0

0
0

文字

分享

0
0
0

導電但不導熱:夢幻的熱電材料「二氧化釩」——《科學月刊》

科學月刊_96
・2017/05/16 ・2157字 ・閱讀時間約 4 分鐘 ・SR值 585 ・九年級

國小高年級科普文,素養閱讀就從今天就開始!!

文/魏百駿|畢業於清大材料所,現職為中研院物理所博士後研究員(陳洋元實驗室),專攻熱電材料及相關材料物理。

熱電材料可以把熱能轉為電能。而能將廢熱有效率轉為電能,一直是科學家的夢想。但是熱電材料一直有個瓶頸,材料需要同時具導電好卻導熱差的特性。而一般導電好的材料,譬如金、銀、銅等金屬,導熱也同時較好,並不適合作為熱電材料。最近美國柏克萊實驗室發現二氧化釩(VO2)裡的電荷載子具導電卻不導熱的性質,為熱電材料帶來新契機。

在這張套色的掃描電子顯微鏡的影像中,通過將熱量從懸浮的熱源墊(紅色)傳輸到感測墊(藍色)來測量熱導率。 期間以二氧化釩的納米骨架橋接。 Credit: Junqiao Wu/Berkeley Lab

固體內的熱傳導

熱傳導為能量(熱能)從高溫處往低溫傳輸的現象。固體中,熱的傳輸有兩種媒介:

(1)原子晶格的熱振盪以及

(2)利用電子之類的自由載子(free carrier)來承載。

晶格熱振盪形成的彈性波,從量子力學的角度,科學家將之稱為「聲子(phonon)」;自由載子指的是可以自由移動,且帶有電荷的物質微粒,如電子和離子,能同時攜帶電荷及熱能。

一般而言,導電良好的材料內,電子在運動過程中受到的「阻力(電阻)」較小,電荷可快速傳輸。在此同時,自由載子也將熱能快速傳遞。這個現象是 1853 年維德曼(Gustav Wiedemann)和夫蘭茲(Rudolph Franz)在實驗中發現的,它主要描述了金屬電導率 σ 和熱導率 ρ 之間的關係,其中比例常數 L 稱之為羅倫茲常數(Lorentz number),也就是導電率越高,熱傳導率也就愈高。

然而,近期美國柏克萊實驗室在 Science 期刊上發表一項重大發現,二氧化釩奈米線中的自由載子導電不導熱!明顯打破維德曼-夫蘭茲定律(Wiedemann–Franz law)!因為其內的自由載子間具有很強的相互作用,使得電荷和熱能的輸運(transport)分開,不再藉由同一個自由載子來進行輸運!

柏克萊大學研究團隊。Credit: Junqiao Wu/Berkeley Lab

二氧化釩是一個具有「金屬-絕緣體相變(Metal-insulator transition)」的材料。於溫度 68°C 以上的環境,二氧化釩會具有金屬特性,若位於 68°C 以下環境,則會具有絕緣體特性。柏克萊團隊為了證實中的自由載子在輸運電荷的過程中並不肩負熱的傳輸,他們利用懸空的單晶奈米線結構,保證熱流與電流傳導為同一方向,也去除材料中應力與多晶格方向的影響。

如前文所述,熱導率來自於自由載子與聲子,經由實驗測得的熱傳導率減去理論晶格熱傳導率,並比對導電相與絕緣體相的理論及實驗值,該團隊確認金屬性二氧化釩中,電子所貢獻的熱傳導率約為維德曼-夫蘭茲定律預測的 10~20%,也就是自由載子帶的熱能比該理論預測少很多,非常難得一見。

藍色為釩原子,左側為導電階段。source:Atomic Vibrations Stabilize Metallic Vanadium Dioxide

現今我們對這樣電輸運與熱輸運解偶(decouple)的材料系統知道的不多。如果能深入了解其中電與熱解偶的機制,以及其內聲子如何與電子交互作用、電子之間如何交互作用等,對於開發所謂能將熱能直接轉換成電能、或電能直接轉換成溫差的熱電元件,將是極大的助益。

廢熱再利用

導電竟然有可能不導熱?圖/By garycycles8 @ flickr, CC BY 2.0

我們人類活動中產生的電能或動能,大多是以熱的形式浪費掉(廢熱)。熱電元件具備可直接將熱能轉換為可利用的電能(不透過任何機械裝置)的特性,因此具備可回收廢熱的優點!尤其是針對回收不易、介於 100~200°C 之間的低溫廢熱更具優勢。因此若能開發出具備非常高效率的熱-電轉換材料,有益於環境保護及空間節省。科學家利用「熱電優值」ZT 來衡量描述材料的熱電轉換能力,Z 是材料的熱電係數,T 是熱力學溫度。更詳細的來說:ZT= S2σT/κ,也就是說熱電優值的大小直接與熱傳導率(κ)、導電度(σ)及溫度(T)是相互關連的,而 S 為席貝克係數(Seebeck coefficient)。由上述 ZT 的關係式可知,好的熱電材料需要電導高但熱導低的特性,這也是目前熱電材料最大瓶頸。

若在熱電材料中自由載子導電卻不導熱,我們從電子貢獻的 ZTe=S2/L=S2σT/κe,不難看出如果羅倫茲常數趨近於零可以使得該材料中,電子的熱電效率無窮大!因此若能找到完全不遵守維德曼-夫蘭茲定律的材料系統,那麼等於找到夢想中的高效率熱電材料,而「壞金屬(bad metal)」,也就是自由載子傳輸的自由徑(mean free path)小於晶格大小的材料,是非常有潛力的材料系統。

最近幾年有些相關理論及實驗發表於重要國際期刊,探討如導電二氧化釩系統的「壞金屬」。不難發現這些具有非常規電子動力學的材料系統所牽涉的領域相當廣泛,且許多部分仍屬推測或未知。尋找突破維德曼-夫蘭茲定律的系統對於發展高效率熱電材料固然重要,然而在到達終點之前,我們仍有許多問題需要回答。熱電學中的三個主要參數:導電度、席貝克係數、熱傳導率本身每個都是度量材料電子及聲子動力系統的偵測儀,因此在可期待的未來,可藉由熱電物理的手來解開物理中未知且重要的一環。

延伸閱讀:

“Anomalously low electronic thermal conductivity in metallic vanadium dioxide” Science, science.sciencemag.org/cgi/doi/10.1126/science.aag0410


〈本文選自《科學月刊》2017 年 4 月號〉

什麼?!你還不知道《科學月刊》,我們 47 歲囉!

入不惑之年還是可以當個科青

 

 

 

 

 

 

 

 

 

文章難易度
科學月刊_96
229 篇文章 ・ 2114 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
2

文字

分享

0
2
2
【2011 諾貝爾化學獎】與確立的知識奮戰:黃金比例的晶體——準晶體
諾貝爾化學獎譯文_96
・2022/07/03 ・5569字 ・閱讀時間約 11 分鐘

本文轉載自諾貝爾化學獎專題系列,原文為《【2011諾貝爾化學獎】具有黃金比例的晶體 — 準晶

  • 譯者/蔡蘊明|台大化學系名譽教授
  • 圖/曹一允|美國德州農工大學 Karen Wooley 教授指導下取得博士,現於日本萊雅公司進行研究。

十重對稱的黃金比例

當丹尼.謝西曼(Daniel Shechtman)將這個讓他得到 2011 年諾貝爾化學獎的發現登記於實驗記錄簿上時,在後面寫下了三個問號,因為從那些在他眼前的晶體裡面的原子,產生了一個不可能的對稱性,那就好像一個足球——一個球面 ——不可能只由正六邊形組成。從此之後,有趣的馬賽克圖案(Mosaic)、數學裡面的黃金比例以及藝術,幫科學家們解釋了謝西曼那令人困惑的觀察。

「Eyn chaya kazoo」,丹尼.謝西曼用希伯來語告訴自己「不可能有這種東西」。時值 1982 年 4 月 8 號的早晨,他正在研究的物質,是一個由鋁和錳組成的混合物,看起來很奇怪,因此他用電子顯微鏡,企圖從原子的層次來觀察,但是透過電子顯微鏡得到的圖像,卻違反了所有的邏輯:他看到一些同心圓,每一個都是由十個相互等距的亮點所組成(圖 1)。

謝西曼迅速地將灼熱的熔化金屬冷卻下來。這種溫度的突然改變應該會讓原子的排列混亂,但是他所觀察到的圖案,卻說出了一個完全不同的故事:那些原子以一種違反自然定律的方式而排列。謝西曼一再重複地數著那些點,四個或六個點是可能的,但十個是絕不可能。他在實驗記錄簿上寫下:十重對稱???

一個未知的發現

為了瞭解謝西曼的實驗結果,以及為何他會如此驚訝,讓我們想像下面的一個課堂實驗:一位物理老師讓光通過一個鑿有縫隙的金屬板,一個被稱為繞射光柵的物體(圖 2),當光波通過這個光柵時,它會產生折射,就好像海浪的波紋通過一個防波堤的開口一般。

在光柵的另一邊,波紋以一個半圓方式散開,並與其它的波紋相交,波峰與波谷相互地加強或減弱。在繞射光柵後面的螢幕上,一種具有明暗的紋路出現,稱為繞射圖紋。

這就是謝西曼在 1982 年 4 月早晨所得到的那種繞射圖紋(圖 1),只不過他的實驗是不同的:他不是用光,而是用電子(註:電子具有波的性質),而他的光柵就是那個快速冷卻了的金屬原子之間的縫隙。

此外,他的實驗是三度空間的,而非平面的。

圖 1:丹尼.謝西曼的繞射圖紋具有十重對稱:將此圖轉動十分之一的圓周角度時(36 度)可得到相同的圖案。圖/諾貝爾獎官網
圖 2:光通過一個繞射光柵產生散射,產生的波相互干涉得到繞射圖案。圖/諾貝爾獎官網

那個繞射圖紋顯示,在那金屬之內的原子是排列成一個整齊有序的晶體。這當然不意外,幾乎所有的固體物質,不論是冰塊或金子,都具有整齊的晶體。雖然謝西曼使用電子顯微鏡非常有經驗,然而,一個由十個亮點排列成的圓形,卻是過去他從未看到過的。

更有甚者,這樣的晶體並沒有被列在國際晶體規格表之內,那是一個結晶學的主要參考指引。在當時的科學,明訂了一個由十個亮點排列成的圓形圖紋是不可能的,而其證明是非常簡單而明顯的。

違反所有邏輯的圖紋

在一個晶體中,原子是以固定而重複的方式排列的。決定於化學的組成,它們會具有不同的對稱性。在圖 3a 中,我們可以看到每一個原子是由三個原子圍繞著,而形成不斷重複的排列圖案,產生一個三重對稱;將此圖案轉動 120 度,又會得到相同的圖案。

同樣的原理發生在四重對稱(圖 3b)以及六重對稱(圖 3c),圖案不斷重複。當你個別地轉動 90 度或 60 度,相同的圖案會重複出現。

圖 3:晶體中不同的對稱性。具有五重對稱的晶體結構單元無法重複。圖/諾貝爾獎官網

然而,五重對稱(圖 3d)是不可能的,某些原子之間的距離會小於其它原子之間的距離,也就是說,相同的圖案不會重複。科學家認為這足以證明五重對稱不可能存在於晶體中。同樣的原因存在於七重對稱或更高重的對稱。

謝西曼卻發現,他的圖案轉動一個圓的十分之一的角度(36 度)時,又可得到相同的圖案。他的確看到了一個被認為不可能的十重對稱,因此,不意外地,他在實驗記錄簿上寫下了三個問號。

基本假設出錯了

在美國國家標準局(NIST),謝西曼從他的辦公室向外探頭,望了望走廊,希望能看到某一個可以與他分享發現的人,但是走廊空無一人,所以他回到電子顯微鏡前,對那個晶體繼續進一步的實驗。其中他重複地確認所得到的不是巒晶(twin crystal):兩種共生的晶體享有相同的晶面,而導致了奇怪的繞射圖紋;但是他無法找到任何的跡象顯示那是巒晶。

除此之外,他將電子顯微鏡下的晶體轉動,看看到底要轉多少度可以讓這個十重對稱的繞射圖紋重複出現。實驗顯示晶體的對稱性與圖紋的十重對稱不同,但仍然是一個不可能的五重對稱。謝西曼的結論是:科學界的基本假設是錯誤的

當謝西曼告訴科學家們他的發現時,他面對了完全的否定,一些同事們甚至認為這根本是無稽之談,許多人宣稱他所得到的是巒晶。實驗室的主管丟給了他一本結晶學教科書,建議他讀讀。謝西曼當然知道教科書裡面說了什麼,但是他更相信自己的實驗。

根據謝西曼的回憶,所有的騷動終於導致他的老闆要求他離開那個研究小組,狀況變得非常難堪。

與已知奮戰

謝西曼是在以色列科技大學(Technion-Israel Institute of Technology)修得博士學位的。在 1983 年,他引發了在他母校任職的伊蘭.布雷契(Ilan Blech)對這個研究的興趣,他們合力企圖解釋此一繞射圖紋,並轉譯成為原子在晶體內的排列模式。

於 1984 年夏,他們送了一份論文稿到應用物理期刊(Journal of Applied Physics),但是該稿似乎在收到當日,就即刻被編輯退回。

接著,謝西曼向約翰.康(John Cahn)提出要求。康是一位著名的物理學家,也是當初邀聘謝西曼到 NIST 的人。謝西曼希望康能看看他的數據。這位通常很忙的學者終於答應,接著,康與一位法國的結晶學家丹尼斯.格拉提亞斯(Denis Gratias)諮詢,看看謝西曼是否忽略了什麼,但是根據格拉提亞斯的檢驗,謝西曼的實驗是可以信賴的,格拉提亞斯如果親自做那些實驗,也會使用同樣的方法。

在 1984 年的十一月,偕同了康、布雷契與格拉提亞斯,謝西曼等人終於在 Physical Review Letters 這份期刊中,共同發表了他的數據。這篇論文像顆炸彈一般,投在結晶學者之間。它質疑了他們的科學學門中的最基本教條:所有的晶體具有重複的週期性結構模式。

揭開知識的迷障

現在這項發現觸及了更多的讀者,而謝西曼成為了更多批評的目標。不過,在此同時,全世界的結晶學者們都產生了一種似曾相識的感覺,許多人在分析一些其它的物質時,也曾經得到過類似的繞射圖紋,但是當初,他們都將之視為巒晶的證據。現在,他們開始翻箱倒櫃,找出以前的實驗記錄簿,很快發現有些其它的晶體也會產生這種看似不可能的圖紋,譬如八重和十二重的對稱。

在謝西曼發表了他的發現之後,他仍然不知道那個奇怪的晶體內部結構到底如何。顯然地,它的對稱性是五重的,那是何種堆疊方式呢?這個答案卻從另一個未曾料到的領域而得:數學中的馬賽克遊戲。

用以解謎的馬賽克

數學家們喜歡用迷團和邏輯問題來挑戰自我。於 1960 年代,他們開始思索是否可以用有限數目的圖案塊,舖出不會重複的馬賽克圖案,創造一種所謂的「非週期馬賽克」。

頭一個成功的嘗試是在 1966 年,由一位美國的數學家所發表,但是他需要超過兩萬種圖案塊來做到,這很難讓著迷於精簡的數學家滿足。當更多的數學家投入這項挑戰,需要的不同圖案塊數目穩定下修。

終於,在 1970 年代中期,一位英國數學教授羅傑.潘洛斯(Roger Penrose)對此問題提出了一個最漂亮的解答。他用僅僅兩種圖案塊創造出非週期馬賽克,例如一胖一瘦的菱形(圖 4-1)。

潘洛斯的馬賽克在好幾個不同方面啟發了學界,其中之一是他的發現被用來分析中世紀伊斯蘭綺理(Girih)圖案。我們也發現阿拉伯藝術家早在 13 世紀就創造出了非週期馬賽克,這種馬賽克裝飾著非凡的西班牙阿罕布拉宮,還有伊朗 Darb-i Imam 寺廟的入口和穹頂。

結晶學者艾倫.馬凱(Alan Mackay)運用潘洛斯的馬賽克於另一個方面,他想探究構成物質的原子是否也能如同非週期馬賽克的圖案般排列。他做了一個實驗,用代表原子的圓圈放置在潘洛斯的馬賽克圖案的交點位置(圖 4-2),然後用這樣的圖案作成繞射光柵,來看會得到何種繞射圖案,結果得到一個十重對稱——十個光點圍成一圈。

馬凱的模型與謝西曼的繞射圖紋之間的關聯性,接著被物理學家保羅.史坦哈特(Paul Steinhardt)與多夫.李凡(Dov Levine)所發現。謝西曼的論文在 Physical Review Letters 這份期刊上發表之前,編輯將該文稿交由其他的科學家審核,在這個過程中,史坦哈特有機會看到這份文章,他早就對馬凱的模型熟悉,因此體認到馬凱的理論模型,存在現實世界中,亦存在於謝西曼在 NIST 的實驗室裡。

在 1984 年的聖誕夜,就在謝西曼的論文出刊後的四週,史坦哈特與李凡發表了一篇論文,其中描述了準晶體(quasicrystal)以及它的非週期馬賽克排列。在這篇論文中,準晶體得到了它的名字。

關鍵的黃金比例

準晶體與非週期馬賽克具有一項共同的迷人特質,那是一個在數學與藝術中不斷出現的黃金比例,亦即數學常數 tau。例如:在潘洛斯的馬賽克中,胖的和瘦的菱形數目的比例是 tau;類似地,準晶體中原子間的不同距離的比例,總是與 tau 相關。

13 世紀的義大利數學家費布那西(Fibonacci),從一個有關兔子繁殖的假設性實驗中找到的一系列數字中,描述了這個數學常數 tau。在這個著名的數列中,每一個數字是前兩個數字之和:1、1、2、3、5、8、13、21、34、55、89、144 等等。如果將一個費氏數列中較大的數字除以前一個數字,例如 144/89,你就會得到一個接近黃金比例的數字。

當科學家想要用一個繞射圖紋來描述準晶體中的原子排列時,費氏數列與黃金比例對他們是很重要的。費氏數列也可以解釋 2011 年的諾貝爾化學獎所表彰的發現,為何改變了化學家對晶體結構的規律性之看法。

費氏數列解釋了為何準晶體改變了化學家對晶體結構規律性的看法。 圖/seventyfourimages

不會重複的規律

先前,化學家解釋晶體的規律性在於一個週期性不斷重複的模式。費氏數列雖然不會重複,卻也是規律的,因為它遵守一個數學的規則。

在準晶體中,原子間的距離與費氏數列相關,原子以規律的方式排列,化學家可以預測一個準晶體中的結構是何樣,不過這種規律性與具有周期性結構的晶體是不同的。

在 1992 年,這個認知導致了國際結晶學會改變了他們對晶體的定義。先前對晶體的定義是「一個物質,其中組成的原子、分子或離子以一個整齊而且重複的方式堆疊成立體的型態」,現在新的定義是「任何固體,基本上具有可區別的繞射圖紋」,這個定義比較寬廣,而且允許未來可能發現的其它種晶體。

準晶體也存在於…

從他們 1982 年的發現之後,數以百計的準晶體在全球許多實驗室中被合成,但一直到了 2009 年的夏天,科學家才第一次報導了天然的準晶體。他們發現了一種採自東俄的哈吐卡(Khatyrka)河的樣本中之礦石。這種礦石是由鋁、銅和鐵組成,具有一個十重對稱的繞射圖紋。它被稱為二十面石(icosahedrite),此名源自於二十面體(icosahedron),那是一種具有 20 個正三角形面的幾何固體,黃金比例存在於其幾何結構中。

準晶體也被發現存在於一種世界上最耐用的鐵當中。在嘗試不同組合的金屬時,一家瑞典的公司成功的製備出一種鐵,具有許多令人驚訝的良好特質。分析它的原子排列結構時,顯示它具有兩種相:硬鐵的準晶體嵌在一種較軟的鐵中,此一準晶體具有一種盔甲的功能。現在它被用於刮鬍刀片,以及眼睛手術的細針等產品中。

準晶體現在也被用在刮鬍刀中。 圖/Pressmaster

除了特別堅硬外,準晶體能像玻璃般輕易的碎裂。

由於其特殊原子排列結構,它們也是很差的熱與電的導體,以及含有不具黏性的表面。其低熱傳導的性質可以讓它們成為有用的熱電材料,能將熱轉為電,發展這種材料的目的在解決熱能的再利用,例如用在汽車與卡車上。現在科學家們正在實驗將準晶體用做像是煎鍋,以及節能的發光二極體(LED)之表面塗料,或是作為引擎的隔熱等等。

保持開放的心

謝西曼的故事並非唯一。

在科學的歷史中,一再地有研究工作者被迫與已經建立的「真理」作戰。事後看來,那些真理不過是一些假設。謝西曼和他的準晶體所面對過的最嚴厲批評,來自於鮑林(Linus Pauling),他曾得過兩次諾貝爾獎。這很清楚地顯示,即使是我們最偉大的科學家,也無法免疫於被陷在舊教條當中。

保持一個開放的心態,勇於質疑已經建立的知識,實際上可能是科學家們最重要的性格特質。

參考資料

諾貝爾化學獎譯文_96
15 篇文章 ・ 18 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列

0

7
0

文字

分享

0
7
0
前方高能注意!你知道可以用「熱」發電嗎?把廢熱變能源的黑科技──熱電材料
研之有物│中央研究院_96
・2021/09/06 ・4237字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣
  • 美術設計|林洵安

回收廢熱的熱電材料

在全球面臨能源轉型之際,再生能源的發展大多著重在太陽能、風力、水力、生質燃料等。然而近年,隨著奈米科技的發展,可將廢熱轉為電力的熱電材料也逐漸嶄露頭角。中央研究院物理研究所陳洋元研究員踏足熱電材料的研究已有十幾年,在他眼中,熱電材料極具能源發展潛力。

熱電轉換再興起

身處能源轉型的關鍵時刻,我們不由得擔心,再生能源真的足以補上電力缺口嗎?還有沒有其他新興的發電方法呢?有的!用廢熱發電,聽起來很不錯吧?畢竟在日常生活中,我們也受夠廢熱了。汽車、冷氣等機械廢熱,加上太陽的輻射熱等,這些煩人的廢熱如果能拿來發電,實在是個好主意。

熱電材料就是熱生電的關鍵,它能將(沒用的)熱轉化成(好用的)電。近年來,熱電材料逐漸發展起來,中研院物理所研究員陳洋元從 2006 年起開始研究熱電材料,他說:「熱電材料的發電效率已經有很大的進展!」在不久的未來,熱電材料的應用將愈來愈廣泛,成為能源轉型時代的重要一角。

熱電材料的歷史要回溯到 200 年前,德國科學家西貝克(Thomas Seebeck)在 1821 年發現,材料兩端的溫度差會形成電位差,稱為「西貝克效應」。也就是說,同一種材料只要兩端溫度不同,兩端之間就會產生電壓;反之,在材料兩端賦予電壓時,兩端之間就會產生溫度差。科學家因此定義了西貝克係數 S = ∆V∆T,表示同一種材料下,溫度差愈大,輸出電壓越大,「換句話說,一個有溫差的材料,等於可以視為一個乾電池。」陳洋元解釋。這便是熱電材料的基本物理機制。

圖片為熱電材料的基本特性。同一個熱電材料,若給予兩端溫度差可以產生電壓(西貝克效應);若給予兩端電壓則會造成溫度差(皮爾特效應)。圖│研之有物(資料來源│陳洋元)
圖片為熱電材料的基本特性。同一個熱電材料,若給予兩端溫度差可以產生電壓(西貝克效應);若給予兩端電壓則會造成溫度差(皮爾特效應)。圖│研之有物(資料來源│陳洋元)

找出最優質的熱電材料

由於每一度溫差產生的電壓就是「西貝克係數」,直觀來說,西貝克係數愈大的材料,在同樣的溫差下輸出的電壓愈大,是愈好的熱電材料。不過陳洋元補充說,熱電材料除了西貝克係數要高之外,「導電性也要好,除此之外,導熱率不能太好,否則溫差一下子就熱平衡掉了。」考量各種條件之後,科學家訂出了熱電材料的優質係數 ZT 值=(δS2κ)T,其中 σ 是導電係數、S 是西貝克係數,κ 是導熱率,T 是絕對溫度。

導電性好、西貝克係數高,而且導熱率要低。這是優質熱電材料的三大條件。

於是,研究熱電材料的科學家從幾十年前開始,便朝著符合這些條件的方向努力。陳洋元說:「金屬的導熱都太好了,並不適合當作熱電材料。目前主要的做法是用各種半導體材料,搭配不同的摻雜元素及比例,來找出最佳化的 ZT 值。」

半導體材料是良好的熱電材料,依據摻雜的元素種類,可分為 n 型(電流載子為電子,帶負電)與 p 型(電流載子為電洞,帶正電),製作熱電材料時,會將 n、p 型材料組合成上圖「熱電偶」的形式。圖│研之有物(資料來源│陳洋元)
半導體材料是良好的熱電材料,依據摻雜的元素種類,可分為 n 型(電流載子為電子,帶負電)與 p 型(電流載子為電洞,帶正電),製作熱電材料時,會將 n、p 型材料組合成上圖「熱電偶」的形式。圖│研之有物(資料來源│陳洋元)

全世界各研究團隊多年下來,針對各種材料組合及摻雜比例,找出了不少值得關注的熱電材料候選者(如下表)。「你可以從中發現,多數的熱電材料都是溫度愈高,ZT 值愈高,在 600°C~700°C 的高溫會表現得很好。」陳洋元笑說:「只有一種材料適合在室溫運作,就是鉍-銻-碲(BiSbTe),目前為止無人能出其右。而且科學家大概 50 年前就發現它了,它保持世界紀錄至今 50 年。」

各種 p 型(左)、n 型(右)材料的 ZT 值與溫度關係圖。可以看到接近室溫(27°C,約300K)表現最好的材料為 p 型的 BiSbTe(藍色折線)。圖│陳洋元
各種 p 型(左)、n 型(右)材料的 ZT 值與溫度關係圖。可以看到接近室溫(27°C,約300K)表現最好的材料為 p 型的 BiSbTe(藍色折線)。
圖│陳洋元

控制晶格和缺陷,不讓熱傳過去!

找到優秀的材料搭配和比例還不夠!要提升熱電效果,還有一個重要因子:減低熱電材料的導熱率。微觀來看,就是精細地調控材料晶格或內部缺陷。

晶格是材料的骨架,熱的本質是晶格振動,而熱傳導的本質便是晶格裡的原子以振動方式將能量傳遞給鄰近原子。因此,阻礙能量傳遞的方式,就是調控材料內原子的排列,以期達到導熱差、導電好的最終目的。

理想上可以利用「超晶格」,當不同種類的原子像三明治一般層層交替堆疊時,界面的原子與鄰近原子尺寸、重量都不同,這會造成晶格排列不順暢(晶格不匹配),彼此的振動能量也不易傳遞,大部分都會反彈回來,也就達到「導熱不佳」的效果了。

種類不同、尺寸與重量皆不同的原子間,由於晶格不匹配,振動比較不易傳遞,導熱率因此降低。

陳洋元進一步解釋,超晶格的每一層材料厚度、比例都必須嚴格控制,「因為我們只希望導熱率降低,但不希望影響到電子的移動。」也因此,這項製程「非常困難,需要的設備也很昂貴。超晶格結構如果要做到一張紙那麼厚,可能必須鍍膜上萬次,成本很高,東西也做不大。換言之,超晶格在學理上可行,但實際應用上有困難。」


「我們可以選擇退而求其次的做法。」陳洋元說。例如在材料裡刻意摻雜一些雜質,或製造晶格的空缺,包括:點缺陷、空位、差排、疊差等。以這些缺陷的數量來控制材料特性,在盡量不影響導電的狀況下降低熱傳導率。「這是比較簡單可行的做法。」

圖片為「疊差」缺陷。對於熱電材料來說,為了降低導熱率,理想上可利用「疊差」來調控材料內部「缺陷」,最終目的是導熱變差,卻能保有良好的導電率。圖│研之有物(資料來源│陳洋元)
圖片為「疊差」缺陷。對於熱電材料來說,為了降低導熱率,理想上可利用「疊差」來調控材料內部「缺陷」,最終目的是導熱變差,卻能保有良好的導電率。圖│研之有物(資料來源│陳洋元)

熱電材料自有用武之地

熱電材料在實際應用上,發展得比其他再生能源慢,主要原因還是在發電效率不夠好。目前在室溫下最好的熱電材料,轉換效率約 3~4%,相較之下,太陽能發電目前的轉換效率約在 15~20%。這也是熱電材料在能源發展上較少被提及的主因。

「不過其實熱電材料在 600°C~700°C 的高溫下,轉換效率可以超過 10%。」陳洋元說。因此,幾年前美國一度打算將熱電材料用在汽車的廢熱回收,畢竟燃油引擎的油電轉換效率大約在 30% 左右。「剩下的 70% 都變成廢熱排出去了。如果能把其中 10% 的廢熱轉換成電能,等於是引擎效率的一大躍進。」不過後來,隨著電動車逐漸成為主流發展方向,這項應用也就失去關注了。

熱電材料就這樣無英雄用武之地了嗎?並不是。其實早在 30~40 年前,它就已經應用在太空科技上了。太空船或衛星發射到太空中之後,需要電能維持運作,除了太陽能以外,熱電也是重要的電力來源。陳洋元以航海家一號舉例,「它朝著太陽系外離去,過程中太陽光會愈來愈微弱,因此不能完全仰賴太陽能做為電力來源。」因此,航海家一號就有使用熱電技術,其中熱的來源是鈾、鈽等放射性材料,它們在衰變過程會放熱,與外太空趨近絕對零度的環境產生溫差,藉此發電。「這些放射性材料的半衰期是幾十億年,對我們來說像是萬年之毒,但對太空船來說,卻像是永恆的電力來源。」陳洋元說。

熱電轉換效率不佳,但對於缺乏電力來源、外界環境溫度極低,又不怕放射性汙染的太空科技來說,是很好的發電選擇。

此外,熱電材料不只能把熱轉換成電,也能反過來,利用材料兩端的電壓差回推來產生溫度差。也就是說熱電材料的應用不限於發電,它也能做為冷氣、冰箱等使用的溫度計;或是在熱電材料上外加電壓,產生電流,造成材料兩端的溫度差,做為冰箱、電腦 CPU 的致冷元件。

陳洋元也在近兩年,研究開發出薄型熱電晶片,裡面的結構是 128 對微小的 p 型、n 型半導體柱,就像 128 個小小的乾電池串聯一樣,能把熱電效應放大百倍。陳洋元解釋,雖然熱電效率不高,無法用在大型工廠等需要巨大電量的狀況,但這樣的晶片可以用來製作「熱電自充隨身電源」,應用在手機或電子手錶等隨身穿戴式電子裝置上,這類裝置需要的電量不高,但可能隨時有充電需求。「想像一下這樣的場景,你走在路上發現手機沒電了,於是拿出熱電自充隨身電源,利用自身體溫與室溫的溫差,幫手機緊急充電。」

薄型熱電晶片內包含了 128 對 p 型、 n 型半導體,具有輕巧的外形。圖│陳洋元
薄型熱電晶片內包含了 128 對 p 型、n 型半導體,具有輕巧的外形。
圖│陳洋元

隨著網際網路的發展,基地台熱點愈來愈多,這也讓陳洋元對於熱電材料的應用潛力更加樂觀。「在某些偏遠地帶,例如玉山的基地台,電力供給或許就不需要建置發電站,利用熱電材料(透過溫差發電的特性),只要送一桶瓦斯去就好,方便多了!」或者,熱電材料也能與太陽能互補,「因為太陽能發電使用的是太陽光,它的輻射熱並沒有被利用到,這一點可以用熱電材料來加強補足。」陳洋元說。

另外,陳洋元也正在與廠商合作,希望能製作中型、大型的發電機。陳洋元說:「一個熱電晶片大約能發 20 瓦的電,把 25 個晶片合起來,就能有 500 瓦。」儘管成本比一般發電機高,但熱電發電機具有輕巧、無噪音等優點,「我相信它在未來是一個機會。」

熱電材料的研究還在如火如荼的進展著,而陳洋元對它的未來也抱持著樂觀的態度。回頭看看熱電材料的優質係數 ZT 值,「只要我們想辦法降低導熱率,它理論上還能再拉高。」陳洋元說:「現在室溫下的 ZT 值最高是 1 點多,在不久的未來,我們很有可能就突破它了」

研之有物│中央研究院_96
248 篇文章 ・ 2046 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
1

文字

分享

0
5
1
氣候變遷、能源廢熱怎麼辦?——專訪國立陽明交通大學材料科學與工程學系吳欣潔教授
科技大觀園_96
・2021/08/04 ・2555字 ・閱讀時間約 5 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

在科技迅速發展的時代,加上溫室效應等因素,用電量逐年攀升,「電」成了人類社會中不可或缺的存在。然而,你知道嗎?各種能源產生的電力,有 60% 以廢熱形式逸散到大氣中,而真的拿來用的大約只有 40%。這些大量的廢熱也造成溫室效應加劇,其中工廠以及車輛引擎為能源廢熱的大宗。「氣候變遷」及「能源需求」兩大議題,逐漸形成彼此相扣的存在,究竟孰輕孰重,能否在這之中尋找一個平衡點,成為現今科學家們亟需解決的難題。

工廠、引擎產生的廢熱會加劇溫室效應。圖/pixabay

小孩子才做選擇,熱電材料:我都要!

「我常看著窗外想著,如果能把這些熱收集起來,拿來發電,是不是就同時能夠解決廢熱和氣候變遷的問題了?」吳欣潔教授說。

現為國立陽明交通大學材料科學與工程學系的吳欣潔教授,是今年 (2021)台灣傑出女科學家第十四屆新秀獎得主,近年來專注研究綠色能源的開發與應用,從熱力學探討至熱電材料。其實,吳教授在大學時主修的是化工,後來轉至研究材料領域。吳欣潔教授說:「我當時想研究綠色能源,甚至有點天馬行空地想找出完全環保的材料來發電,因為希望作對世界有意義的事情。」

因此,吳欣潔教授的實驗室稱作「高效能熱電材料與綠色能源實驗室」,那熱電材料到底是什麼呢?基本上熱電材料是以半導體材料為主,可以讓「熱」和「電」互相轉換,目前「碲化鉍 (Bi2Te3)」與「碲化鉛 (PbTe)」是最常用的兩種熱電材料。而熱電材料究竟是怎麼做到不同能量形式的轉換呢?

遇上溫度差,DoReMeSo~產生電流

首先,熱電材料是如何發電的,如同吳教授實驗室網站的第一行字「Where is a Delta-T, there is an Electricity(哪裏有溫度差,哪裏就有電)」。關鍵就在——「溫差」,我們將P型和N型半導體排列成迴路,再於兩端施加不同溫度,半導體上的電子就會往低溫處跑,電子的濃度不同而形成了電位差,便產生電流,就像瀑布會由高處往低處流,這便是所謂的塞貝克效應 (Seebeck effect),例如太空探測器便是在核反應器周圍貼上熱電元件,且熱電材料為全固態,相當安全,常用的材料系統為碲化鉛 (PbTe)。

那如果我們把發電的原理反過來,將電流通給它,也可以讓半導體電子往同一端跑,電子流動的同時也會帶走熱,進而產生溫差,達到致冷的效果,稱為皮爾特效應 (Peltier effect)。這在民生用品上較為常見,像是有些紅酒櫃便是利用熱電致冷的原理,因此不需要壓縮機,體積也可以縮小許多,常用的材料系統為碲化鉛 (PbTe)為碲化鉍 (Bi2Te3)。

茫茫材料海中能夠遇見你

那我們理解到溫差能夠產生電流後,就從此過著幸福快樂的日子了嗎?當然沒有,有句話說:「理想很豐滿,現實卻很骨感。」

而熱電材料所面臨的現實就是,大家最關心的「轉換效率」,而能夠代表熱電材料轉換效率的數值稱為「ZT 值」,ZT 值若大於 1,表示轉換效率有機會大於 10%。「如果我們想找到 ZT 值高的材料,就要它的導熱差,但導電好,目前多鎖定在半導體材料。」吳欣潔解釋。除此之外,依據塞貝克效應,會在材料的兩端施予溫差,並且期望未來能夠規模化生產,因此必須是具穩定性的材料。且希望熱電材料能夠是一種綠色能源,所以也不能含有會汙染環境的成分。總而言之,細數這些考量及條件後,發現要找到適合的熱電材料簡直比找到靈魂伴侶還難!

吳欣潔笑著說:「所以就像找伴侶一樣,先確定你的首要條件,我們做的是綠色能源,所以希望能從環境友善的材料出發。」半導體材料通常是一個母元素再參雜其他微量元素,比如常用的碲化鉛 (PbTe)之中的鉛 Pb 對環境有污染性,尋找其他可替代的發電用無鉛熱電材料,也是目前迫切之議題。

刪去不符合首要條件的元素後,接著要開始尋找適合的材料比例,吳教授的實驗室採用的方法是「相圖(phase diagram)」,它就像是材料界中的 google map,相圖可以告訴我們對這個材料而言,最好的組成配比是什麼,哪個區間的 ZT 值可能最高,哪裡的狀態最穩定。然而,要製作出一張相圖需要耗費的時間與人力成本十分可觀,但相圖資料庫的累積卻對未來材料科學的發展有很大的幫助,因此吳欣潔也希望,之後可以和人工智慧結合,加速數據的分析以及材料系統的研究。

基本的相圖可以告訴我們在不同的溫度與壓力時,材料的狀態變化。本圖為水的相圖。文中的相圖會再融入不同材料混合後的狀態。圖/wikipedia

用熱發電行不行?熱電材料的未來發展

吳欣潔也提及,熱電材料的研究需要跨領域的專業,例如化工、物理、電機、製成等,台灣在 2019 年成立了台灣熱電學會,希望能夠推廣熱電相關學術研究在台灣的普及,提升基礎研究與產業界的交流。

關於熱電材料未來的發展,吳教授表示,未來若能將環境中大量的廢熱回收,就能大幅度減緩溫室效應及能源耗竭的問題。在民生用途上,或許能夠在穿戴式裝置安裝熱電元件,利用人體體溫及環境的溫差來發電。

利用熱電材料製作的穿戴式智慧恆溫貼片。圖/UC San Diego

此外,吳教授說,台灣在熱電材料領域有一定的優勢,例如環境上我們有地熱溫泉,而她也認為台灣的學生相當聰明且基礎訓練佳,適合進行前端研究。在「找材料比找伴侶還難」的熱電材料領域進行研究,或許會遇到很多瓶頸,但吳教授卻說:「做研究的每天都有挫折,每天都有不盡人意的事情,但我覺得重點是從甚麼角度看待,保持樂觀、彈性的態度,就會覺得每一天都有新的發現。」

資料來源

科技大觀園_96
82 篇文章 ・ 1097 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。