【2011 諾貝爾化學獎】與確立的知識奮戰:黃金比例的晶體——準晶體
本文轉載自諾貝爾化學獎專題系列 ,原文為《【2011諾貝爾化學獎】具有黃金比例的晶體 — 準晶 》
譯者/蔡蘊明|台大化學系名譽教授 圖/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。
十重對稱的黃金比例
當丹尼.謝西曼(Daniel Shechtman)將這個讓他得到 2011 年諾貝爾化學獎的發現登記於實驗記錄簿上時,在後面寫下了三個問號,因為從那些在他眼前的晶體裡面的原子,產生了一個不可能的對稱性,那就好像一個足球——一個球面 ——不可能只由正六邊形組成。從此之後,有趣的馬賽克圖案(Mosaic)、數學裡面的黃金比例以及藝術,幫科學家們解釋了謝西曼那令人困惑的觀察。
「Eyn chaya kazoo」,丹尼.謝西曼用希伯來語告訴自己「不可能有這種東西」。時值 1982 年 4 月 8 號的早晨,他正在研究的物質,是一個由鋁和錳組成的混合物,看起來很奇怪,因此他用電子顯微鏡,企圖從原子的層次來觀察,但是透過電子顯微鏡得到的圖像,卻違反了所有的邏輯:他看到一些同心圓,每一個都是由十個相互等距的亮點所組成(圖 1)。
謝西曼迅速地將灼熱的熔化金屬冷卻下來。這種溫度的突然改變應該會讓原子的排列混亂,但是他所觀察到的圖案,卻說出了一個完全不同的故事:那些原子以一種違反自然定律的方式而排列 。謝西曼一再重複地數著那些點,四個或六個點是可能的,但十個是絕不可能。他在實驗記錄簿上寫下:十重對稱???
一個未知的發現
為了瞭解謝西曼的實驗結果,以及為何他會如此驚訝,讓我們想像下面的一個課堂實驗:一位物理老師讓光通過一個鑿有縫隙的金屬板,一個被稱為繞射光柵的物體(圖 2),當光波通過這個光柵時,它會產生折射,就好像海浪的波紋通過一個防波堤的開口一般。
在光柵的另一邊,波紋以一個半圓方式散開,並與其它的波紋相交,波峰與波谷相互地加強或減弱。在繞射光柵後面的螢幕上,一種具有明暗的紋路出現,稱為繞射圖紋。
這就是謝西曼在 1982 年 4 月早晨所得到的那種繞射圖紋(圖 1),只不過他的實驗是不同的:他不是用光,而是用電子(註:電子具有波的性質),而他的光柵就是那個快速冷卻了的金屬原子之間的縫隙。
此外,他的實驗是三度空間的,而非平面的。
圖 1:丹尼.謝西曼的繞射圖紋具有十重對稱:將此圖轉動十分之一的圓周角度時(36 度)可得到相同的圖案。圖/諾貝爾獎官網
圖 2:光通過一個繞射光柵產生散射,產生的波相互干涉得到繞射圖案。圖/諾貝爾獎官網
那個繞射圖紋顯示,在那金屬之內的原子是排列成一個整齊有序的晶體。這當然不意外,幾乎所有的固體物質,不論是冰塊或金子,都具有整齊的晶體。雖然謝西曼使用電子顯微鏡非常有經驗,然而,一個由十個亮點排列成的圓形,卻是過去他從未看到過的。
更有甚者,這樣的晶體並沒有被列在國際晶體規格表之內,那是一個結晶學的主要參考指引。在當時的科學,明訂了一個由十個亮點排列成的圓形圖紋是不可能的,而其證明是非常簡單而明顯的。
違反所有邏輯的圖紋
在一個晶體中,原子是以固定而重複的方式排列的。決定於化學的組成,它們會具有不同的對稱性。在圖 3a 中,我們可以看到每一個原子是由三個原子圍繞著,而形成不斷重複的排列圖案,產生一個三重對稱;將此圖案轉動 120 度,又會得到相同的圖案。
同樣的原理發生在四重對稱(圖 3b)以及六重對稱(圖 3c),圖案不斷重複。當你個別地轉動 90 度或 60 度,相同的圖案會重複出現。
圖 3:晶體中不同的對稱性。具有五重對稱的晶體結構單元無法重複。圖/諾貝爾獎官網
然而,五重對稱(圖 3d)是不可能的,某些原子之間的距離會小於其它原子之間的距離,也就是說,相同的圖案不會重複。科學家認為這足以證明五重對稱不可能存在於晶體中。同樣的原因存在於七重對稱或更高重的對稱。
謝西曼卻發現,他的圖案轉動一個圓的十分之一的角度(36 度)時,又可得到相同的圖案。他的確看到了一個被認為不可能的十重對稱,因此,不意外地,他在實驗記錄簿上寫下了三個問號。
基本假設出錯了
在美國國家標準局(NIST),謝西曼從他的辦公室向外探頭,望了望走廊,希望能看到某一個可以與他分享發現的人,但是走廊空無一人,所以他回到電子顯微鏡前,對那個晶體繼續進一步的實驗。其中他重複地確認所得到的不是巒晶(twin crystal):兩種共生的晶體享有相同的晶面,而導致了奇怪的繞射圖紋;但是他無法找到任何的跡象顯示那是巒晶。
除此之外,他將電子顯微鏡下的晶體轉動,看看到底要轉多少度可以讓這個十重對稱的繞射圖紋重複出現。實驗顯示晶體的對稱性與圖紋的十重對稱不同,但仍然是一個不可能的五重對稱。謝西曼的結論是:科學界的基本假設是錯誤的 。
當謝西曼告訴科學家們他的發現時,他面對了完全的否定 ,一些同事們甚至認為這根本是無稽之談,許多人宣稱他所得到的是巒晶。實驗室的主管丟給了他一本結晶學教科書,建議他讀讀。謝西曼當然知道教科書裡面說了什麼,但是他更相信自己的實驗。
根據謝西曼的回憶,所有的騷動終於導致他的老闆要求他離開那個研究小組,狀況變得非常難堪。
與已知奮戰
謝西曼是在以色列科技大學(Technion-Israel Institute of Technology)修得博士學位的。在 1983 年,他引發了在他母校任職的伊蘭.布雷契(Ilan Blech)對這個研究的興趣,他們合力企圖解釋此一繞射圖紋,並轉譯成為原子在晶體內的排列模式。
於 1984 年夏,他們送了一份論文稿到應用物理期刊(Journal of Applied Physics),但是該稿似乎在收到當日,就即刻被編輯退回。
接著,謝西曼向約翰.康(John Cahn)提出要求。康是一位著名的物理學家,也是當初邀聘謝西曼到 NIST 的人。謝西曼希望康能看看他的數據。這位通常很忙的學者終於答應,接著,康與一位法國的結晶學家丹尼斯.格拉提亞斯(Denis Gratias)諮詢,看看謝西曼是否忽略了什麼,但是根據格拉提亞斯的檢驗,謝西曼的實驗是可以信賴的,格拉提亞斯如果親自做那些實驗,也會使用同樣的方法。
在 1984 年的十一月,偕同了康、布雷契與格拉提亞斯,謝西曼等人終於在 Physical Review Letters 這份期刊中,共同發表了他的數據。這篇論文像顆炸彈一般,投在結晶學者之間。它質疑了他們的科學學門中的最基本教條:所有的晶體具有重複的週期性結構模式。
揭開知識的迷障
現在這項發現觸及了更多的讀者,而謝西曼成為了更多批評的目標。不過,在此同時,全世界的結晶學者們都產生了一種似曾相識的感覺,許多人在分析一些其它的物質時,也曾經得到過類似的繞射圖紋,但是當初,他們都將之視為巒晶的證據。現在,他們開始翻箱倒櫃,找出以前的實驗記錄簿,很快發現有些其它的晶體也會產生這種看似不可能的圖紋,譬如八重和十二重的對稱。
在謝西曼發表了他的發現之後,他仍然不知道那個奇怪的晶體內部結構到底如何。顯然地,它的對稱性是五重的,那是何種堆疊方式呢?這個答案卻從另一個未曾料到的領域而得:數學中的馬賽克遊戲。
用以解謎的馬賽克
數學家們喜歡用迷團和邏輯問題來挑戰自我。於 1960 年代,他們開始思索是否可以用有限數目的圖案塊,舖出不會重複的馬賽克圖案 ,創造一種所謂的「非週期馬賽克」。
頭一個成功的嘗試是在 1966 年,由一位美國的數學家所發表,但是他需要超過兩萬種圖案塊來做到,這很難讓著迷於精簡的數學家滿足。當更多的數學家投入這項挑戰,需要的不同圖案塊數目穩定下修。
終於,在 1970 年代中期,一位英國數學教授羅傑.潘洛斯(Roger Penrose)對此問題提出了一個最漂亮的解答。他用僅僅兩種圖案塊創造出非週期馬賽克,例如一胖一瘦的菱形(圖 4-1)。
潘洛斯的馬賽克在好幾個不同方面啟發了學界,其中之一是他的發現被用來分析中世紀伊斯蘭綺理(Girih)圖案。我們也發現阿拉伯藝術家早在 13 世紀就創造出了非週期馬賽克,這種馬賽克裝飾著非凡的西班牙阿罕布拉宮,還有伊朗 Darb-i Imam 寺廟的入口和穹頂。
結晶學者艾倫.馬凱(Alan Mackay)運用潘洛斯的馬賽克於另一個方面,他想探究構成物質的原子是否也能如同非週期馬賽克的圖案般排列。他做了一個實驗,用代表原子的圓圈放置在潘洛斯的馬賽克圖案的交點位置(圖 4-2),然後用這樣的圖案作成繞射光柵,來看會得到何種繞射圖案,結果得到一個十重對稱——十個光點圍成一圈。
馬凱的模型與謝西曼的繞射圖紋之間的關聯性,接著被物理學家保羅.史坦哈特(Paul Steinhardt)與多夫.李凡(Dov Levine)所發現。謝西曼的論文在 Physical Review Letters 這份期刊上發表之前,編輯將該文稿交由其他的科學家審核,在這個過程中,史坦哈特有機會看到這份文章,他早就對馬凱的模型熟悉,因此體認到馬凱的理論模型,存在現實世界中,亦存在於謝西曼在 NIST 的實驗室裡。
在 1984 年的聖誕夜,就在謝西曼的論文出刊後的四週,史坦哈特與李凡發表了一篇論文,其中描述了準晶體(quasicrystal)以及它的非週期馬賽克排列。在這篇論文中,準晶體得到了它的名字。
關鍵的黃金比例
準晶體與非週期馬賽克具有一項共同的迷人特質,那是一個在數學與藝術中不斷出現的黃金比例,亦即數學常數 tau 。例如:在潘洛斯的馬賽克中,胖的和瘦的菱形數目的比例是 tau;類似地,準晶體中原子間的不同距離的比例,總是與 tau 相關。
13 世紀的義大利數學家費布那西(Fibonacci),從一個有關兔子繁殖的假設性實驗中找到的一系列數字中,描述了這個數學常數 tau。在這個著名的數列中,每一個數字是前兩個數字之和:1、1、2、3、5、8、13、21、34、55、89、144 等等。如果將一個費氏數列中較大的數字除以前一個數字,例如 144/89,你就會得到一個接近黃金比例的數字。
當科學家想要用一個繞射圖紋來描述準晶體中的原子排列時,費氏數列與黃金比例 對他們是很重要的。費氏數列也可以解釋 2011 年的諾貝爾化學獎所表彰的發現,為何改變了化學家對晶體結構的規律性之看法。
費氏數列解釋了為何準晶體改變了化學家對晶體結構規律性的看法。 圖/seventyfourimages
不會重複的規律
先前,化學家解釋晶體的規律性在於一個週期性不斷重複的模式 。費氏數列雖然不會重複,卻也是規律的,因為它遵守一個數學的規則。
在準晶體中,原子間的距離與費氏數列相關,原子以規律的方式排列,化學家可以預測一個準晶體中的結構是何樣,不過這種規律性與具有周期性結構的晶體是不同的。
在 1992 年,這個認知導致了國際結晶學會改變了他們對晶體的定義。先前對晶體的定義是「一個物質,其中組成的原子、分子或離子以一個整齊而且重複的方式堆疊成立體的型態」,現在新的定義是「任何固體,基本上具有可區別的繞射圖紋 」,這個定義比較寬廣,而且允許未來可能發現的其它種晶體。
準晶體也存在於…
從他們 1982 年的發現之後,數以百計的準晶體在全球許多實驗室中被合成,但一直到了 2009 年的夏天,科學家才第一次報導了天然的準晶體 。他們發現了一種採自東俄的哈吐卡(Khatyrka)河的樣本中之礦石。這種礦石是由鋁、銅和鐵組成,具有一個十重對稱的繞射圖紋。它被稱為二十面石(icosahedrite),此名源自於二十面體(icosahedron),那是一種具有 20 個正三角形面的幾何固體,黃金比例存在於其幾何結構中。
準晶體也被發現存在於一種世界上最耐用的鐵當中。在嘗試不同組合的金屬時,一家瑞典的公司成功的製備出一種鐵,具有許多令人驚訝的良好特質。分析它的原子排列結構時,顯示它具有兩種相:硬鐵的準晶體嵌在一種較軟的鐵中,此一準晶體具有一種盔甲的功能 。現在它被用於刮鬍刀片,以及眼睛手術的細針等產品中。
準晶體現在也被用在刮鬍刀中。 圖/Pressmaster
除了特別堅硬外,準晶體能像玻璃般輕易的碎裂。
由於其特殊原子排列結構,它們也是很差的熱與電的導體,以及含有不具黏性的表面 。其低熱傳導的性質可以讓它們成為有用的熱電材料,能將熱轉為電,發展這種材料的目的在解決熱能的再利用,例如用在汽車與卡車上。現在科學家們正在實驗將準晶體用做像是煎鍋,以及節能的發光二極體(LED)之表面塗料,或是作為引擎的隔熱等等。
保持開放的心
謝西曼的故事並非唯一。
在科學的歷史中,一再地有研究工作者被迫與已經建立的「真理」作戰。事後看來,那些真理不過是一些假設。謝西曼和他的準晶體所面對過的最嚴厲批評,來自於鮑林(Linus Pauling),他曾得過兩次諾貝爾獎。這很清楚地顯示,即使是我們最偉大的科學家,也無法免疫於被陷在舊教條當中。
保持一個開放的心態,勇於質疑已經建立的知識,實際上可能是科學家們最重要的性格特質。
參考資料