0

7
2

文字

分享

0
7
2

三峽大壩即將潰壩?從工程師的觀點看關於水庫的流言蜚語

活躍星系核_96
・2020/08/12 ・5734字 ・閱讀時間約 11 分鐘
  • 作者/梁崇淵│普渡大學博士生、游景雲│台大土木系教授

今年以來中國長江地區累計降雨量和持續時間都陸續超過 1998 年洪災紀錄,其中三峽大壩一再傳出潰壩的疑慮,再加上過去三峽大壩變形的傳言,外界多有揣測,我們或許可以從現有的資訊去分析目前的狀態,但受限於資訊取得限制,不免有隔空問診抓藥的疑慮。不過從土木水利工程師的觀點,從這個案例也可以讓我們去瞭解水庫跟壩的一些相關議題。

Embed from Getty Images

水庫?大壩?傻傻分不清楚?

在討論之前,我們先釐清什麼是「水庫」。水庫是指以結構體所圍起可供水資源調節之蓄水範圍及設施,過往多用於蓄水灌溉以應對乾涸時期,現代水庫具有多元的功能,以蓄水、給水、發電、調節洪水為主,且常因生態資源豐富及景觀壯闊,而成為著名觀光景點,像是台灣的石門、翡翠、曾文水庫等。而把水攔蓄的結構體就是「壩」,比如說美國的佛壩(Hoover Dam)攔蓄形成米德湖(Lake Mead),前者是壩而後者則是水庫。

壩體依照建築材料及結構形式可分為重力壩、土石壩及拱壩,功能的話有蓄水壩、攔砂壩。 一般人常說「水壩」一詞實為誤用,但語言有其生命與積非成是的特性,口語上也越來越不予區分或深究。

我們常講的潰壩主要是在說蓄水結構體在短時間破壞的一個現象,而破壞後,攔蓄的大量水體往下游以洪水波的形式傳遞,會遠超過河川的防洪流量,往往造成相當大的生命財產的損失,避免潰壩的發生絕對是工程設計上首要考量。 「潰壩」是指壩的破壞,破壞原因有許許多多,破壞與壩的形式有相當的關係。一般而言常見的主要形式有土石壩(earth and rockfill dam)、重力壩(gravity dam)、拱壩(arch dam)等。 「土石壩」顧名思義即是以土、砂、石為主要材料建築而成的壩體,也是目前大部分最常見的形式,主要利用土石的重力以及彼此之間的摩擦力來抵抗隨水位增加而帶來的沉重水壓,因水壓與水深成正比,所以土石壩多設計為頭細底厚的梯形剖面,以確保底部可以支撐住較大的水壓。土石壩以土砂、石頭作為材料,可以從壩址及集水區取得大部分的材料,雖然建造過程需經過多次夯實及壓密,但沒有像混凝土一樣有澆灌、凝固的過程,施工成本較低。但土石顆粒之間仍會有一定的空隙,因此平時有水滲透壩體是很正常的,臺灣著名的石門水庫及曾文水庫主壩體便是土石壩。

石門水庫。圖/wikipedia

「重力壩」是以地面對壩體重力的反作用力產生的力矩來抵抗水平方向水壓的力矩,因此其結構穩定度主要由其重力大小決定,故稱為重力壩。其形狀多設計為面對上游蓄水面為垂直牆,面對下游為斜面,使得重心偏向上游而產生與水壓力相反旋轉之力矩(如下圖)。重力壩多以整體混凝土或鋼筋混凝土為材料構築。

重力壩力平衡示意圖。圖/改自 Rogers et al., 2007

「拱壩」以凸面朝向上游之曲面結構支撐水壓力,其原理與拱橋相同,藉由混凝土有抗壓的特性,以曲面特性將作用力傳導至兩旁作為支撐的岩壁。因支撐點需承受傳遞而來的力十分龐大,所以只能建築於堅固的岩壁之上,寬度也受此因素限制。拱壩若設計良好則穩定性極佳,且可減少壩體厚度,以較少的材料達到所需強度。然而拱壩的力學機制較為複雜,曲面在施工上相較方形不易許多,因此不論是在設計或是施工上皆需要較高的成本作縝密的規劃[8]。

卡采大壩(Katse Dam),是一座水泥拱壩。圖/wikipedia

在了解壩的形式後,排除人為方式破壞壩體的案例,大量洪水造成溢頂(overtopping)是最常見的潰壩方式,意思就是進水庫的水太快太急結果來不及排掉造成水淹壩頂而沖壞。為了防止這個因素,水庫除了有攔水的壩體之外,都會在壩體上或在另外設有溢洪道來洩洪。但如不幸在庫區滿載的情況下仍是進水量大於出水量能,水位持續上升超過壩高就會造成溢頂, 一般來說溢洪道的設計容量會用最大可能降水(Probable Maximum Precipitation, PMP)跟最大可能洪水(Probable Maximum Flood, PMF)做設計,但雖說是最大可能,但不是沒有可能超過,只是機率很低,根據研究分析可能是幾千分之一的機率。

鯉魚潭水庫溢洪道溢流狀況。圖/水利署

溢頂會造成怎樣的影響呢?其對土石壩跟重力壩都是十分致命的。水流快速的流過壩頂會造成沖刷,也會因為負壓而將砂土吸起,並且水與砂之前的黏滯力會帶走被吸起的土砂,壩頂被沖蝕之後會通水截面擴大使得流速流量持續增加整個造成潰壩。重力壩雖壩體主要為混凝土,不會像土石壩一樣被水沖蝕,但水流溢頂將沖刷下游的基腳,使得原本支持土壤鬆動甚至被淘刷,而無法提供足夠的反作用力無法維持力平衡或力矩平衡,造成壩體位移變形終至結構破壞。拱壩將水壓力傳導到兩旁岩壁上,其力平衡方式與重力壩不同,因此只要壩體結構完整,兩旁的岩壁沒有被沖刷或破壞,拱壩仍能立於峽谷之間,溢頂對拱壩的威脅性相較其他種類的壩低了許多。

另外一個對於土石壩比較的的威脅是「滲流」,如果土石壩夯實不實,在土石空隙間有比較快的水流通過,也會造成負壓,把土石帶走,這也是工程說的管湧(piping)現象,管湧如發生於土石壩,則可能造成土石壩整個被沖走;管湧不太會發生在混凝土重力壩體,但如果發生壩的基礎面,則可能造成基礎破壞摩擦阻力之降低而引起壩之滑動或沈陷。

鑑古知今,過去的潰壩案例

大致了解了壩的形式後,可以來看看過去有哪些潰壩案例。讀者也可以在 wiki 中文條目的水壩潰決或英文的 dam failure 上找到蠻完整的整理。 國際上幾個比較受到注目的潰壩事件像是美國的 Teton Dam、Baldwin Hills Dam 都是土石壩發生管湧造成整個壩體沖走的案例,Youtube 上也可以找到紀錄的影片。

另外一個有趣的案例是義大利的 Vajont Dam,它是一個拱壩而上游的大量土石崩塌掉到水庫裡,造成強烈庫湧浪滿溢出來造成下游近 2000 人的死亡,到 2015年的歐洲地球科學年會(EGU,European Geosciences Union General Assembly )才完整的討論出其崩塌成因,由於是拱壩的關係,整個壩體仍然屹立無虞。

台灣過去也有些案例,1999 年 9 月 21 日集集大地震,車籠埔斷層瞬間錯動抬升地面,直接剪斷石岡壩結構體造成閘門扭曲變形(如下圖),但石岡壩是 18 個獨立單元的混凝土重力壩,因此即使十多公尺的地表變形落差造成 16、17、18 號溢洪道閘門毀損,閘門傳動軸變形,南幹線輸水隧損壞,其他部分仍維持相當的完整性。破壞發生後管理局就將水庫蓄水緊急溢洪以避免後續的損壞。另外一個較為少人知道的案例是 2007 年 9 月 17 日韋帕颱風侵襲臺灣,雖未造成嚴重水患,但連日豪雨淘刷地基之下,使得位於石門水庫上游的大型攔砂壩巴陵壩潰壩,其攔蓄之泥砂向下游流動由榮華壩承接,使其在 2012 年左右就接近淤滿。

石岡壩 921 地震損壞情形。圖/石岡壩管理中心
巴陵壩潰壩前情形。 圖/96 年韋帕颱風重大土砂災情速報
巴陵壩潰壩後情形。圖/96 年韋帕颱風重大土砂災情速報

一般而言,大壩建成後幾年都是破壞機率比較高的時候,因為如果營建時就有一些施工缺失,很快的就會造成相關破壞風險,因此水庫在初期都會先逐步蓄水、放水,然後透過監測儀器像是水壓計、應變計、傾斜儀等去觀察壩體有無異狀,幾年過去之後壩體會逐漸穩定,風險也會較低,埋在壩體內的一些儀器也會逐漸損壞失效,後續就會透過例行的大壩安全檢查來降低風險,到水庫老化後風險才又逐漸增加。 另外水庫淤滿是否會有相關風險,主要是取決設計時候有無考量,砂淤滿在上游面會增加對於壩體的土壓力,如果當初設計就有考量下,基本上較不會有相關問題,一般攔砂壩都會考慮蓄滿狀況,因此也較少有因為蓄滿把壩體推動或推倒的案例。

所以三峽大壩會潰壩嗎?

三峽大壩。圖/wikipedia

回到大家關心的問題三峽大壩,從資料可以知道它是混凝土重力壩,最大壩高 181 公尺、壩長約 2335 公尺。全世界對於中國的大國崛起都有很複雜情感,難免會影響我們的判斷。前些日子不少新聞指出三峽大壩可能有潰壩的風險,主要的論述有 Google Earth 衛星影像可觀察到明顯壩體變形,以及水位已達防洪汛制水位等,官方說明有滲漏變形等,我們就各個問題一一來討論。

問題一:三峽大壩有變形嗎?

三峽大壩是否有變形?目前在其他的衛星影像中並壩體尚屬完整,推測其影像中明顯變形為 Google Earth 衛星影像拍攝與接合處的誤差造成[6]。但三峽大壩是由混凝土構築而成的,混凝土是有彈性的,所以受到不同水壓力是會有彈性應變,但根據相關分析是沒有到破壞程度。

問題二:三峽大壩最近蓄水超過汛限水位 145 公尺,是不是不太妙?

按照目前各國水庫的操作,一般而言在汛期間會有較低的防洪水位規線,以空出空間滯蓄洪水。 根據中國水利電力部 1996 年發佈的 DL / T5015—1996《水利水電工程動能設計規範》,規定水庫特徵水位有正常蓄水位、防洪限制水位、防洪高水位、設計洪水位、校核洪水位等。臺灣媒體提到的「防洪限制水位」在規範中定義為:「為防範汛期之洪水,水庫在汛期前應就水位調整至『防洪限制水位』,以空出足夠的庫容攔蓄洪水」。

也就是說「校核洪水位」才是中國水庫的最大設計蓄水高度。 由三峽大壩水位來看,其防洪限制水位為 145 公尺,校核洪水位為 180.4 公尺,三峽大壩平常非洪水期間蓄水量也可以到 170 公尺以上,因此汛期操作時略為高出汛限水位到達 150 公尺或更高,其實並不會對於水庫有重大影響或風險。

問題三:三峽大壩會有溢頂的可能嗎?

我們可以先看該地區相關的降雨流量資料,相關資料可以從長江水文網查到:由入庫及洩洪水量來看,近日三峽大壩的入流量約在每秒 2 萬噸至 3 萬噸之間,而過去較高的時候也大概是 4 萬噸每秒左右,相較於其設計最大溢洪量為每秒 11.6 萬噸來說,是低於其數值的。因此,在沒有結構問題或是人為不當操作的情況下,依照目前水位及水量數字與設計容量,三峽大壩在 2020 年的長江洪患中面臨潰壩的風險是非常低的。

同場加問:三峽大壩的其他爭議?

與三峽大壩有關的討論還有像是:施工品質不良、技術不足、管理不當等等;如前所言,如果壩體已有瑕疵,其實在初期就會有相當程度的損壞機率,也就是說到操作十多年後才顯現的機會不大。但目前外界取得資料的可信度如何,或是有什麼被隱瞞未被呈現的,這部分也無法證實,也難作為直指大壩危在旦夕的立基。

讓水庫免於潰壩該怎麼做?

三峽大壩是不是一定會潰壩?或是一定不會潰壩?答案都是否定的。 土木水利工程師的工作常在風險與成本間取捨,就如一個工程界的玩笑話:「我們什麼都可以蓋得出來,只看業主願意付多少錢。」。然而,面對潰壩的風險,常常是千分之一、萬分之一的風險,如果對應的是巨大社會經濟損失,就好比是一個很大的數字乘上很小的數字,那麼期望值到底是無限小或無限大?對於決策上的判斷,這都是非常困難的問題。

Embed from Getty Images

過去研究團隊在國際期刊討論面對潰壩、核災的因應策略[2]。內容提到:目前工程上都是儘量在合理範圍內降低風險,以保障人民生命財產安全,然如果人民期待的是絕對安全的基礎建設,事實上是相當不切實際的。 水庫是水資源利用的重要工程設施,近年來暴雨有時間集中且強度增加的趨勢,對水庫防洪形成更大的威脅。山坡土砂造成的淤積會使得庫容減少而失去調節的空間,例如石門、曾文水庫的淤積,近幾十年都是我國政府面臨處理的挑戰。在設計水庫時規劃排砂道,或是日後再增設,都只能減緩水庫淤滿的危機,這也代表在集水區上游做好水土保持以及攔砂設施等保育措施,日趨重要。

在水資源更難控制,洪水日益頻繁的未來,如何永續的利用、操作水庫,反而會是重要的課題。  

參考資料

  1. 1996, D. T. 水利水电工程动能设计规范 [S] (Doctoral dissertation).
  2. Lee, B. S., & You, G. J. Y. (2013). An assessment of long-term overtopping risk and optimal termination time of dam under climate change. Journal of environmental management, 121, 57-71.
  3. Rogers, J. & Rock, Frank & Owen, Jeff & Watkins, Conor & Kane, William & Bell, Mike. (2007). The 1928 St. Francis Dam Failure and the 1995/2005 La Conchita Landslides: The Emergence of Engineering Geology and Its Continuing Role in Protecting Society.
  4. Young, R. A., & Loomis, J. B. (2014). Determining the economic value of water: concepts and methods. Routledge.
  5. 王維洛. (2010). 天下第一门给三峡工程带来天下第一问题──三峡工程论证和建设目标中的自相矛盾, http://sanxia2008.org/content.aspx?z=465&f=29&s=71&t=1.
  6. 林建勳. (2020). 三峽大壩潰堤傳言不斷 雨下整月中國災民破千萬. 公視#P新聞研究室. https://newslab.pts.org.tw/news/239?fbclid=IwAR3PR3IrGf2D11w_5eYbkIpjLES6Jl1NB-Gu76zOy5elRIcwrlSI8L3qtwA
  7. 梁惠儀, 林伯勳, 吳毓華, 卡艾瑋, & 冀樹勇. (2013). 巴陵壩潰壩後對於石門水庫上游集水區河相變遷及沖淤演變影響模擬. 中興工程, (119), 19-30.
  8. 陳鵬元. (2016). 認識拱壩以及其簡易分析(Introduction and simple analysis of arch dams), https://highscope.ch.ntu.edu.tw/wordpress/?p=70442.

文章難易度
活躍星系核_96
759 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0

災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?

EASY天文地科小站_96
・2021/09/19 ・2765字 ・閱讀時間約 5 分鐘
  • 文/陳子翔(現就讀師大地球科學系, EASY 天文地科團隊創辦者)

知名物理學家史蒂芬.霍金(Stephen Hawking)認為,小行星撞擊是宇宙中高等智慧生命最大的威脅之一。而回首地球的過去,六千五百萬年前的白堊紀末期,造成恐龍消失的生物大滅絕,也肇因於一顆直徑約十公里的小行星撞擊。那麼,我們應該擔心小行星帶來如同災難片場景的巨大浩劫嗎,人類又能為這件事做什麼準備呢?

我們該擔心哪些小行星,小行星撞擊能被預測嗎?

太陽系中的小行星不可勝數,但並非所有小行星都對於地球有潛在的危害。那麼,哪些小行星是應該注意的呢?

我們可以簡單從兩個條件,篩選出對地球有潛在威脅的小行星:第一是小行星的軌道,第二則是小行星的大小。如果一個天體的運行軌道與地球的運行軌道沒有交會,那也就不需要擔心它會部會撞到地球了。而直徑越大的小行星,撞擊地球產生的災害就會越大,例如一顆直徑 10 公尺的小行星墜落能造成小範圍的建築物受損,而直徑 50 公尺的小行星撞擊,其威力則足以摧毀整座大型城市。

https://upload.wikimedia.org/wikipedia/commons/thumb/5/59/Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg/1024px-Chelyabinsk_meteor_event_consequences_in_Drama_Theatre.jpg
2013 年俄羅斯車里亞賓斯克小行星墜落事件,隕石在空中爆炸的震波震碎大片玻璃。圖/Nikita Plekhanov

過去天文學家透過遍布世界的天文台,不斷在夜空中尋找近地小天體,並持續監測它們的動向。而透過觀測資料推算其軌道,就可以算出這些危險的小鄰居未來與地球發生「車禍」的機率有多大,而這篇文章的主角「貝努」,就是一顆被認為有較大機會撞擊地球,因此被重點關注的對象。

貝努撞地球會是未來的災難嗎?

貝努在 1999 年被發現,是一顆直徑約 500 公尺的小行星,它以橢圓軌道繞行太陽,公轉週期大約 437 天。由於貝努的軌道與地球相當接近,它每隔幾年就會接近地球一次,而本世紀貝努最接近我們的時刻將會發生在西元 2060 年,不過別擔心,該年貝努與地球最接近時,距離預計也還有七十萬公里,大約是地球至月球距離的兩倍,撞擊風險微乎其微。

綠色為地球軌道,藍色為貝努軌道。圖/University of Arizona

然而天文學家真正關注,撞擊風險較大的接近事件則會發生在下一個世紀。根據目前的軌道計算,貝努在西元 2135 年和 2182 年的兩次接近,會有較大的撞擊風險。說到這裡可能許多讀者會覺得,既然我們都活不到那個時候,何必去操心那些根本遇不到的事情呢?

那麼,讓我們想像一個情境:

如果今天天文學家突然發現了一顆與貝努一樣大的小行星,並算出它將在一年後撞上地球,那身為這個星球上「最有智慧的物種」,我們能怎麼應對呢?

很遺憾的:我們很可能對於撞擊束手無策。當前人類並沒有任何成熟的技術,能夠在這麼短的時間內改變小行星的軌道。這時候人們可能就會希望前人早點望向星空,調查小行星,好讓人們能夠有多一百年的時間準備應對的方法了!

小行星軌道計算不就是簡單的牛頓力學,為什麼算不準?

那麼貝努在未來 100〜200 年到底會不會撞擊地球呢?其實天文學家也說不太準,只能給出大概的機率而已,而且時間越久,預測的不確定性就越大。

你也許會想,天體的運行軌道不就只是簡單的牛頓力學,三百年前的人就已經掌握得很好了,在電腦科技發達的現代怎們會算不準呢?確實,如果要算地球與火星在 100 年後的相對位置,那電腦還能輕鬆算出相當精確的答案,但如果是計算小行星 100 年後的位置,事情就變得棘手多了……

由於小行星的質量很小,就算是相對微小的引力干擾還是足以改變其運行方向,而混沌理論(Chaos theory)告訴我們,任何微小的初始條件差異,都能造成結果極大的不同。因此要對小行星軌道做長期預測,就不能只考慮太陽的引力,而是必須把行星等其他天體的引力也納入計算,才能獲得比較準確的結果。尤其是當這些小行星與地球擦肩而過時,即使只有幾百公尺的位置偏差,受到的引力也會有相當的不同,使得小行星的未來軌跡出現巨大的差異。

而更令天文學家們頭痛的是,有些問題甚至不是萬有引力能夠解決的,其中一個因子就是「亞爾科夫斯基效應」(Yarkovsky Effect)。這個效應是這樣的:當陽光照在自轉中的小行星上,陽光會加熱小行星的受光面,而被加熱的這一面轉向背光面時,釋放的熱能會像是小小的火箭引擎一樣推動小行星。這個作用的推力非常小,但長期下來還是足以對質量很小的天體造成軌跡變化,也讓軌道預測多了很大的不確定性。

亞爾科夫斯基效應的動畫。影片/NASA

OSIRIS-REx 任務揭露貝努的神秘面紗,也讓軌道推估更精確

為了更深入了解貝努,NASA 在 2016 年發射 OSIRIS-REx 探測器探查這顆小行星。OSIRIS-REx 主要的任務包括從貝努表面採取樣本並送回地球分析、對整顆小行星做完整的調查,以及評估各種影響貝努運行軌道的因子,改善貝努軌道的預測模型,評估將來的撞擊風險。

在軌道分析方面,OSIRIS-REx 一方面能在環繞貝努的過程中緊盯貝努的「一舉一動」,讓天文學家透過精確的觀測結果反推貝努的軌道特性。另一方面,要評估亞爾科夫斯基效應對小行星軌道的影響,也需要考量小行星的地形地貌、反照率等等因素,因此 OSIRIS-REx 的各項觀測資料,也有助於建立更精確的軌道預測模型。

OSIRIS-REx 探測器。圖/University of Arizona/NASA Goddard Space Flight Center

目前 OSIRIS-REx 的任務還沒有結束,但是在取得更準確的軌道預測模型與撞擊風險評估上,已經有了初步的成果。根據這次任務提供的觀測資料,天文學家將預測貝努未來軌道的時間極限,從原本的西元 2200 年延長至 2300 年。而西元2300年之前,貝努撞上地球的機率大約是 0.057% (1/1750),最危險的一次接近則會發生在西元 2182 年

「知己知彼,百戰不殆」。面對像貝努這樣的危險鄰居,唯有盡可能認識它的一切,才越能夠掌握其未來的動向,進而在將來思考要如何面對小行星的撞擊的風險。另外,目前 OSIRIS-REx 也正在返航地球的旅途上,期待 2023 年 OSIRIS-REx 能順利的帶著貝努的樣本回到地球,帶給我們更多有關小行星的重要資訊!

參考資料

EASY天文地科小站_96
4 篇文章 ・ 7 位粉絲
EASY 是由一群熱愛地科的學生於2017年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策