0

0
1

文字

分享

0
0
1

飛起來了怎麼可能!新竹大風箏+7級風可以捲起多重的人?

PanSci_96
・2020/09/01 ・3515字 ・閱讀時間約 7 分鐘 ・SR值 520 ・七年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

飛起來了怎麼可能救命啊我不要(到底誰想要!

風箏把人捲上天的驚險意外,就發生在上月底(8/31)。2020新竹市國際風箏節原本是個開心充滿童趣的風箏嘉年華會,怎知當天活動會場南寮漁港風勢達到 7 級,一名體重約 13 公斤的 3 歲小妹妹,在巨型風箏升空之際,瞬間被風箏尾巴掃到捲上天,在空中擺盪約 30 秒才在眾人協力幫忙下安全落地。

不少家長看了這驚心動魄的影片開始擔心:「以後帶小孩到河濱放風箏,會不會也有危險啊?」這次泛科學就帶大家來算算看,多~大的風箏遇上多~大的風可能會有危險!

今天的風兒好喧囂啊!那天新竹的風+大風箏可以捲起多重的人?

就先給個答案了,以新竹市活動會場當天的7級風,若風箏(領航風箏前端+長達24公尺的尾巴)受力情況都以最極端的方式來看,其實是可以拉起 146.48 公斤重至 253 公斤重的物體的,扣掉風箏可能重約 4.5 至 5 公斤,要把成人拉上空中也不無可能。

但以上是最極端例子,除了是以風箏的「面」被風吹好吹滿的的情況下計算,再加上風箏原先設計就不是要載人用,在遭遇這麼強的風力時,風箏可能會被破壞,要能拖破百公斤重的物體(或人體)上天,還是有些難度。

看到這裡應該會好奇,到底這是怎麼算出來的對吧?在此之前我們必須先了解:風箏為何會能飛上天呢?

3歲小妹妹遭風箏捲上天空。圖/YouTube_鍾喬 joe

風箏之所以能飛起來的原因,是因為風箏的「面」被風吹後產生升力,而這股升力大於風箏本身的重力和空氣所產生的阻力時,就可以讓風箏「飛起來」。不是隨便一片布就能飛上天,風箏的形狀、重量、結構都是經過設計的。另外,放風箏的場域、風速、風向與天氣,也都會影響到風箏的飛行。

接著就到計算的重頭戲啦,多大的風箏與風速可以帶起多重的人呢?

風箏上升的力道主要跟風速,以及風箏的面積大小有很大的關係,以下應用升力公式來做點推測:

升力公式:FLρ v2 CL A 

  • FL是升力
  • ρ 為空氣密度。根據維基百科,氣溫 30 度在一般平地大氣壓力下,空氣密度約為  每平方公尺 1.16 公斤。
  • CL 為升力係數。與受風物體的材質、形狀等皆有關。無論迎風的是球體、流線體或特殊材質,都會影響此一係數。在風箏的例子上,主要隨著風箏面與風向夾角變化,範圍為 0-1 ,因為等等要計算的是讓人起飛的最大風險,會暫以最大值 1 來作計算。
  • A 為參考面積:風箏可以承風的面積。在這個案例中,計算上比較麻煩的是風箏尾巴到底要不要算進去,以及風箏尾巴隨時間的變化,會影響整個風箏的受力。
    在此處,我們知道這個風箏最有效的面積應該為 3 平方公尺,如果要加上尾巴應該最多可以算到約 20 平方公尺。
  • v 為速度,在此以風速來作計算。
領航風箏前端面積為3平方公尺,尾巴則有24公尺。圖/Youtbe_兒ㄚ麵線

如果以領航風箏前端面積 3 平方公尺作計算,在 7 級風(風速以每秒 15 公尺計)的情況下,風箏的最大受力可達 39.94 公斤重;在 5 級風(風速以每秒 9 公尺計),最大受力可達 14.38 公斤重。

實際上飛上天的重量會是小孩的體重加上風箏本身的重量。因為很難確定這次的風箏的重量,考慮到都要飛上天(?),先略約用飛行傘的資料估算一下。

單人的飛行傘傘重 4-6公斤,面積 23-32 平方公尺。以領航風箏前端 3 平方公尺加長 24 公尺寬估計 1 公尺的尾巴,總計 27 平方公尺,我們可以推測如果是類似的材質,領航風箏的重量大約 4.5- 5 公斤。無須7級風,大約 5 級風到 6 級風,就可以單憑領航風箏的前端達到讓小孩騰空的效果了。

小女孩不慎遭風箏尾巴捲上天空。圖/Youtube_兒ㄚ麵線

接下來,我們來看看那條長達 24 公尺的尾巴。它實際上很難有個正確的估計,但因為面積在此次公式裡占了很大的因素,完全不算一下有哪些效果有點說不過去。我們稍稍假設這條尾巴 24 平方公尺,但沒有完全攤平、承風的效率不太好,只達三分之一到三分之二的效果,即承風的投影面積大約為 8 到 16 平方公尺,加上前端,總面積可達 11 到19 平方公尺。

因此初估這次的領航風箏,前端加上尾巴:在 7級風的情況下,受力分別可達 146.48 公斤重到 253 公斤重(當然,風箏不是設計來載人的,有機會在捲跑人之前先被風破壞了);在 5級風的情況下,受力分別可達 52.73 公斤重到 91 公斤重;即使在 3 級風(以風速每秒4公尺計算)的情況下,受力仍可達 10 公斤重到 17.99 公斤重。

因此簡單來說,未來看到像這樣豪~大的風箏正要升空,不管風有多大,都請大家閃遠一點,注意安全距離。這個面積的風箏,在 5 級風的情況下要把大人帶上空,也是有點機會。這類風箏的操作,應該要閃遠點讓專業的來。

噢,對了!想知道 7 級風有多大嗎?套用同樣的公式可以算出,如果成年人面積以 1.5 平方公尺計,被 7 級風直吹的受力大約是 20.25 公斤重;根據氣象局,一般的成年人在 7 級風的有可能會走不穩。相信我……這樣的天氣就別放風自己,也別放風箏了吧!(除非你受過專業訓練)

那如果只是在一般在公園裡放小風箏,在怎麼樣風速下可能會有危險呢?

我們用個簡單的抓法,假設小風箏大約 1 平方公尺大,那 7 級風的受力大約可達 13.5 公斤重;6 級風(以風速每秒 12 公尺計)受力約達 8.52 公斤重;5 級風的受力約可達 4.7 公斤重。因此如果小孩放風箏,在 5、6 級風的情況下,應該不至於被風箏帶走。

但即使如此,在風速快的情況下,風箏線其實也挺危險的,還是應該要注意操作。

我在天 上 飛!那些年…曾把人舉高高的風箏們

這次的事件是個意外,但古往今來其實不少人想透過風箏讓人在天上飛。

比如說在1886年《科學美國人》上便有一篇報導,描述一位法國人梅洛(Marcel Maillot)如何透過超巨大風箏(面積約為71平方公尺,風箏重113公斤)舉起了重達150磅(相當於68公斤)的沙包。

圖/科學美國人

前述的實驗相當含蓄地使用沙包當人,而在更早些年則有發明家拿自己的子女當做實驗對象。

1824年發明家波卡克( George Pocock)用寬9公尺的風箏和椅子分別把他的女兒和兒子送到82公尺和60公尺左右的高空;然後在證明風箏可以把人舉高高之後,便設計出了「風箏馬車(Charvolant)」:一種不用透過馬匹,而是透過風箏拉動的馬車。由於在當時過路費是根據馬匹數量收取的,因此這種馬車便可以不用被徵收過路費呢!儘管如此,但它實在太難操作因此根本沒有什麼人使用。

圖/wikiwand

除此之外,還有把載人風爭當成偵查工具、當作飛機升力來源⋯⋯等等,完全感受到人類想擺脫地心引力的糾纏真的是無所不用其極啊。

我也知道~凹,天空多美妙。燕姿沒教你的放風箏秘訣!

雖然這次的意外並不是幼童放風箏所引起的,但多多少少內心會有「那到底該怎樣放風箏才安全?」的疑問。雖然放風箏一時爽,但在放風箏之前功課是要做好做滿的。

首先是要選擇適合的場地,必須要是開闊、空曠、人少的場域,周遭不要有建築物、樹木或者是起起伏伏的山丘。一方面是避免風箏勾到其他物體,另一方面是這樣風向也會相對穩定。

場地確認了,接下來就等風起吧!風速是風箏能不能飛高高的重要因素。雖然不同結構的風箏可能最適的風速也不盡相同,但大概2~4級風是最合適的。有些輕量風箏在室內走動的風都能起飛,也有些大型風箏需要6~7級的強風才能起飛。

放風箏最好選擇空曠的地方。圖/pexels

天氣也很重要,像是在雷電交加的夜晚放風箏的富蘭克林就是個放風箏的錯誤示範,一方面下雨會打濕風箏,讓風箏不好飛起,另一方面也有被雷擊的風險。

放風箏的時候也最好攜帶帳篷釘可以把風箏固定在地上,另外也要帶好能保護手的手套,以免拉動風箏時被風箏線給割傷。

風箏及其衍生的各項娛樂活動相當多,只要多一些準備就能少一點意外的發生,好好享受那迎風飛起時的暢快吧!

參考資料:

___________
你是國中生或家有國中生或正在教國中生?
科學生跟著課程進度每週更新科學文章並搭配測驗。來科學生陪你一起唸科學!

文章難易度

0

4
2

文字

分享

0
4
2
柔軟的導電革命:前所未見的無序高分子導體
linjunJR_96
・2022/12/30 ・1995字 ・閱讀時間約 4 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

只有金屬會導電?

怎麼樣的材料能導電?這個問題的答案或許將永遠改寫。

怎麼樣的材料能導電?金屬?這個問題的答案或許將永遠改寫。圖/pexels

芝加哥大學的研究團隊發現了一種新的合成材料,擁有塑膠般柔軟的非晶體結構,同時又有金屬般的導電性質。

講到導體,首先會想到的是老字號的金屬家族。金銀銅鐵這類材料是由單一金屬原子排列成整齊的晶格,自由電子可以穿梭其中。大約從十八世紀開始,科學家便知道常見的金屬可以用來傳導電荷,並將物質分為導體和橡膠這類的絕緣體。利用金屬電纜和元件,人們打造了公共電力網和電力火車頭,將人類社會帶進了電氣時代。

利用金屬電纜和元件,人們打造了公共電力網和電力火車頭,將人類社會帶進了電氣時代。圖/pexels

相隔許久後,二十世紀後半幾次意外的實驗讓科學家發現聚乙炔這種高分子聚合物在摻雜了些許碘原子之後,也能表現出良好的導電性。這完全顛覆了人們對於導體的認知:

原來除了金屬材料之外,塑膠聚合物也可以作為導體。

和傳統無機材料比起來,導電聚合物的製程簡單便宜,也有較好的可塑性,被俗稱為「導電塑膠」。這種突破性的材料帶來了新一波的電子產品,像是有機發光二極體(OLED)螢幕、有機太陽能電池、以及有機半導體科技等等。

儘管有著導電塑膠的響亮名號,但是導電聚合物和金屬導體一樣,都有緊密整齊的晶格結構,讓特定能量的電子可以順暢地流通。事實上,現代的固態理論認定固態材料必須要有這些整齊排列的晶格,才能有效地傳導電力。像是玻璃、黏土、橡膠這些結構無序的非晶體材料則肯定無法導電。

從左到右分別是有序的晶體、無序的非晶體、和氣體。圖/ Encyclopædia Britannica

再一次超越想像,無序材料也能導電

不過芝加哥大學博士生 Jiaze Xie(現為普林斯頓大學博士後研究員)近期發現了另外一種可能性。他選擇了 TTFtt 這種高分子作為嘗試的目標。TTF 結構本身在數年前就已經被發現可以作為導電高分子的組成單元,但因為合成技術困難,並沒有受到研究圈的關注。Jiaze Xie 將鎳原子鑲在碳原子和硫原子組成的長鏈上,合成出全新的 NiTTFtt,開始了一系列的實驗。

在實驗室中,NiTTFtt 展現了不錯的導電性。但最令人驚訝的是,X 射線繞射結果顯示它的分子結構是無序的,沒有整齊的晶格結構。它是一種理論上不該存在的「無序高分子」導體。

事實上,NiTTFtt 的質地就像是小朋友的玩具黏土一樣,只要將一坨 NiTTFtt 黏在電路上,就可以開始導電。這表示它有著幾乎無人能敵的可塑性。除此之外,它還十分的穩定。實驗人員將它加熱到攝氏兩百多度、放在潮濕的空氣中幾十天、在它身上滴強酸強鹼,想盡各種方式考驗它,但它的導電性在各種條件下幾乎都能保持穩定,顯示其實際應用的潛力不容小覷。

這種被現有理論排除的材料為什麼有辦法存在呢?研究團隊利用掃描式電子顯微鏡和 X 光繞射的探測結果建構出了下圖的原子結構模型,企圖對這種前所未見的材料提出解釋。

每個綠色的鎳原子為基準可以看出一個個扁平的組成單元,他們首先組成長長的一維長條。圖/參考資料

以每個綠色的鎳原子為基準可以看出一個個扁平的組成單元。他們首先組成長長的一維長條(左),平行堆疊成千層派一樣的結構(中),並橫向排列形成立體的材料(右)。注意到每個長條排列的方向雖然一樣,但是並不需要有規律的秩序。

透過理論計算和電腦模擬,研究團隊發現長條之間即使經過平移或是扭曲,電子活動的範圍還是能維持足夠的重疊,讓電子能夠穿過不規則排列的千層派結構。也就是說,NiTTFtt 的特殊原子結構使得其導電性能在非結晶結構下屹立不搖。

獨一無二的特性,或許可以帶來更多的突破

NiTTFtt 獨一無二的材料性質顛覆了固態物理的既有認知,讓這份研究登上了《自然》期刊。由於電子產品是如此無所不在,任何關於導電材料的發展都會帶來無限的可能性。NiTTFtt 的可塑性以及耐溫耐濕耐酸鹼的超人特性開啟了許多傳統導體無法想像的機會。

研究團隊向全世界示範了有機分子只要有適當的結構,就可以在非結晶排列下維持金屬般的導體性質。他們也期待「無序高分子」導體能夠像金屬導體和導電聚合物兩位大前輩一樣,為人類社會帶來革命性的科技突破。

參考資料

linjunJR_96
33 篇文章 ・ 569 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

3
6

文字

分享

0
3
6
油炸的聲音學:水滴在油鍋中的三種爆炸方式
linjunJR_96
・2022/12/28 ・2397字 ・閱讀時間約 4 分鐘

廚房小秘訣:用竹筷試油溫,原理是什麼?

傳統的烹飪智慧告訴我們,要判別油鍋的溫度不需要溫度計,只要插入油鍋的竹筷周圍開始浮現細小的氣泡,便表示油鍋溫度已達,可以開始放入食材。另外,煎牛排或是炒菜時,如果在食材下鍋的當下沒有聽到美味的滋滋聲,通常便表示溫度太低,無法做出漂亮的料理。

在廚房中,我們時常可以靠耳朵來測量溫度。這些氣泡和相應的 嗶啵聲來自於筷子(或食材)中的水分碰到滾燙的油鍋時,瞬間蒸發產生的微小爆炸。

傳統的烹飪智慧告訴我們,要判別油鍋的溫度不需要溫度計。圖/pexels

猶他州立大學機械航太工程系的木山景仁(Akihito Kiyama)對這個現象很有興趣,拿起高速攝影機和麥克風紀錄了竹筷插入熱油中的事件,希望能仔細觀察熱油中的劇烈反應。出乎意料的是,他發現油鍋中的水滴在爆破時有三種主要的型態,各個所產生的氣泡形狀及爆破聲音都非常特別。

做為一個初步實驗,他首先直接將浸過水的竹筷插入高溫油鍋內。下圖可以看到氣泡的數量和大小都明顯和溫度成正相關,看來流傳許久的廚房秘訣沒有讓我們失望。

可以看到氣泡的數量和大小都明顯和溫度成正相關。圖/作者提供

此外,他也觀察到氣泡數量和筷子中的含水量有明顯的關聯,沒有事先浸水的竹筷產生的氣泡少很多。另一方面,若是改用乾燥的金屬筷則不會觀察到任何氣泡,因為當中幾乎沒有任何水分。

顯然的,水分多寡是重點。但由於每雙竹筷的組成與含水量較難控制,研究團隊改用一條兩端懸掛的U形鐵絲,浸水後連著底部沾黏的水珠一同緩緩放入熱油中,等同於是在油炸一顆水珠,將實驗聚焦在水滴帶來的氣泡爆破。

氣泡的三種型態

利用每秒一萬張的高速攝影以及近距離收音的麥克風,研究團隊企圖進一步觀察爆破過程的細節以及產生的聲音特性。

根據爆炸時的不同深度,他觀察到三種氣泡型態:

第一種是爆破型氣泡。當水滴幾乎一接觸到油面就蒸發膨脹,引發一個凸出油面的圓形氣泡。最後在破裂時噴濺出大量的油滴。

爆破型氣泡。影/作者提供

第二種的拉長型氣泡在較深的位置才開始膨脹,因此沒有造成液面破裂,反而是朝上射出高高的柱狀熱油,同時氣泡則向下延伸形成一個長形的空氣室。

拉長型氣泡。影/作者提供

爆破型和拉長型氣泡的聲音雖然聽起來不太一樣,但是頻率特徵基本上大同小異,都是 1400 的赫茲清脆爆破聲響。值得一提的是,在這兩種情況下爆破聲響都不是來自油面上可見的泡泡破裂。從高速影像和錄音結果的比對可以發現,聲音的最大值明顯出現在泡泡破掉前的膨脹階段。此時的高溫蒸氣快速膨脹,劇烈壓力改變帶來空氣震波,基本上和空氣中炸彈發聲的原理一模一樣。因此說這些氣泡正在「爆炸」可是一點都不誇張。

除了上面兩種氣泡之外,當水珠意外從鐵絲上滑落掉入熱油中,研究人員發現了第三種與眾不同的表現:震盪型氣泡。由於掉落速度較快,水珠一直到較深的位置才開始汽化膨脹,並在液體表面下進行每秒數百次的膨脹收縮,過程持續了幾毫秒,最後消散成數個小氣泡。

震盪型氣泡。影/作者提供

儘管沒有明顯的噴濺或爆破,震盪型氣泡仍然會引發聲響,但聽起來似乎和前面兩者不太一樣,持續時間也較久。仔細一看,聲響的主要頻率竟然和高速影片中氣泡膨脹收縮的頻率不謀而合,都在 800 赫茲左右。研究人員因此推測,震盪型氣泡產生的聲響其實是來自於油面下的高速震盪。

研從上到下分別是爆破型、拉長型、震盪型氣泡。
圖/作者提供

關於震盪行為的起源,研究人員沒有提出直接的解釋。不過他們同時觀察到另一個有趣的現象:氣泡在下方高速震盪時會對熱油表面造成擾動,讓某些原本浮在油面相安無事的小氣泡破裂並噴濺。這顯示熱油表面的氣泡對於物理擾動十分敏感,可能也是造成廚房中熱油噴濺的主要原因之一。

這三種型態,不限於油鍋

說到這,有一個重要的問題還沒問:這三種氣泡的形態和油溫高低有沒有關係呢?也就是,我們能不能用不同的氣泡型態或爆炸音高來判別油溫高低?研究人員嘗試了 170 度到 220 度的常見油溫,發現三種氣泡型態在各種溫度都有機會出現。油溫的最佳判準,或許還是簡單的一根竹筷。

這次研究的眼光也不僅止於家中的廚房。大自然中的液面噴濺,例如海邊拍打的浪花還有火山爆發時的熔岩,會產生懸浮於空中的液體微粒,也就是氣溶膠(Aerosol)。不論是天然還是人工製造氣溶膠,都對環境有很大的影響。來自海浪的海洋氣溶膠主宰了全球氣候,而人為排放的氣溶膠則是我們看到灰濛濛的空氣汙染。

木山景仁和他的團隊希望透過這次研究辨明不同的氣泡種類與相對應的聲音特徵,用於發展音訊偵測技術來監控熱油噴濺或是氣溶膠形成的過程。

下方是研究團隊製作的精華影片,收錄了各種溫度下的竹筷氣泡以及三種氣泡型態的聲響,讓讀者親耳體驗油炸食物的美妙聲響。

各種溫度下的竹筷氣泡以及三種氣泡型態的聲響。影/Youtube

參考資料

linjunJR_96
33 篇文章 ・ 569 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

2

2
0

文字

分享

2
2
0
蟻巢營養內循環,螞蟻的蛹不動也能貢獻社會
寒波_96
・2022/12/20 ・2477字 ・閱讀時間約 5 分鐘

人類對螞蟻可謂無比熟悉,許多人還不識字就認識螞蟻了;相關的科學研究也十分豐富,產出如威爾森(E. O. Wilson)這類科學大師。2022 年底問世的一篇論文,卻出乎意料地報告一條普遍存在,此前卻一直受到忽視的現象:

螞蟻的蛹會分泌液體,作為成蟲與幼蟲的營養液。

圖/drawception

螞蟻社會的內循環營養液

螞蟻是完全變態的昆蟲,有卵、幼蟲、蛹、成蟲 4 個階段。眾所皆知螞蟻是社會性昆蟲,整個蟻巢運轉精密,但是蛹有好幾天固定不動,除了佔空間以外,在蟻巢裡好像沒什麼存在感。

這項研究主要的對象是畢氏粗角蟻 (Ooceraea biroi) ,近年成為探索螞蟻奧秘的主力。照論文的寫法,一開始目的很單純,就是把蛹從蟻巢中移出,看看孤獨對螞蟻有什麼影響。

被移出巢穴的蛹,羽化成蟲的比例有 90% ;即使周圍沒有同儕,絕大部分的蛹似乎也能成功轉大蟲。然而過程沒這麼簡單。

將螞蟻的蛹由巢中取出,搜集分泌液體的裝置。羽化前幾天,蛹會由白轉而黑化,羽化前 6 天開始分泌液體。圖/參考資料 1

蛹在成功羽化的前幾天會黑化,論文觀察到當蛹開始黑化不久,也就是羽化的 6 天之前,每天都會分泌出液體。留著液體會害蛹被自己淹死,人為將液體移除,蛹才能順利羽化。

如果是在原本的蟻巢中,蛹排放的液體還來不及把自己淹死,就會慘遭黴菌入侵感染而亡。所幸慘劇實際上不會發生,因為成年螞蟻會將液體去除。

將藍色染劑注入蛹,一天後觀察到成蟻的消化道都出現藍染,可見蛹產生的液體,都隨即轉移進入前輩同儕的肚子。分析蛹產生的液體,得知營養十分豐富。

把食用藍色染料注入蛹,便可觀察蛹分泌液體的轉移。圖/參考資料 1

完全變態的昆蟲,從幼蟲到成蟲的過程中經過蛹的階段,將幼年的身體砍掉重練。螞蟻蛹分泌的液體顯然來自蛹期分解的身體,可謂原汁原味的液化螞蟻。這些容易吸收的成分,在巢穴中直接轉移給同類,毫不浪費。

這些幼體原汁原味形成的液體營養豐富,其他會化蛹的昆蟲也會產生類似的產物,為什麼不會把自己淹死,或是被黴菌感染?應該是由於那些昆蟲會將其回收利用,轉化為成年身體的建材。社會性生活的螞蟻卻是直接排放出去,變成其他個體的食物。

同時餵養更老與更小的同儕

成年螞蟻以外,蛹產生的液體也是寶寶的營養補充液。螞蟻幼蟲移動能力有限,成年螞蟻會將寶寶放到蛹的旁邊,方便它們液來伸口。沒有液體也能正常長大,不過有得吃的幼體,生長速度更快、存活率更高。

幼蟲破蛋出生的之後一天,蛹也開始分泌液體。圖/參考資料 1

近來在台灣出名的紅火蟻(Solenopsis invicta)雖然兇狠,卻也是畢氏粗角蟻的菜單美食之一。有個實驗是給予紅火蟻和蛹,讓成年蟻選擇,結果大部份都優先將寶寶放在蛹旁邊,可見它們認為蛹提供的善液,是更佳的育幼食品。

換句話說,螞蟻在幼年階段到成年之間的蛹,同時支持更老與更小的同儕。

奧妙還不僅如此,和一般印象不同,畢氏粗角蟻沒有特定蟻后,也缺乏男生,所有成員皆為工蟻,再透過孤雌生殖進入生殖時期。

奇妙的是,蟻巢中處於不同階段的螞蟻,時程非常協調。當卵孵化出寶寶的一天後,蛹也開始分泌液體。也就是說寶寶從出生以後,馬上就能獲得營養補充液,概念實在很像哺乳動物的哺乳。

檢視螞蟻大家族 5 大群各自的代表,都觀察到蛹分泌類似的液體。圖/參考資料 1

畢氏粗角蟻只是一種螞蟻,論文還調查螞蟻分類上其他 4 大群的成員,發現各種螞蟻的蛹都會分泌液體,而且內容物極為相似。由此推敲,這是螞蟻大家族的普遍現象,可能在眾蟻尚未分家之前已經存在。

螞蟻巢穴的內部循環如此協調,充分反映出社會性昆蟲的優點,但是同為社會性昆蟲的蜜蜂沒有。這應該是螞蟻演化為社會性的重要一步,卻不是其他社會性昆蟲的特徵。

想來也很奇妙。人們對螞蟻很熟,研究螞蟻、養螞蟻的人一大堆,可是這回報告的現象儘管普遍,卻只是首度被明確指出。我猜以前應該有人發現這件事,只是沒有深入鑽研。

等待探討的問題,無所不在,只要有心。

延伸閱讀

參考資料

  1. Snir, O., Alwaseem, H., Heissel, S., Sharma, A., Valdés-Rodríguez, S., Carroll, T. S., … & Kronauer, D. J. (2022). The pupal moulting fluid has evolved social functions in ants. Nature, 1-7.
  2. A fluid role in ant society as adults give larvae ‘milk’ from pupae
  3. Anatomy of a superorganism: Ant pupae secrete fluid as ‘milk’ to nurture young larvae
  4. Pupating ants make milk — and scientists only just noticed

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 2
寒波_96
178 篇文章 ・ 703 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。