0

7
4

文字

分享

0
7
4

三峽大壩即將潰壩?從工程師的觀點看關於水庫的流言蜚語

活躍星系核_96
・2020/08/12 ・5814字 ・閱讀時間約 12 分鐘 ・SR值 555 ・八年級

  • 作者/梁崇淵│普渡大學博士生、游景雲│台大土木系教授

今年以來中國長江地區累計降雨量和持續時間都陸續超過 1998 年洪災紀錄,其中三峽大壩一再傳出潰壩的疑慮,再加上過去三峽大壩變形的傳言,外界多有揣測,我們或許可以從現有的資訊去分析目前的狀態,但受限於資訊取得限制,不免有隔空問診抓藥的疑慮。不過從土木水利工程師的觀點,從這個案例也可以讓我們去瞭解水庫跟壩的一些相關議題。

水庫?大壩?傻傻分不清楚?

在討論之前,我們先釐清什麼是「水庫」。水庫是指以結構體所圍起可供水資源調節之蓄水範圍及設施,過往多用於蓄水灌溉以應對乾涸時期,現代水庫具有多元的功能,以蓄水、給水、發電、調節洪水為主,且常因生態資源豐富及景觀壯闊,而成為著名觀光景點,像是台灣的石門、翡翠、曾文水庫等。而把水攔蓄的結構體就是「壩」,比如說美國的佛壩(Hoover Dam)攔蓄形成米德湖(Lake Mead),前者是壩而後者則是水庫。

壩體依照建築材料及結構形式可分為重力壩、土石壩及拱壩,功能的話有蓄水壩、攔砂壩。 一般人常說「水壩」一詞實為誤用,但語言有其生命與積非成是的特性,口語上也越來越不予區分或深究。

-----廣告,請繼續往下閱讀-----

我們常講的潰壩主要是在說蓄水結構體在短時間破壞的一個現象,而破壞後,攔蓄的大量水體往下游以洪水波的形式傳遞,會遠超過河川的防洪流量,往往造成相當大的生命財產的損失,避免潰壩的發生絕對是工程設計上首要考量。 「潰壩」是指壩的破壞,破壞原因有許許多多,破壞與壩的形式有相當的關係。一般而言常見的主要形式有土石壩(earth and rockfill dam)、重力壩(gravity dam)、拱壩(arch dam)等。 「土石壩」顧名思義即是以土、砂、石為主要材料建築而成的壩體,也是目前大部分最常見的形式,主要利用土石的重力以及彼此之間的摩擦力來抵抗隨水位增加而帶來的沉重水壓,因水壓與水深成正比,所以土石壩多設計為頭細底厚的梯形剖面,以確保底部可以支撐住較大的水壓。土石壩以土砂、石頭作為材料,可以從壩址及集水區取得大部分的材料,雖然建造過程需經過多次夯實及壓密,但沒有像混凝土一樣有澆灌、凝固的過程,施工成本較低。但土石顆粒之間仍會有一定的空隙,因此平時有水滲透壩體是很正常的,臺灣著名的石門水庫及曾文水庫主壩體便是土石壩。

石門水庫。圖/wikipedia

「重力壩」是以地面對壩體重力的反作用力產生的力矩來抵抗水平方向水壓的力矩,因此其結構穩定度主要由其重力大小決定,故稱為重力壩。其形狀多設計為面對上游蓄水面為垂直牆,面對下游為斜面,使得重心偏向上游而產生與水壓力相反旋轉之力矩(如下圖)。重力壩多以整體混凝土或鋼筋混凝土為材料構築。

重力壩力平衡示意圖。圖/改自 Rogers et al., 2007

「拱壩」以凸面朝向上游之曲面結構支撐水壓力,其原理與拱橋相同,藉由混凝土有抗壓的特性,以曲面特性將作用力傳導至兩旁作為支撐的岩壁。因支撐點需承受傳遞而來的力十分龐大,所以只能建築於堅固的岩壁之上,寬度也受此因素限制。拱壩若設計良好則穩定性極佳,且可減少壩體厚度,以較少的材料達到所需強度。然而拱壩的力學機制較為複雜,曲面在施工上相較方形不易許多,因此不論是在設計或是施工上皆需要較高的成本作縝密的規劃[8]。

卡采大壩(Katse Dam),是一座水泥拱壩。圖/wikipedia

在了解壩的形式後,排除人為方式破壞壩體的案例,大量洪水造成溢頂(overtopping)是最常見的潰壩方式,意思就是進水庫的水太快太急結果來不及排掉造成水淹壩頂而沖壞。為了防止這個因素,水庫除了有攔水的壩體之外,都會在壩體上或在另外設有溢洪道來洩洪。但如不幸在庫區滿載的情況下仍是進水量大於出水量能,水位持續上升超過壩高就會造成溢頂, 一般來說溢洪道的設計容量會用最大可能降水(Probable Maximum Precipitation, PMP)跟最大可能洪水(Probable Maximum Flood, PMF)做設計,但雖說是最大可能,但不是沒有可能超過,只是機率很低,根據研究分析可能是幾千分之一的機率。

-----廣告,請繼續往下閱讀-----
鯉魚潭水庫溢洪道溢流狀況。圖/水利署

溢頂會造成怎樣的影響呢?其對土石壩跟重力壩都是十分致命的。水流快速的流過壩頂會造成沖刷,也會因為負壓而將砂土吸起,並且水與砂之前的黏滯力會帶走被吸起的土砂,壩頂被沖蝕之後會通水截面擴大使得流速流量持續增加整個造成潰壩。重力壩雖壩體主要為混凝土,不會像土石壩一樣被水沖蝕,但水流溢頂將沖刷下游的基腳,使得原本支持土壤鬆動甚至被淘刷,而無法提供足夠的反作用力無法維持力平衡或力矩平衡,造成壩體位移變形終至結構破壞。拱壩將水壓力傳導到兩旁岩壁上,其力平衡方式與重力壩不同,因此只要壩體結構完整,兩旁的岩壁沒有被沖刷或破壞,拱壩仍能立於峽谷之間,溢頂對拱壩的威脅性相較其他種類的壩低了許多。

另外一個對於土石壩比較的的威脅是「滲流」,如果土石壩夯實不實,在土石空隙間有比較快的水流通過,也會造成負壓,把土石帶走,這也是工程說的管湧(piping)現象,管湧如發生於土石壩,則可能造成土石壩整個被沖走;管湧不太會發生在混凝土重力壩體,但如果發生壩的基礎面,則可能造成基礎破壞摩擦阻力之降低而引起壩之滑動或沈陷。

鑑古知今,過去的潰壩案例

大致了解了壩的形式後,可以來看看過去有哪些潰壩案例。讀者也可以在 wiki 中文條目的水壩潰決或英文的 dam failure 上找到蠻完整的整理。 國際上幾個比較受到注目的潰壩事件像是美國的 Teton Dam、Baldwin Hills Dam 都是土石壩發生管湧造成整個壩體沖走的案例,Youtube 上也可以找到紀錄的影片。

另外一個有趣的案例是義大利的 Vajont Dam,它是一個拱壩而上游的大量土石崩塌掉到水庫裡,造成強烈庫湧浪滿溢出來造成下游近 2000 人的死亡,到 2015年的歐洲地球科學年會(EGU,European Geosciences Union General Assembly )才完整的討論出其崩塌成因,由於是拱壩的關係,整個壩體仍然屹立無虞。

-----廣告,請繼續往下閱讀-----

台灣過去也有些案例,1999 年 9 月 21 日集集大地震,車籠埔斷層瞬間錯動抬升地面,直接剪斷石岡壩結構體造成閘門扭曲變形(如下圖),但石岡壩是 18 個獨立單元的混凝土重力壩,因此即使十多公尺的地表變形落差造成 16、17、18 號溢洪道閘門毀損,閘門傳動軸變形,南幹線輸水隧損壞,其他部分仍維持相當的完整性。破壞發生後管理局就將水庫蓄水緊急溢洪以避免後續的損壞。另外一個較為少人知道的案例是 2007 年 9 月 17 日韋帕颱風侵襲臺灣,雖未造成嚴重水患,但連日豪雨淘刷地基之下,使得位於石門水庫上游的大型攔砂壩巴陵壩潰壩,其攔蓄之泥砂向下游流動由榮華壩承接,使其在 2012 年左右就接近淤滿。

石岡壩 921 地震損壞情形。圖/石岡壩管理中心
巴陵壩潰壩前情形。 圖/96 年韋帕颱風重大土砂災情速報
巴陵壩潰壩後情形。圖/96 年韋帕颱風重大土砂災情速報

一般而言,大壩建成後幾年都是破壞機率比較高的時候,因為如果營建時就有一些施工缺失,很快的就會造成相關破壞風險,因此水庫在初期都會先逐步蓄水、放水,然後透過監測儀器像是水壓計、應變計、傾斜儀等去觀察壩體有無異狀,幾年過去之後壩體會逐漸穩定,風險也會較低,埋在壩體內的一些儀器也會逐漸損壞失效,後續就會透過例行的大壩安全檢查來降低風險,到水庫老化後風險才又逐漸增加。 另外水庫淤滿是否會有相關風險,主要是取決設計時候有無考量,砂淤滿在上游面會增加對於壩體的土壓力,如果當初設計就有考量下,基本上較不會有相關問題,一般攔砂壩都會考慮蓄滿狀況,因此也較少有因為蓄滿把壩體推動或推倒的案例。

所以三峽大壩會潰壩嗎?

三峽大壩。圖/wikipedia

回到大家關心的問題三峽大壩,從資料可以知道它是混凝土重力壩,最大壩高 181 公尺、壩長約 2335 公尺。全世界對於中國的大國崛起都有很複雜情感,難免會影響我們的判斷。前些日子不少新聞指出三峽大壩可能有潰壩的風險,主要的論述有 Google Earth 衛星影像可觀察到明顯壩體變形,以及水位已達防洪汛制水位等,官方說明有滲漏變形等,我們就各個問題一一來討論。

問題一:三峽大壩有變形嗎?

三峽大壩是否有變形?目前在其他的衛星影像中並壩體尚屬完整,推測其影像中明顯變形為 Google Earth 衛星影像拍攝與接合處的誤差造成[6]。但三峽大壩是由混凝土構築而成的,混凝土是有彈性的,所以受到不同水壓力是會有彈性應變,但根據相關分析是沒有到破壞程度。

-----廣告,請繼續往下閱讀-----

問題二:三峽大壩最近蓄水超過汛限水位 145 公尺,是不是不太妙?

按照目前各國水庫的操作,一般而言在汛期間會有較低的防洪水位規線,以空出空間滯蓄洪水。 根據中國水利電力部 1996 年發佈的 DL / T5015—1996《水利水電工程動能設計規範》,規定水庫特徵水位有正常蓄水位、防洪限制水位、防洪高水位、設計洪水位、校核洪水位等。臺灣媒體提到的「防洪限制水位」在規範中定義為:「為防範汛期之洪水,水庫在汛期前應就水位調整至『防洪限制水位』,以空出足夠的庫容攔蓄洪水」。

也就是說「校核洪水位」才是中國水庫的最大設計蓄水高度。 由三峽大壩水位來看,其防洪限制水位為 145 公尺,校核洪水位為 180.4 公尺,三峽大壩平常非洪水期間蓄水量也可以到 170 公尺以上,因此汛期操作時略為高出汛限水位到達 150 公尺或更高,其實並不會對於水庫有重大影響或風險。

問題三:三峽大壩會有溢頂的可能嗎?

我們可以先看該地區相關的降雨流量資料,相關資料可以從長江水文網查到:由入庫及洩洪水量來看,近日三峽大壩的入流量約在每秒 2 萬噸至 3 萬噸之間,而過去較高的時候也大概是 4 萬噸每秒左右,相較於其設計最大溢洪量為每秒 11.6 萬噸來說,是低於其數值的。因此,在沒有結構問題或是人為不當操作的情況下,依照目前水位及水量數字與設計容量,三峽大壩在 2020 年的長江洪患中面臨潰壩的風險是非常低的。

同場加問:三峽大壩的其他爭議?

與三峽大壩有關的討論還有像是:施工品質不良、技術不足、管理不當等等;如前所言,如果壩體已有瑕疵,其實在初期就會有相當程度的損壞機率,也就是說到操作十多年後才顯現的機會不大。但目前外界取得資料的可信度如何,或是有什麼被隱瞞未被呈現的,這部分也無法證實,也難作為直指大壩危在旦夕的立基。

-----廣告,請繼續往下閱讀-----

讓水庫免於潰壩該怎麼做?

三峽大壩是不是一定會潰壩?或是一定不會潰壩?答案都是否定的。 土木水利工程師的工作常在風險與成本間取捨,就如一個工程界的玩笑話:「我們什麼都可以蓋得出來,只看業主願意付多少錢。」。然而,面對潰壩的風險,常常是千分之一、萬分之一的風險,如果對應的是巨大社會經濟損失,就好比是一個很大的數字乘上很小的數字,那麼期望值到底是無限小或無限大?對於決策上的判斷,這都是非常困難的問題。

過去研究團隊在國際期刊討論面對潰壩、核災的因應策略[2]。內容提到:目前工程上都是儘量在合理範圍內降低風險,以保障人民生命財產安全,然如果人民期待的是絕對安全的基礎建設,事實上是相當不切實際的。 水庫是水資源利用的重要工程設施,近年來暴雨有時間集中且強度增加的趨勢,對水庫防洪形成更大的威脅。山坡土砂造成的淤積會使得庫容減少而失去調節的空間,例如石門、曾文水庫的淤積,近幾十年都是我國政府面臨處理的挑戰。在設計水庫時規劃排砂道,或是日後再增設,都只能減緩水庫淤滿的危機,這也代表在集水區上游做好水土保持以及攔砂設施等保育措施,日趨重要。

在水資源更難控制,洪水日益頻繁的未來,如何永續的利用、操作水庫,反而會是重要的課題。  

-----廣告,請繼續往下閱讀-----
  1. 1996, D. T. 水利水电工程动能设计规范 [S] (Doctoral dissertation).
  2. Lee, B. S., & You, G. J. Y. (2013). An assessment of long-term overtopping risk and optimal termination time of dam under climate change. Journal of environmental management, 121, 57-71.
  3. Rogers, J. & Rock, Frank & Owen, Jeff & Watkins, Conor & Kane, William & Bell, Mike. (2007). The 1928 St. Francis Dam Failure and the 1995/2005 La Conchita Landslides: The Emergence of Engineering Geology and Its Continuing Role in Protecting Society.
  4. Young, R. A., & Loomis, J. B. (2014). Determining the economic value of water: concepts and methods. Routledge.
  5. 王維洛. (2010). 天下第一门给三峡工程带来天下第一问题──三峡工程论证和建设目标中的自相矛盾, http://sanxia2008.org/content.aspx?z=465&f=29&s=71&t=1.
  6. 林建勳. (2020). 三峽大壩潰堤傳言不斷 雨下整月中國災民破千萬. 公視#P新聞研究室. https://newslab.pts.org.tw/news/239?fbclid=IwAR3PR3IrGf2D11w_5eYbkIpjLES6Jl1NB-Gu76zOy5elRIcwrlSI8L3qtwA
  7. 梁惠儀, 林伯勳, 吳毓華, 卡艾瑋, & 冀樹勇. (2013). 巴陵壩潰壩後對於石門水庫上游集水區河相變遷及沖淤演變影響模擬. 中興工程, (119), 19-30.
  8. 陳鵬元. (2016). 認識拱壩以及其簡易分析(Introduction and simple analysis of arch dams), https://highscope.ch.ntu.edu.tw/wordpress/?p=70442.
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
「別來無恙」不只是招呼
顯微觀點_96
・2025/04/12 ・2349字 ・閱讀時間約 4 分鐘

本文轉載自顯微觀點

圖/照護線上

我最親愛的 你過的怎麼樣  沒我的日子 你別來無恙   -張惠妹《我最親愛的》

常常聽到「別來無恙」的問候,其中的「恙」就是指「恙蟲」。在唐朝顏師古的《匡謬正俗》一書中便提到:「恙,噬人蟲也,善食人心。古者草居,多移此害,故相問勞,曰無恙。」用以關心久未見面的朋友沒有染讓恙蟲病、一切安好。

而清明節一到,衛福部疾管署便會提醒民眾上山掃墓或是趁連假到戶外踏青,要小心「恙蟲病」,就是因為每年恙蟲病的病例數從4、5月,也就是清明假期左右開始上升;到6、7月達最高峰。

Qingming Or Ching Ming Festival, Also Known As Tomb Sweeping Day In English, A Traditional Chinese Festival Vector Illustration.
圖/照護線上

但恙蟲病到底是什麼樣的疾病呢?恙蟲病古時被稱為沙虱,早在晉朝葛洪所著的醫書《肘後方》提及,「初得之,皮上正赤,如小豆黍米粟粒;以手摩赤上,痛如刺。三日之後,令百節強,疼痛寒熱,赤上發瘡。」

-----廣告,請繼續往下閱讀-----

恙蟲病是一種病媒傳播的人畜共通傳染病,致病原為恙蟲病立克次體(Orientia tsutsugamushi或Rickettsia tsutsugamushi),被具傳染性的恙蟎叮咬,經由其唾液使人類感染立克次體。而感染立克次體的恙蟎,會經由卵性遺傳代傳立克次體,並在每個發育期中,包括卵、幼蟲、若蟲、成蟲各階段均保有立克次體,成為永久性感染。

感染恙蟲病可能引起危及生命的發燒感染。常見症狀為猝發且持續性高燒、頭痛、背痛、惡寒、盜汗、淋巴結腫大;恙蟎叮咬處出現無痛性的焦痂、一週後皮膚出現紅色斑狀丘疹,有時會併發肺炎或肝功能異常。 恙蟲病的已知分佈範圍不斷擴大,大多數疾病發生在南亞和東亞以及環太平洋地區的部分地區;台灣則以花東地區、澎湖縣及高雄市為主要流行區。

比細菌還小的立克次體

立克次體算是格蘭氏陰性菌,有細胞壁,無鞭毛,革蘭氏染色呈陰性。但它雖然是細菌,但是嚴格來說,更像是細胞內寄生生命體,生態特徵多和病毒一樣。例如不能在培養基培養、可以藉由陶瓷過濾器過濾、只能在動物細胞內寄生繁殖等。大小介於細菌和病毒之間,呈球狀或接近球形的短小桿狀直徑只有0.3-1μm,小於絕大多數細菌。

最早發現的立克次體感染症的是洛磯山斑疹熱(Rocky mountain spotted fever);由美國病理學家立克次(Howard Taylor Ricketts,1871-1910)所發現。

-----廣告,請繼續往下閱讀-----

1906年立克次到蒙大拿州度假,發現當地正在流行一種叫做洛磯山斑疹熱的傳染病,病患會出現頭痛、肌肉痛、關節疼痛的症狀,之後皮膚會出現出血性斑塊。當時沒有人知道是什麼原因造成這個疾病。

立克次一開始以顯微鏡觀察病患血液,發現一種接近球形的短小桿菌,但卻無法體外培養。而他將帶有「短小桿菌」的血液注射進天竺鼠體內,或是以壁蝨吸食患者血液再咬天竺鼠,發現天竺鼠也會染病。另外,他試驗各種節肢動物來做為媒介,發現只有壁蝨能夠成為傳染窩進行傳播。

立克次釐清了洛磯山斑疹熱的成因與傳染途徑,但因為無法在體外培養基培養這個病原菌,他並未加以命名。

後來其他研究者從斑疹傷寒等其他疾病也發現無法在培養基生長、必須絕對寄生宿主細胞的類似細菌,並為了紀念立克次的貢獻,而命名為「立克次體」。

-----廣告,請繼續往下閱讀-----

而立克次體不只一種,因此引起的疾病也不只有恙蟲病。在台灣列為法定傳染病的還有由普氏立克次體(Rickettsia prowazekii )引起的流行性斑疹傷寒,透過體蝨在人群間傳播;由斑疹傷寒立克次氏體(Rickettsia typhi)造成的地方性斑疹傷寒,由鼠蚤傳播至人體。另外還有由立氏立克次體(Rickettsia rickettsii)所引致的洛磯山斑疹熱等。

立克次體透過傳統革蘭氏染色的效果非常弱;因此常用一種對卵黃囊塗片中立克次體進行染色的方法,以利光學顯微鏡觀察。現在,這項技術常用於監測細胞的感染狀態。

受限於光學顯微鏡的解析度,許多科學家也使用電子顯微鏡來對立克次體與宿主細胞相互作用的精細結構進行分析。例如分別引起流行性斑疹傷寒、洛磯山斑疹熱和恙蟲病的立克次體,外膜組織就能透過電子顯微鏡看到些許的差別,有的外膜較厚,有的則是外膜內葉和外葉倒置。

立克次
卵黃囊塗片立克次體的顯微影像,其尺寸範圍為 0.2μ x 0.5μ 至 0.3μ x 2.0μ。立克次體通常需要使用特殊的染色方法,例如Gimenez染色。圖片來源:CDC Public Health Image Library

做好預防就能別來無「恙」

根據疾管署統計,今(2024)年至 4 月 1 日恙蟲病確定病例已累計至 2 8例,高於去年同期。

-----廣告,請繼續往下閱讀-----

立克次菌無法在一般培養基培養,雖然可用接種天竺鼠或雞胚胎來分離病原確診,但基於實驗室生物安全操作規定,通常以免疫螢光法、間接血球凝集、補體結合等檢查抗體的方式來檢驗。

恙蟲病可用抗生素治療,若不治療死亡率達 60%。但最好的預防方式還是避免暴露於恙蟎孳生的草叢環境,掃墓或是戶外活動最好穿著長袖衣褲、手套、長筒襪及長靴等衣物避免皮膚外露。離開草叢後也要盡速沐浴和更換全部衣物,以防感染。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
30 篇文章 ・ 5 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

1
0

文字

分享

0
1
0
任意添加光學元件 為研究打開大門的無限遠光學系統
顯微觀點_96
・2025/01/30 ・1763字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

圖 / 顯微觀點

顯微鏡在科學發展中扮演關鍵的角色,讓人們得以突破肉眼的限制,深入微觀的世界探索。而隨著時間推進,顯微技術也日新月異,其中現代顯微鏡設計了所謂的「無限遠光學系統」(Infinity Optical Systems),更是提升了顯微鏡性能和突破過去的觀察瓶頸。因此主要的顯微鏡製造商現在都改為無限遠校正物鏡,成為顯微鏡的技術「標配」。

1930 年代,相位差顯微技術出現,利用光線在穿過透明的樣品時產生的微小的相位差造成對比,使透明樣本需染色就能更容易被觀察。1950 年左右,則出現使用兩個 Nomarski 稜鏡,將光路分割再合併產生 干涉效應的 DIC 顯微技術,讓透明樣本立體呈現、便於觀察。

在傳統「有限遠系統」中,單純的物鏡凸透鏡構造,會直接將光線聚焦到一個固定距離處,再經過目鏡放大成像。也因此過去顯微鏡的物鏡上通常會標示適用的鏡筒長度,通常以毫米數(160、170、210 等)表示。

-----廣告,請繼續往下閱讀-----

而在過渡到無限遠校正光學元件之前,選用的物鏡和鏡筒長度必須匹配才能獲得最佳影像,且大多數物鏡專門設計為與一組稱為補償目鏡的目鏡一起使用,來幫助消除橫向色差。

但是問題來了!當這些光學配件要添加到固定鏡筒長度的顯微鏡光路中,原本已完美校正的光學系統的有效鏡筒長度大於原先設定,顯微鏡製造商必須增加管長,但可能導致放大倍率增加和光線減少。因此廠商以「無限遠」光學系統來解決這樣的困境。

德國顯微鏡製造商 Reichert 在 1930 年代開始嘗試所謂的無限遠校正光學系統,這項技術隨後被徠卡、蔡司等其他顯微鏡公司採用,但直到 1980 年代才變得普遍。

無限遠系統的核心在於其物鏡光路設計。穿透樣本或是樣本反射的光線透過無限遠校正物鏡,從每個方位角以平行射線的方式射出,將影像投射到無限遠。

-----廣告,請繼續往下閱讀-----
有限遠(上)和無限遠(下)光學系統的光路差別
有限遠(上)和無限遠(下)光學系統的光路差別。圖 / 擷自 Optical microscopy

透過這種方法,當使用者將 DIC 稜鏡等光學配件添加到物鏡、目鏡間鏡筒的「無限空間」中,影像的位置和焦點便不會被改變,也就不會改變成像比例和產生像差,而影響影像品質。

但也因為無限遠系統物鏡將光線平行化,因此這些光線必須再經過套筒透鏡在目鏡前聚焦。有些顯微鏡的鏡筒透鏡是固定的,有些則設計為可更換的光學元件,以根據不同實驗需求更換不同焦距或特性的透鏡。

除了可以安插不同的光學元件到光路中而不影響成像品質外,大多數顯微鏡都有物鏡鼻輪,使用者可以根據所需的放大倍率安裝和旋轉更換不同的物鏡。

傳統上一旦更換物鏡,樣本可能就偏離焦點,而須重新對焦。但在無限遠光學系統的設計中,物鏡到套筒透鏡的光路長度固定,也就意味著無論更換哪個物鏡,只要物鏡設計遵循無限遠系統的標準,光路長度和光學路徑的一致性得以保持。

-----廣告,請繼續往下閱讀-----

因此無限遠光學系統也有助於保持齊焦性,減少焦距偏移。這對需要頻繁切換倍率的實驗操作來說,變得更為便利和具有效率。

不過使用上需要注意的是,每個顯微鏡製造商的無限遠概念都有其專利,混合使用不同製造商的無限遠物鏡可能導致不正確的放大倍率和色差。

改良顯微技術,使研究人員能夠看到更精確的目標;以及如何讓更多光學配件進入無限遠光學系統中的可能性仍然在不斷發展中。但無限遠光學系統的出現已為研究人員打開了大門,可以在不犧牲影像品質的情況下輕鬆連接其他光學設備,獲得更精密的顯微影像。

  1. M. W. Davidson and M. Abramowitz, “Optical microscopy”, Encyclopedia Imag. Sci. Technol., vol. 2, no. 1106, pp. 120, 2002.
  2. C. Greb, “Infinity Optical Systems: From infinity optics to the infinity port,” Opt. Photonik 11(1), 34–37 (2016).
  3. Infinity Optical Systems: From infinity optics to the infinity port
  4. Basic Principle of Infinity Optical Systems
  5. Infinity Optical Systems

延伸閱讀選擇適合物鏡 解析鏡頭上的密碼

-----廣告,請繼續往下閱讀-----

討論功能關閉中。