Loading [MathJax]/extensions/tex2jax.js

0

11
0

文字

分享

0
11
0

海水怎麼是鹹的——從郵輪游泳池回溯到原始海洋│環球科學札記(5)

張之傑_96
・2020/12/16 ・1618字 ・閱讀時間約 3 分鐘 ・SR值 501 ・六年級

  • 文/張之傑

和平號只有三萬五千噸,是艘平民化的小型郵輪,和動輒七、八萬噸的豪華郵輪不能相比。舉例來說,和平號沒有舞廳、賭場和劇院,除了三餐,平時不供應飲食。以游泳池來說,差異就更大了。

豪華郵輪的游泳池通常十米,露天的甚至可達二十五米,池裡的水通常是淡水。和平號的八樓、九樓甲板上各有一座游泳池,長度僅約五米,裡面的水是抽上來的海水。

當船友告訴我,游泳池裡的水是海水時,我還半信半疑,伸手撈點池水舔一下,果然鹹得發苦。由於池子太小,又是海水,我們雖帶了泳裝和泳帽、泳鏡,但從沒下去過。

和平號十樓甲板上的小游泳池,水是從海裡抽上來的海水。作者攝

游泳池可以使用海水,烹飪、洗浴卻非淡水不可。和平號雖然是艘小型郵輪,也有約一千名乘客、近四百名工作人員,每日消耗的淡水量可觀。

-----廣告,請繼續往下閱讀-----

日本人特別喜歡吃生菜,早餐至少有四種生菜,午餐至少有六種,都洗得乾乾淨淨,這也需要很多淡水啊!和平號並沒有海水淡化設備,淡水是靠岸時補給的。我們從檳城到埃及賽得港,在海上搖晃了足足十四天,可見船上有很大的儲水空間。

為甚麼海水是鹹的?水蒸發了,鹽分卻留了下來!

我當過老師,又喜歡發表議論,常有些船友問東問西。有次在九樓露天餐廳吃飯,旁邊就是游泳池,有人問我:「下去游過嗎?」我說:「沒有,池子太小,又是海水,豈不等於在鹹菜缸裡洗澡。」引得同桌的人都笑了。有位仁兄忽然提問:「海水為什麼是鹹的?」

這個問題看似簡單,回答起來還真不容易。怎麼說呢,大約四十六億年前,太空中的一團雲氣(含氫、氦、塵埃等)因重力而收縮,中央的部分成為太陽,剩餘的部分凝聚成直徑只有幾公里的「微行星」,它們互相碰撞,進而凝聚成行星,地球就是其中一員。

微行星互相碰撞,產生高溫,因而原始地球溫度甚高,呈熔融狀態,於是較重的元素如鐵、鈷、鎳等沉向球心,較輕的元素如矽、鋁等則浮在表面,更輕的氫、氮、氧、碳等則分佈在外圍。當溫度繼續下降,地殼變冷,於是所有的水蒸氣都降下來,這場雨一下就是好幾個世紀!地面開始積水,大水匯積形成原始海洋。

-----廣告,請繼續往下閱讀-----

原始海洋即便有點鹽份,也很低。然而,隨著風化和侵蝕作用,岩石中的鹽類(礦物質)進入海洋。雨水含有少量從空氣來的二氧化碳,帶點酸性。當雨水降至地面,會溶解岩石中的鹽類,跟著水份進入溪流、河川,最後匯注大海。

海洋應經過長時間的累積和更替成為現在的樣貌。圖:PEXELS

隨著氣象因素引起的水循環,從海洋蒸發的水幾乎是純水,鹽類留下來,更多的鹽類繼續流入海裡,可是鹽類仍保持在百分之三點五左右,其中百分之九十以上是氯化鈉,也就是狹義的鹽。那麼過多鹽類往哪兒去了?

生物會吸收鹽類,例如珊瑚蟲、軟體動物和甲殼類會吸收碳酸鈣,矽藻會吸收二氧化矽,魚類會吸收碳酸鈣、磷酸鈣等。生物體內的鹽類終究會以屍體或糞便的形式沉到海底,成為沉積岩的一部份。地殼的板塊運動,可以使得海陸易位,所謂滄海桑田不僅僅只是個形容詞而已。如此這般,鹽類在海陸之間循環,使得海水的鹽類一直維持在百分之三點五左右。

海水的含鹽量並不平均。舉例來說,地中海是個半封閉的水域,因為蒸發的關係,含鹽量較高。紅海兩岸熱帶沙漠夾峙,降水量又少,含鹽量就更高了。孤立的水域只要注入的淡水不足,就可能會因為蒸發作用變得愈來愈鹹,死海就是最著名的例子。

-----廣告,請繼續往下閱讀-----
死海南端,約旦和以色列的曬鹽池,中央堤防為兩國疆界。
2001年3月間,美國太空梭STS102號乘員所攝。NASA公佈圖片。圖:Wikipedia
-----廣告,請繼續往下閱讀-----
文章難易度
張之傑_96
107 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
4

文字

分享

0
6
4
海和天為什麼是藍的?——水的散射│環球科學札記(25)
張之傑_96
・2021/05/05 ・1588字 ・閱讀時間約 3 分鐘 ・SR值 440 ・四年級

  • 作者 / 張之傑

我們這趟環球之旅,很少遇到陰雨天氣,特別是在紅海和地中海期間,晴空無雲,天藍得透亮,沒有一點兒雜質;海藍得像面鏡子,閃耀著藍寶石似的光影。

若干年長或行動不便的乘客,喜歡鎮日坐在八樓長廊的沙發上,望著舷窗外的碧海藍天打發時光。我常帶著筆電在八樓長廊寫作,累了就眺望著海天一色的海平線。由於地球是圓的,海平線以一個很大的弧度中消失在視線中。

海和天為什麼是藍色的?這和散射有關。陽光射到地球,會碰到空氣和懸浮在空中的小水珠(雲),使得天空的顏色經常展現變化。晴天的時候,射到地球上的光線碰到空氣中的氮分子或氧分子,就會引起散射作用,藍光的波長較紅光短,散射得較厲害,看在我們眼裡,天空就成為藍色的。

這個道理看起來好像很簡單,但是人類明白這個道理是十九世紀末葉的事。一八七三年,英國物理學家瑞利(Lord Rayleigh)是第一位看天看出名堂的人。他的散射理論——瑞利散射,使我們了解了天色的秘密。

-----廣告,請繼續往下閱讀-----
瑞利像。圖/wikipedia

在陽光的七種色光中,紅、橙、黃光的波長較長,藍、靛、紫光的波長較短。所謂波長,就是兩個波峯間的距離;而波峯,是指物質振動最大的地方。舉個例子,當我們扔一塊石頭到水裡,會激起一圈圈漣漪。兩圈漣漪間的距離就是波長。當然啦,光波的波長比漣漪的波長小得多了,波長最長的紅光,不過十萬分之七、八公分,藍光不過十萬分之四、五公分而已。

瑞利發現,散射不會改變射入光的波長,只會改變射入光的方向。那麼散射又怎麼會造成天空的各種顏色呢?原來散射的作用截面,既與散射粒子的大小有關,也與被散射光的波長有關。空氣中的氧分子、氮分子,大小恰好可以散射波長較短的藍光,藍光散了一天,天空當然呈藍色的。

到了傍晚,夕陽西下,陽光打斜裡射過來,較接近地面,而地面的空氣含有較多的水氣和灰塵,粒子比氧分子、氮分子大得多,較容易散射波長較長的紅光、橙光或黃光,艷麗的晚霞就是這樣散射出來的。

如果天上水浮著小水滴,也就是雲,那又是另一種景象。小水滴比灰塵大得多,各種波長的色光都能被它散射,結果,雲就成了白色的。如果雲層較厚較密,陽光穿不過去,就變成了灰色或黑色。白雲蒼狗,不過是陽光玩的把戲而已!

-----廣告,請繼續往下閱讀-----

當雲聚成雨滴的時候,顆粒就更大了,大得具有稜鏡的作用。倘若一邊已經出太陽,一邊還在下雨,陽光穿過雨滴,就會形成我們看到的虹。噴泉和瀑布上也可以出現虹,原理是一樣的。此次環球之旅,我們看到過幾次彩虹,印象最深刻的一次是在復活節島。公路靠海的一側,忽然出現拱門似的彩虹,距離我們目測不到五十公尺。站在彩虹下照相,宛如置身彩虹之下呢!

陽光照到水裡,又是一番景況。較深的水都是藍色的。水原本透明無色,水分子的大小可讓波長較長的紅色繞過去,而波長較短的藍光被散射,所以較深的水莫不是藍色的。水愈深,散射、反射的藍光就愈多,看起來就愈藍了。

同樣是水,為什麼海是藍的,而浪花卻是白的?為什麼驚濤拍岸,會捲起千堆雪?道理很簡單,所謂浪花,其實就是小水滴,可以散射各種波長的光,所以浪花就和白雲一樣,變成白色的了。

就像看天一樣,人類真正懂得看海也是晚近的事。印度物理學家拉曼(Sir Chandrasekhara Raman),從印度搭船去英國。天連海、海連天的景況,使他悟出海水和天空的顏色,都是光線散射所造成的。一九二一年,拉曼在英國《自然》上發表了一篇論文,提出他的散射理論,題目是〈海的顏色〉。古今中外,多少人有過「看海的日子」,卻只有拉曼獨具智眼,看出別人看不出的道理。

-----廣告,請繼續往下閱讀-----
拉曼像。圖/wikipedia
-----廣告,請繼續往下閱讀-----

0

11
0

文字

分享

0
11
0
海水怎麼是鹹的——從郵輪游泳池回溯到原始海洋│環球科學札記(5)
張之傑_96
・2020/12/16 ・1618字 ・閱讀時間約 3 分鐘 ・SR值 501 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/張之傑

和平號只有三萬五千噸,是艘平民化的小型郵輪,和動輒七、八萬噸的豪華郵輪不能相比。舉例來說,和平號沒有舞廳、賭場和劇院,除了三餐,平時不供應飲食。以游泳池來說,差異就更大了。

豪華郵輪的游泳池通常十米,露天的甚至可達二十五米,池裡的水通常是淡水。和平號的八樓、九樓甲板上各有一座游泳池,長度僅約五米,裡面的水是抽上來的海水。

當船友告訴我,游泳池裡的水是海水時,我還半信半疑,伸手撈點池水舔一下,果然鹹得發苦。由於池子太小,又是海水,我們雖帶了泳裝和泳帽、泳鏡,但從沒下去過。

和平號十樓甲板上的小游泳池,水是從海裡抽上來的海水。作者攝

游泳池可以使用海水,烹飪、洗浴卻非淡水不可。和平號雖然是艘小型郵輪,也有約一千名乘客、近四百名工作人員,每日消耗的淡水量可觀。

-----廣告,請繼續往下閱讀-----

日本人特別喜歡吃生菜,早餐至少有四種生菜,午餐至少有六種,都洗得乾乾淨淨,這也需要很多淡水啊!和平號並沒有海水淡化設備,淡水是靠岸時補給的。我們從檳城到埃及賽得港,在海上搖晃了足足十四天,可見船上有很大的儲水空間。

為甚麼海水是鹹的?水蒸發了,鹽分卻留了下來!

我當過老師,又喜歡發表議論,常有些船友問東問西。有次在九樓露天餐廳吃飯,旁邊就是游泳池,有人問我:「下去游過嗎?」我說:「沒有,池子太小,又是海水,豈不等於在鹹菜缸裡洗澡。」引得同桌的人都笑了。有位仁兄忽然提問:「海水為什麼是鹹的?」

這個問題看似簡單,回答起來還真不容易。怎麼說呢,大約四十六億年前,太空中的一團雲氣(含氫、氦、塵埃等)因重力而收縮,中央的部分成為太陽,剩餘的部分凝聚成直徑只有幾公里的「微行星」,它們互相碰撞,進而凝聚成行星,地球就是其中一員。

微行星互相碰撞,產生高溫,因而原始地球溫度甚高,呈熔融狀態,於是較重的元素如鐵、鈷、鎳等沉向球心,較輕的元素如矽、鋁等則浮在表面,更輕的氫、氮、氧、碳等則分佈在外圍。當溫度繼續下降,地殼變冷,於是所有的水蒸氣都降下來,這場雨一下就是好幾個世紀!地面開始積水,大水匯積形成原始海洋。

-----廣告,請繼續往下閱讀-----

原始海洋即便有點鹽份,也很低。然而,隨著風化和侵蝕作用,岩石中的鹽類(礦物質)進入海洋。雨水含有少量從空氣來的二氧化碳,帶點酸性。當雨水降至地面,會溶解岩石中的鹽類,跟著水份進入溪流、河川,最後匯注大海。

海洋應經過長時間的累積和更替成為現在的樣貌。圖:PEXELS

隨著氣象因素引起的水循環,從海洋蒸發的水幾乎是純水,鹽類留下來,更多的鹽類繼續流入海裡,可是鹽類仍保持在百分之三點五左右,其中百分之九十以上是氯化鈉,也就是狹義的鹽。那麼過多鹽類往哪兒去了?

生物會吸收鹽類,例如珊瑚蟲、軟體動物和甲殼類會吸收碳酸鈣,矽藻會吸收二氧化矽,魚類會吸收碳酸鈣、磷酸鈣等。生物體內的鹽類終究會以屍體或糞便的形式沉到海底,成為沉積岩的一部份。地殼的板塊運動,可以使得海陸易位,所謂滄海桑田不僅僅只是個形容詞而已。如此這般,鹽類在海陸之間循環,使得海水的鹽類一直維持在百分之三點五左右。

海水的含鹽量並不平均。舉例來說,地中海是個半封閉的水域,因為蒸發的關係,含鹽量較高。紅海兩岸熱帶沙漠夾峙,降水量又少,含鹽量就更高了。孤立的水域只要注入的淡水不足,就可能會因為蒸發作用變得愈來愈鹹,死海就是最著名的例子。

-----廣告,請繼續往下閱讀-----
死海南端,約旦和以色列的曬鹽池,中央堤防為兩國疆界。
2001年3月間,美國太空梭STS102號乘員所攝。NASA公佈圖片。圖:Wikipedia
-----廣告,請繼續往下閱讀-----
文章難易度
張之傑_96
107 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

0

4
3

文字

分享

0
4
3
沒有颱風的七月!颱風為何銷聲匿跡?——《科學月刊》
科學月刊_96
・2020/09/11 ・1882字 ・閱讀時間約 3 分鐘 ・SR值 515 ・六年級

-----廣告,請繼續往下閱讀-----

〈本文選自《科學月刊》2020年9月號〉

  • 賈新興/臺灣大學大氣科學系博士,前中央氣象局長期預報課課長,現職為天氣風險管理公司總監。

夏季是颱風出現的季節,往年的 7 月平均會有 3~4 個颱風生成。但今(2020)年 7 月卻罕見地無颱風生成,主要原因是季風槽受太平洋高壓,以及較大的垂直風切所導致。

夏天是颱風的好發季節。圖:Pexels

颱風消失了?生成條件大盤點

每年的 7 月是颱風開始活躍的月份,平均而言,7 月都有 3~4 個颱風生成,從 1951 年以來的颱風生成資料顯示,歷年 7 月最少都有 1 個颱風生成,最多則有 8 個颱風生成,分別是 1971 年 7 月和 2017 年 7 月。

然而今年的 7 月,整個西北太平洋海域卻靜悄悄的,沒有半個颱風生成,到底是發生了什麼事,讓 7 月颱風銷聲匿跡了呢?就讓我們一一檢視颱風生成的條件。

-----廣告,請繼續往下閱讀-----

生成條件一:溫暖的洋面

颱風生成在海面上,廣大的洋面能提供足夠水氣,當水氣蒸發釋放潛熱時,就可以讓颱風有足夠的能量成長。

一般來說,當海水溫度超過 26°C 時,才會產生足夠的水氣。而西北太平洋地區,每月氣候平均的海溫都在 27°C 以上,其中 2 月的平均海水溫度也有 27°C(圖一)。

圖為東經120度~160度,與北緯5度~20度之間的區域,即西北太平洋區域平均每月海溫值。通常海水溫度高於26℃時可以產生足夠的水氣,而往年7月的平均海溫都超過27℃,是颱風形成的重要條件之一。

因此,西北太平洋溫暖的海域,時時刻刻都有足夠的水氣提供颱風生成所需的能量。從西北太平洋區域今年 7 月平均的海水溫度分布圖發現,整個西北太平洋的海溫至少都超過 29°C(圖二)。

溫暖的洋面,雖然提供了足夠的能量,但為什麼颱風仍舊長不出來呢?讓我們再檢視其它颱風生成的動力條件!

-----廣告,請繼續往下閱讀-----

條件二:活躍的季風槽

颱風是個逆時針旋轉的低壓中心。夏季時,當北半球的西南季風,和太平洋高壓所帶來的東風或東北風相遇,兩者所造成的輻合作用,會使低氣壓的漩渦繼續加深,讓風速增強。

當低氣壓的近地面最大風速到達或超過每小時 62 公里或每秒 17.2 公尺時,我們就將它稱為颱風。這個伴隨西南季風和太平洋高壓南側的東風或東北風相遇的地方,通常稱作季風槽,或是俗稱颱風生長的故鄉。

從 7 月大氣低空風場的氣候平均圖,可以看到西南季風和太平洋高壓南側的東風形成的季風槽,從東經 120 度往東南方向延伸至東經 160 度。比較今年 7 月的大氣低空風場(圖三)可以發現,整個季風槽不見了,原來應該是季風槽所在的區域,一整個都被太平洋高壓的東風所佔據了。

而太平洋高壓是個穩定且下沉的空氣,但颱風是個垂直發展的低氣壓,因此,偏強的太平洋高壓讓今年的西南季風無法深入至西北太平洋區域,剷平了颱風的家,也就讓颱風長不起來了。

-----廣告,請繼續往下閱讀-----

條件三:垂直風切不能太大

另外,颱風垂直發展的高度至少可以達到對流層頂的高度,因此當高空風和低空風的風向差異太大時,也就是一般我們所說的垂直風切太大時,就無法讓水氣凝結所釋放出的潛熱更有效地提供颱風發展,造成颱風的垂直發展不好,颱風就不容易生成。

根據7月氣候上的垂直風切分布顯示,在西北太平洋區域的風切平均介於 -10~5之間。但今年 7 月的垂直風切,則介於 -10~10 之間,明顯比氣候平均值高,因此不利於颱風的垂直發展。

都是高壓和垂直風切惹的禍!

從以上颱風的生成條件來看,今年 7 月雖然有足夠的水氣提供的能量來源,但要讓颱風旋轉起來的季風槽,因為太平洋高壓太強,使得季風槽無法向東推進到西北太平洋區域;偏強的太平洋高壓帶來穩定的下沉空氣,連帶的也讓垂直風切太大,颱風更是長不起來!

今年 7 月的太平洋高壓太強,不但讓颱風長不起來,連帶的也是造成臺北創下自 1897 年以來的最高溫紀錄 39.7°C 的原因之一!至於為什麼今年的太平洋高壓如此強大,就是另一篇故事了。

-----廣告,請繼續往下閱讀-----
圖二(上):以往的7月氣候平均海溫分布和大氣 850 百帕(hPa)流線圖,圖中粗黑線為季風槽,此在正常的氣候條件下是有利於颱風生成的。圖三(下):今年7月平均海溫分布和大氣850百帕流線圖。讀者可以發現,今年的海溫分布雖較以往高,有利於颱風出現,但原先的季風槽位置卻被太平洋高壓所佔據,造成颱風無法生成。

〈本文選自《科學月刊》2020年9月號〉

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3752 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。