著許多我們人類看不到的物質,那就是「暗物質(dark matter)」。這個名稱聽起來很像科幻作品中的虛構物質,卻實際存在於宇宙中,而且暗物質在宇宙中的含量,遠多於我們看得到的「物質」

1934 年,瑞士的天文學家茲威基(Fritz Zwicky,1898~1974)觀測「后髮座星系團」時,發現周圍星系的旋轉速度所對應的中心質量,與透過光學觀測結果推算的中心質量不符。

周圍星系的轉速明顯過快,推測存在 400 倍以上的重力缺損(missing mass)。

在這之後,美國天文學家魯賓(Vera Rubin,1928~2016)於 1970 年代觀測仙女座星系時,發現周圍與中心部分的旋轉速度幾乎沒什麼差別,並推論仙女座的真正質量,是以光學觀測結果推算出之質量的 10 倍左右。

到了 1986 年,科學家們觀測到了宇宙中的大規模結構,發現星系的分布就像是泡泡般的結構。若要形成這種結構,僅靠觀測到的質量是不夠的。

為了補充質量的不足,科學家們假設宇宙中存在「看不見的物質=暗物質」。

看不到卻存在?暗物質究竟是什麼?

既然看不到,那我們怎麼確定暗物質真的存在?圖 / twenty20photos

前面提到我們看不見暗物質,而且不只用可見光看不到,就連用無線電波、X 射線也不行,任何電磁波都無法檢測出這種物質(它們不帶電荷,交互作用極其微弱)。

因為用肉眼、X 射線,或者其他方法都看不到它們,所以稱其為「暗」物質。

不過,從星系的運動看來,可以確定「那裡確實存在眼見所及之上的重力(質量)」。這就是由暗物質造成的重力。

看不到的能量:暗能量

事實上,科學家們也逐漸了解到,宇宙中除了暗物質之外,還存在「看不見的能量」。

原本科學家們認為,宇宙膨脹速度應該會愈來愈慢才對,不過,1998 年觀測 Ⅰa 型超新星(可精確估計距離)時,發現宇宙的膨脹正在加速中。這個結果證明宇宙充滿了我們看不到的能量「暗能量(dark energy)」。而且,暗能量的量應該比暗物質還要更多。

我們過去所知道的「物質」,以及暗物質、暗能量在宇宙中的估計比例,如下圖所示。 這項估計是基於 WMAP 衛星(美國)於 2003 年起觀測的宇宙微波背景輻射(CMB),計算出來的結果。

圖/台灣東販

後來,普朗克衛星(歐洲太空總署)於 2013 年起開始觀測宇宙,並發表了更為精準的數值。

  • 什麼是「普朗克衛星」?

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。  

暗物質的真面目,究竟是什麼?微中子嗎?

既然暗物質有質量,那會不會是由某種基本粒子構成的呢?也有人認為暗物質是在宇宙初期誕生的迷你黑洞(原始黑洞),而我也致力於這些研究,不過相關說明不在此贅述。

已知的基本粒子(共 17 種)以及其他未知粒子,都有可能是暗物質,在這些粒子當中最被看好的是微中子。

因為暗物質不帶電荷,不與其他物質產生交互作用,會輕易穿過其他物質。這些暗物質的特徵與微中子幾乎相同。而且,宇宙中也確實充滿了微中子。因此,微中子很可能是暗物質的真面目。

不過,目前的物理學得出的結論卻是「微中子不可能是暗物質的主要成分」。

NASA 曾經想透過星系團的碰撞來了解暗物質的特性。圖/NASA

為什麼微中子被撇除了呢?

這是因為,雖然微中子大量存在於宇宙中,質量卻太輕了。雖然科學家們現在還不確定微中子的精準質量是多少,不過依照目前的宇宙論,3 個世代的微中子總質量上限應為 0.3eV。如果暗物質是微中子,那麼 3 個世代的微中子總質量應高達 9eV 才對,兩者相差過大。

另一方面,暗物質中的冷暗物質(cold dark matter)的速度應該會非常慢才對。

宇宙暴脹時期會產生密度的擾動,進而產生暗物質的擾動(空間的擾動應與觀測到的 CMB 擾動相同),這種微妙的重力偏差,會讓周圍的暗物質聚集,提升重力,進一步吸引更多原子聚集,最後形成我們現在看到的星系。

相較於此,微中子過輕(屬於熱暗物質,hot dark matter),會以高速飛行。微中子無法固定在一處,這樣就無法聚集起周圍的原子,自然也無法形成星系。

暗物質、暗能量的真相究竟是甚麼?仍然是宇宙學中最大的謎團!

熱暗物質、冷暗物質

這裡要介紹的是熱暗物質與冷暗物質。所謂的「熱暗物質」,指的是由像微中子那樣「以接近光速的速度飛行」的粒子組成暗物質的形式。

宇宙微波背景輻射(CMB)可顯示出宇宙初期的溫度起伏,因而得知存在相當微小,卻十分明顯的擾動,此擾動與暗物質的擾動相同。擾動中,物質會往較濃的部分聚集,並形成星系或星系團等大規模結構。

不過,如同我們前面提到的,科學家們認為以接近光速的速度運動的微中子,在程度那麼微弱的宇宙初期擾動下,很難形成現今的星系團。

於是,科學家們假設宇宙中還存在著速度非常慢的未知粒子「冷暗物質」。

冷暗物質的候選者包括「超對稱粒子(SUSY 粒子)」當中光的超伴子——超中性子(neutralino)、名為軸子(axion)的假設粒子;另外,也有人認為原始黑洞可能是「冷暗物質的候選者」,雖然黑洞並不是基本粒子。

在討論暗物質時,即使不假設這些未知粒子的存在,在標準模型的範圍內,微中子也是呼聲很高的候選者。

如同在討論熱暗物質時提到的,當我們認為微中子應該不是主要暗物質時,就表示基本粒子物理學需要一個超越標準理論的新理論,這點十分重要。

宇宙微波背景(CMB)是宇宙大霹靂後遺留下來的熱輻射,充滿了整個宇宙。圖 / 台灣東販

那麼,微中子真的完全不可能是暗物質嗎?

倒也並非如此。如果存在右旋的微中子,由於我們還不曉得它的質量以及存在量,所以「微中子是暗物質」的可能性還沒完全消失。不過,這樣就必須引入超越標準理論的理論才行。

在目前只有發現左旋、符合標準理論的微中子的情況下,一切都還未知。關於這點,我們將在《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》第 6 章第 7 節詳細說明。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 2 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

1

1
0

文字

分享

1
1
0
本土科普影視如何突破、創新?科技部邀 6 團隊談製作甘苦
PanSci_96
・2022/07/15 ・826字 ・閱讀時間約 1 分鐘

如果民眾都不知道國家支持的科學研究在做什麼,會願意支持政府編列科研預算嗎?今日(2022/07/15)下午於民視林口數位總部,舉辦「科技部科普影視饗宴」,邀請《科學再發現》、《基因啟示》、《實習生的筆記本》、《吉娃斯愛科學》、《工藤心醫的心靈偵探事務所》、《「蜂」起「雲」湧》六部科普影片創作團隊,一同分享創作成果。此外,科技部科教發展及國際合作司司長葉至誠也親臨現場,表達對科普的重視與期盼。

葉至誠司長認為推動科普至關重要,科技部每年花費大量的預算在科學研究上,也有許多出色的成果,但這些成果鮮少在大眾面前呈現。透過通俗但不失精準的科普影片,向大眾說明這些研究成果與生活的連結,能讓大眾更支持研究活動。

《科學再發現》以大眾關切的議題作為切入點,深入淺出背後的科學原理,讓知識得以被活用;《基因啟示》透過貼近生活的生動解說,讓大眾能一覽最新的生物研究;《「蜂」起「雲」湧》則使用新穎 VR 技術,讓一般人能身歷其境理解蜜蜂對農作物授粉的重要性。

《吉娃斯愛科學》從原住民生活和文化出發,結合有趣的科學主題,不只有正確的科學知識,故事也深受小朋友喜愛;《實習生的筆記本》以實境秀呈現,以實習生的角度描寫研究生活的點點滴滴,讓一般人能一窺實驗室的奧秘;《工藤心醫的心靈偵探事務所》扣合青少年精神疾病的增長趨勢,提供青少年精神疾病相關的科普知識,以及最新的治療方法。

聽完各團隊分享後,葉至誠司長也向製作團隊請教製作的細節,說:「今天你們都是科普影片的專家,我是來向你們請益的。」製作團隊們也分享了製作時的辛酸血淚跟成就。

最後,葉至誠司長表示:「科普的另外一個重點,就是可以讓年輕一代,能在小時候就接觸到科學教育,啟發對科技的探索。」而科普影片,正是入門門檻不高,卻能接觸到最新科學新知的方法,期待這些科普影片成為孩子心中的創新種子,萌發未來科學世代。

所有討論 1
PanSci_96
1189 篇文章 ・ 1740 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。