0

0
2

文字

分享

0
0
2

將類比計算機推向顛峰,也為未來科技舖好沃土的凡納爾.布希│《電腦簡史》(二十四)

張瑞棋_96
・2020/08/03 ・3431字 ・閱讀時間約 7 分鐘 ・SR值 555 ・八年級

凡納爾.布希,橫跨計算機的新舊時代、身居產官學的至高權位。他不但設計出類比計算機的巔峰之作,還擘劃了美國產、軍、學三方緊密合作的模式。多少人才因此得以大展長才,多少新創產業因此誕生茁壯;電腦與網路正是在這樣的環境下,才在二次大戰後突飛猛進……。

本文為系列文章,上一篇請見:為了預測潮汐,將面積儀改裝成解微分方程的計算機│《電腦簡史》(二十三)

計算機從來沒有如巴貝奇當初的想像,由蒸汽機推動。瓦特改良蒸汽機之後,自動運轉的機器確實如雨後春筍般紛紛出現,但計算機仍需靠手動操作。巴貝奇設計的差分機與分析機如此,三、四十年後,克耳文的調和分析儀仍是如此。巴貝奇的夢想必須等到電力時代,計算機才能依靠電力自行運作。

沒有電,哪有電腦;沒有法拉第,哪有電

電力時代的開啟,肇始於英國科學家法拉第 (Michael Faraday) 發現電磁感應。

法拉第與巴貝奇同樣於 1791 年出生於倫敦,但出身卻有天壤之別。他自小家境貧寒,僅受過最基本的教育,十四歲當了書商的門徒,才靠大量閱讀自學科學知識。二十歲那年幸運獲得英國皇家學會會長戴維爵士 (Sir Humphry Davy) 賞識,擔任其隨身助理,才踏上科學研究之路。

1831 年,法拉第發現磁鐵穿過線圈時,線圈上會有電流出現,因而領悟出變動的磁場會產生電場,並據此原理發明了史上第一具發電機,人類才終於有能力隨時製造持續穩定的電力。

法拉第於1831 年發明的史上第一台發電機。
圖/wikipedia

不過還要經過半世紀的改善,發電機才真正商業化。恰好內燃機也在 1880 年代左右成熟,同時石化燃料因為開採技術的進步得以大量供應,可以用內燃機帶動發電機運轉,工廠才開始改用發電機與馬達取代蒸汽機。1896 年,特斯拉 (Nikola Tesla) 成功為西屋公司 (Westinghouse) 將尼加拉瀑布產生的水力發電,利用高壓交流電送往二十英哩外的水牛城,為電網的普及揭開序幕。隨著電網的延伸擴展,二十世紀開始電力也進入一般家庭與商家,人類社會終於從蒸氣時代邁入電力時代。

有了電力與相關零件,計算機便能達成以往機械式計算機做不到的事。不但可以如巴貝奇的夢想自動運轉,就連克耳文理想中解微分方程的機器,也終於在美國發明家凡納爾.布希(Vannevar Bush)的手中完成。

電網互聯太複雜,催生積分儀的發明

凡納爾.布希這個名字對一般人而言可能相當陌生,但是他一生對電腦發展卻有極大的影響,後面我們會看到許多重要的創新都與他有關。

凡納爾.布希攝於 50 歲左右。
圖/wikipedia

布希從大學時期就開始他的發明之路。當時學校有直接取得碩士學位的方案,布希為此而於 1912 年發明測地儀,做為他的碩士論文。測地儀外觀像台割草機,也是運用面積儀的原理,推著它前進,裡面的滾輪與轉盤便會隨著地形高低起伏改變位置與轉速,而自動畫出所經過地面的地勢圖。

1916 年,布希取得麻省理工學院 (MIT) 與哈佛大學的聯合博士學位,隔年就因美國加入第一次世界大戰,而加入國家研究委員會 (NRC),研究偵測潛艇的方法。一次大戰結束後,布希到 MIT 的電機系任教,同時與幾位朋友共同創立雷神公司 (Raytheon Company)。這家公司專門研發電子設備,日後成為重要的國防承包商。

一次大戰使得美國聯邦政府要求各地電力公司的電網互聯,以提升電力供應的穩定性。不過該如何互聯是門大學問,尤其電網繼續不斷擴增,各種連結的可能性越來越複雜,究竟怎樣的網路才是最佳選擇?布希自 1923 年開始研究電網的問題,但其中牽涉的計算實在太繁複;過了兩年,布希終於受不了,要他的學生研究能自動計算連續積分的機器。

1926 年,第一代的「連續積分儀」(Continuous Integraph) 完成,原理與面積儀類似,但用上電錶 (watt-hour meter)、可變電阻與電動馬達(原理參見文末附註)。第二年,布希與學生又成功將兩台連續積分儀串接在一起,成為「乘積積分儀」(Product Integraph),原理類似克耳文的調和分析儀,也就是第一台的輸出結果做為下一台的輸入函數,便能解出二階微分方程式,誤差只有 2-3%。

克耳文男爵的夢想終於成真——微分分析儀誕生

然而布希對此仍不滿意,他決定放棄電錶與可變電阻這些電子零件,回歸面積儀原本的純機械方式,也就是和他大學時設計的測地儀一樣,使用滾輪與轉盤(原理參見文末附註)。1931 年,布希與學生完成「微分分析儀」(Differential Analyzer),由六台積分儀組成,可解到六階的微分方程式,誤差只有 0.12%。克耳文男爵當年的設想在半世紀後,終於在布希手中實現。

1938 年安裝於劍橋大學的微分分析儀。
圖/wikipedia

等等,之前說過靠機械傳遞無法克服扭力不足的問題,那麼微分分析儀是怎麼做到的?原來布希是運用 1925 年才發明,原本用於汽車動力方向盤的「扭力放大器」(torque amplifier),才讓六台積分儀順利運轉。有了扭力放大器,積分儀就能不斷串接,解更高階的微分方程式。例如賓州的摩爾電機學院 (Moore School of Electrical Engineering) 於 1935 年安裝的微分分析儀,便用了十台積分儀,挪威的奧斯陸大學甚至用到十二台積分儀。

摩爾電機學院是最先向布希提出安裝要求的機構,因為他們也面臨大量計算的問題。原來摩爾電機學院距離美國陸軍的阿伯丁試驗場 (Aberdeen Proving Ground) 只有一百二十公里,因地利之便被陸軍相中,專門為阿伯丁試驗場的各式槍砲做彈道學分析。彈道學涉及涵蓋許多參數的微分方程組,計算極為複雜;如果微分分析儀能縮短計算時間,他們就能以更少的人力、更快的速度,製作出各式槍砲的射程表。射程表上記載目標距離、移動速度、風向、風速、……等不同條件下,應如何調整射擊角度與火藥數量,是軍隊在戰場上必備的須參考工具。

計算機邁向數位時代,布希扮演幕後推手

微分分析儀的確只要幾分鐘就能解出一道微分方程式,但是每次設定調整卻要花上兩三天的時間。因此幾年後第二次世界大戰爆發,不但槍砲數量大增,因此需要大量的射程表,同時由於軍艦、飛機的速度大幅提升,也需要更精確的射程表,微分分析儀很快就窮於應付,無法滿足來自前線的需求了。美國自己參戰後,更深切感受需要運算速度更快的計算機,於是在陸軍的資助下,摩爾電機學院於 1943 年開始打造第一部通用型電子計算機,以取代機械式的微分分析儀。

雖然這部電子計算機一直到戰後才完成,並未在戰場上發揮作用,但它已正式開啟計算機的數位時代,機械式計算機從此逐漸淡出歷史舞台。

不過布希並未隨著微分分析儀功成身退,他的影響力繼續在數位時代發揮重大作用。他在戰時就位高權重,主持軍方的「科學研究發展局」與跨部會的「國防研究委員會」,率領科學家研發出新一代的雷達與固態火箭,並推動成立曼哈頓計劃。戰後,他大力推動國防科技產業化,讓原本僅限軍方使用的技術轉為商業民生用途,發展出龐大科技產業。他還建議政府將研究經費下放給大學或民間的實驗室,為培育科學人才建立正向循環。。

美國的科技產業蓬勃發展,至今仍居於全球的領導地位,可說是肇因於產、軍、學的密切結合,而這正是出自布希的遠見與擘劃。電腦與網路也是在這樣的背景下,才在二次大戰後百花齊放,出現各種革命性的創新;而其中幾位關鍵性人物也都與布希有所關聯。計算機從機械式改為電子式、從類比轉為數位,這新舊時代的轉換過程,多虧有布希扮演起承先啟後、繼往開來的角色。

凡納爾·布希於1974年逝世時,MIT校長威斯納 (Jerome Wiesner) 為他的貢獻下了最佳註解:

「沒有任何美國人比凡納爾·布希,對科學與技術的發展產生更巨大的影響。在二十世紀可能不會再有能與他相提並論的人了。」


同場加映

連續積分儀原理

連續積分儀用的電錶與家裡的電錶一樣,有電流經過時,轉盤便因為電磁感應而轉動,轉速隨著耗電功率的大小而改變。連續積分儀裡面裝有可變電阻,其中的滑動接點與描圖臂連接,當描圖臂隨著函數圖形移動時,滑動接點也跟滑動,進而改變功率大小,影響轉盤的轉速。轉盤與一個電動馬達連動,電動馬達便控制繪圖臂畫出函數積分後的圖形。

微分分析儀原理

微分分析儀裡的轉盤是由電動馬達控制,以定速旋轉,立於轉盤上的滾輪被帶著隨之滾動,就像一枚硬幣在唱盤上滾動那樣。轉盤還與描圖臂連接,當描圖臂隨著函數圖形移動時,整個轉盤也會隨著左右移動。因為滾輪有獨立支架,本身位置是固定的,所以轉盤左右移動會使得滾輪距離轉盤中心時近時遠。滾輪接近轉盤中心時轉得慢,靠近外圍就轉得快,滾輪轉速與轉盤位置的變化,便會帶動繪圖臂畫出積分後的函數圖形。


※《電腦簡史》第一部【齒輪時代】至此告一段落,敬請期待第二部【數位時代】。

文章難易度
張瑞棋_96
423 篇文章 ・ 625 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
計算機先驅:巴貝奇與他的小型差分計算機——《資訊大歷史》
azothbooks_96
・2022/07/01 ・3045字 ・閱讀時間約 6 分鐘

查爾斯.巴貝奇

查爾斯.巴貝奇(Charles Babbage),1792 至 1871 年。

1843 年,一位英國數學家提出了分析機原理,這個構思將在一百零三年後由後人付諸實踐,並有了一個為大家熟知的名字——計算機(今日俗稱電腦)。很遺憾,查理斯.巴貝奇終其一生也沒能實現造出分析機的願望,但他依舊是當之無愧的計算機先驅。

直到今天,許多計算機書籍扉頁裡仍然刊載著他的照片,以表紀念。

巴貝奇發明小型差分計算機

一七九二年,巴貝奇出生於倫敦一個富有的銀行家家庭,十八歲進入著名的劍橋大學三一學院,成為牛頓的校友。後來他擔任了牛頓擔任過的「盧卡斯數學教授」職務。在進入大學之前,他就展現出極高的數學天分。

進入大學後,巴貝奇發現,當時英國人普遍接受的牛頓建立在運動基礎之上的微積分,不如萊布尼茨基於符號處理的微積分那樣便於理解和傳播。為了推廣已被歐洲大陸普遍接受的萊布尼茨的微積分,他和其他人一同創辦了英國的(數學)分析學會。

不過巴貝奇並不是一個安分的學生,他一方面顯現出超凡的智力,另一方面又不按照要求完成學業,為此他不得不轉了一個學院,才能繼續學業。在學校裡,他還對很多超自然的現象感興趣。

延伸閱讀:巴貝奇誕辰|科學史上的今天:12/26

如果不是趕上工業革命,巴貝奇或許會尋找某個傳統的數學領域或者自然哲學領域做一輩子研究,並且留下一個巴貝奇定律或者巴貝奇定理。但是,工業革命的大背景,讓他把畢生精力和金錢都投入研究一種能夠處理資訊的機械中。

這也不奇怪,因為工業革命為資訊處理提供了思想上的依據、技術上的條件和廣闊的市場。工業革命是人類歷史上最偉大的事件。它不僅第一次讓人類從此進入可持續發展的時代,也改變了人們的思想。人類從相信神,到今天開始變得自信起來,相信這個世界是確定的、有規律的,而自己能夠發現世界上所有的規律。

早在牛頓時代,著名物理學家玻意耳(Robert Boyle)在總結牛頓等人的科學成就之後,就提出了「機械論」,也被稱為「機械思維」。

提出「機械論」的玻意耳(Robert Boyle)。圖/Wikipedia

玻意耳等人(包括牛頓、哈雷等)認為,世間萬物的規律都可以用機械運動的規律來描述,包括蒸汽機和火車在內的工業革命中那些最重要的發明,都受益於機械思維。人們熱衷於用機械的方法解決問題,從精密的航海導航,到能夠奏樂的音樂盒,再到能織出各種圖案的紡織機。

既然能想到的所有規律都可以用運動規律來描述,那麼就很容易想到讓具有特殊結構的齒輪組運動來完成計算,這便是設計機械計算機的思想基礎。

其實,這種想法早在十七世紀就有人嘗試過。法國數學家帕斯卡(Blaise Pascal)發明了一種手搖計算器——雖然有時人們將它稱為最早的機械計算機,但實際上它和我們今天理解的電腦概念沒有太多相似之處,稱之為「計算器」更為恰當。

帕斯卡計算器從外觀上看有上下兩排旋鈕,每個旋鈕上都刻著○至九這十個數字。在做加減法時,只要將參加運算的兩個數字分別撥到相應的位置,然後轉動手柄,計算器裡的一組組齒輪就會轉動,完成計算。

帕斯卡計算器。圖/Wikipedia

帕斯卡計算器最初只能做加法,後來經過改良, 可以做減法和乘法, 但做不了除法。在帕斯卡之後,萊布尼茨改良了計算器。他發明了一種以他名字命名的轉輪「萊布尼茨輪」,方便實現四則運算中的進位和借位。

到了十九世紀初,經過近兩個世紀的改進,機械計算器已經能夠完成四則運算,但是計算速度很慢,精度也不夠高,而且設備造價昂貴。不過,這種計算器更大的缺陷在於,對於複雜的運算(比如對數運算和三角函數運算)都做不到。

十九世紀機械工業的發展需要進行大量的複雜計算,比如三角函數的計算、指數和對數的計算等。在微積分出現之前,完成這些函數的計算是幾乎不可能的事。

十八世紀之後,歐洲數學家用微積分找到了很多計算上述函數的近似方法,不過這些方法的計算量極大,需要很長的時間,而且當時除了數學家,一般人是完成不了那些計算的。為了便於工程師在工程中和設計時完成各種計算,數學家設計了數學用表,如此一來工程師就可以從表中直接查出計算的結果。

不過,那個時代的數學用表錯誤百出,為生產和科學研究帶來了很多麻煩。而這個問題很難避免,因為手算很難保證完全不出錯。如果很多數學家分別獨立計算,還可以比對結果發現錯誤。但是巴貝奇發現,那些不同版本的數學用表都是抄來抄去,而犯的錯也都一樣。

因此,巴貝奇想設計一種機械來完成微積分的計算,然後用它來計算各種函數值,得到一份可靠的數學用表。當時他只有二十二歲。

延伸閱讀:兩艘軍艦換不到兩噸重的計算機?巴貝奇與差分機|《電腦簡史》 齒輪時代(十八)

在隨後的十年裡,巴貝奇造出來一台有六位精度(巴貝奇最初的目標是達到八位精度)的小型差分計算機。隨後巴貝奇用它算出了好幾種函數表,用於解決航海、機械和天文方面的計算問題。

值得指出的是,巴貝奇的這次成功受益於工業革命的成就——當時機械加工的精度比瓦特時代已經高出了很多,這讓巴貝奇能夠加工出各種尺寸獨特的齒輪。

但是,當時並沒有二十世紀的精密加工技術,製造小批量特製齒輪和機械部件的成本高、難度大,這給巴貝奇後來的工作帶來了諸多不便。

巴貝奇小型差分計算機的部分模組。圖/Wikipedia

不過,首次成功還是讓巴貝奇獲得了英國政府的資助,用以打造一台精度高達二十位的計算機。

幾年後,他又獲得了劍橋大學盧卡斯數學教授的職位,讓他有了穩定的收入。在此之前,他一直在花自己繼承的十萬英鎊遺產。勝利女神似乎正向他招手,但接下來的時日,他在計算機研究方面一籌莫展。

從表面上看,巴貝奇遇到的困難是因為那台差分機太複雜了,裡面有包括上萬個齒輪的二點五萬個零件,當時的加工水準根本無法製造。但更本質的原因是,巴貝奇並不真正理解計算的原理。他不懂得對於複雜的計算來說,不是要把機器做得更複雜,而是要用簡單的計算單元來實現複雜的計算。

當然,在那個年代沒有人瞭解這些。作為現代計算機基礎理論的布林代數要再等十幾年才會被提出來,而且要再過近一個世紀,才會被應用到計算技術中。

後人根據巴貝奇的設計打造而成的差分機。圖/Wikipedia

——本文摘自《資訊大歷史:人類如何消除對未知的不確定》,2022 年 6 月,漫遊者文化,未經同意請勿轉載。

azothbooks_96
38 篇文章 ・ 12 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

8
1

文字

分享

0
8
1
學測該怎麼出題?——點評高中數學教育與 111 年數學學測
科學月刊_96
・2022/03/02 ・3952字 ・閱讀時間約 8 分鐘

  • 文/張鎮華|臺灣大學數學系名譽教授。

Take Home Message

  • 今年學測試題為 108 課綱實施的第一次學測。數學考題公布後,各界普遍對本次的試題感到失望。張鎮華認為,本次試題大多符合 108 數學課綱的精神,但試題的份量太重,學測應回歸「初步篩選門檻」的定位。
  • 張鎮華表示,數學考題的份量應調整適中,過去考題內容大多偏難,學生學習時遂常以對付考試為方向,以歷年考試題型為依據,背公式以求速解,忽略基礎概念的學習。
  • 近年來數學教學及評量已融入計算機使用,但大考仍禁止使用計算機,張鎮華認為,培養數感是計算機融入教學的重要理念之一,未來大考應允許使用計算機。
  • 張鎮華建議大考中心除了公布簡答之外,也能出版詳細的文件,闡述出題理念,協助引導教師的教學方向。

111 年學測於今(2022)年元月下旬登場,這是 108 課綱實施之後的第一次學測,各界都引頸觀望大考中心會如何回應 108 課綱,這更是教學現場師生關注的焦點。在數學科有兩個為人重視的方向,其一是回應數學自高二起分流教學,數學 A 和數學 B 如何命題;其二是學測數學科考題近年來在難易間來回擺盪,今年會是如何?

學測宜回歸「初步篩選門檻」的定位

學測始於民國 83 年,其定位是「初步篩選門檻」。但是數學科的考題並沒有對位,一直到民國 100 年之前,試題普遍都較難,滿級分人數占考生的百分比幾乎各年都只比 1% 略多,民國 85 年的 0.16% 更是歷年來滿級分比例最低的一次。這樣的難題,引發大部分學生害怕數學,現場老師更無法正常教學。自民國 100 年起,數學科考題逐漸回歸基礎,但卻在難易之間來回擺盪,讓師生每年惴惴不安。

民國 108、109 年的學測數學科試題極為適當,但卻因為滿級分考生的百分比高而獲罪,讓人無法理解;隔年數學科考題轉難,這雖在大家預料之內,但是各界熱切期望其回歸基本。本來期盼分程度測驗的數學 A 和數學 B 能解此困境,但是在今年數學 A 考完當晚,許多國高中老師、大學教授紛紛發表評論,對考題表示失望與不解。

筆者因為要協助高中數學學科中心,拍攝數學 A 和數學 B 的解答影片,先獨自逐題解答了兩份試卷,感覺題目其實都出得很好,大致上回應了 108 數學課綱的精神。但是其份量太重,100 分鐘的考試時間並不是合理的安排,難怪各界覺得太難;就連數學 B 試卷,其對象是低數學需求的學生,筆者也認為份量太重。

我猜想,數學 A 的份量會如此重,可能是想與數學 B 有所區隔。但是兩份試卷內容都太重了,學測還是應該回歸「初步篩選門檻」的定位,以利現場教學。

數學的教與學宜重視基礎概念,避免依考試題型學習

面對大考,數學的教與學也應該反思。數學的知識密度高,比起其他學科,有更多的邏輯推理,解題更宜細緻緩慢,需要充分的時間。可惜的是,面對「科科等值」的壓力,數學科的考試時間只能和各科一樣。在這樣的限制下,如果數學考題份量適當,也無不可;偏偏各處的考題大多偏難,學生的學習遂常以對付考試為方向,以歷年考試題型為依據,背公式以求速解,忽略基礎概念的學習。

在引導學生的學習應注重基礎概念這件事情,大考中心歷年來極盡努力。以今年數學 A 第 1 題為例,就是在傳達一個理念,排列組合只要重視基礎原理及組合數 Ckn 就夠了。早年有關排列組合的學習內容極多,許多內容都是被「製造」出來的考試難題,不關乎組合學的根本。後來 99 課綱刪除了環狀排列,108 課綱則刪除重複組合,將內容回歸到基礎概念。審視大考中心這些年來有關排列組合的試題,其實都是基本的概念,高中師生應該要理解,重視基礎概念才是王道。

111 年學測數學 A 第 1 題。資料來源/大學入學考試中心

再以今年數學 A 第 4 題為例,涉及的只有等差數列的定義,以及對數的換底公式和常用對數的 3 條對數律。早年有關對數的教學,涉及極多一般底的變形對數律公式,也出現底為函數的偏鋒考題,於對數本質的學習幫忙不大,但學生卻窮於背公式、解難題。其實對數相關的問題,只要以換底公式回歸常用對數,必要時再輔以常用對數的 3 條對數律,均能順利回答。99 及 108 數學課綱均重視此理念,大考中心的試題亦都契合此想法,高中師生當可放心依此教與學。

111 年學測數學 A 第 4 題。資料來源/大學入學考試中心

今年學測數學 A 還有許多值得稱道的題目。例如第 7 題中,絕對值代表數線上兩點間的距離,若能搭配數線上的圖形判斷,並不需要進行去絕對值的耗時計算;第 10 題有關三次函數的性質,不必記憶對稱中心的公式,不淪為費時的三次配方,是相當用心的題目;第 12 題揭示,不必背誦一元二次方程式的公式解;第 6、15 題提醒,不能忘記國中所學的基礎平面幾何知識,凡此種種都很精采。

更多有關今年數學 A 考題的分析,可參考延伸閱讀的《高中數學學科中心電子報》文章。

計算機融入教學與評量

108 數學課綱除了從高二起分三軌教學以外,還有一個重點,就是計算機融入教學與評量。108 數學課綱高中範圍的 84 條學習內容中,有 24 條使用計算機作為參考教具。實施要點各處亦闡明,教材要設計計算機相關內容,教學應重視學生使用計算機的方法與態度,教學資源應包括計算機,學習評量宜容許學生使用計算機。

如今,6 家出版社的高中數學教科書,均依照課綱的精神將計算機教學融入,學校老師們也開始教導學生正確使用計算機的方法與態度,許多回應都指出,計算機融入教學收到不錯的成效,過去一些害怕數學的學生,因為有了工具,逐漸開始喜歡數學。只是令人不解的是,大考中心並不允許學生在學測考試時使用計算機,理由之一是害怕學生利用計算機作弊;這是一個不可思議的藉口,請看世界極多國家的考試都已經允許學生使用計算機,並沒發生什麼不良事件。

審視今年學測數學科考題可以發現,為了害怕被批評不能使用計算機,一些需要使用真實數據的應用題目都不見了,因此考題中缺少高二的一些重要學習內容,例如指數、對數、三角函數的應用問題。取而代之的竟然是設計了第 2 題那種虛假情境的問題,如下:「某品牌計算機在計算對數 logab 時需按 log(a,b)……。」這種考題在以前的題目鋪陳上,是以題目抄錯順序為情境,這次刻意以計算機的操作布題,實為假情境。市售計算機的對數計算皆以 10 或自然對數 e 為底,並沒任意底數操作的方式,與現實矛盾的情境,無法回應 108 數學課綱的理念,倒不如讓學生在考試時使用計算機,才能讓他們更有感。

111 年學測數學 A 第 2 題。資料來源/大學入學考試中心

另外,數學 B 第 15 題的答案:機率為 14/15,以及第 16 題的答案:機率為 31/45,都不如 0.93、0.69 能讓人感受機率的大小。讀者可試想,你會跟朋友說買了一間 2022 坪的房子嗎?當然要說 44.97 坪才讓人有感。培養「數感」是計算機融入教學的一個重要理念。另外,第 19 題需要學生動手計算 2.3/48、2.3/19、4/57 來作答,也不是高中數學學習的重點,應該允許他們用計算機算。

另外有些小瑕疵的題目,例如數學 A 第 14 題的高斯消去法宜慎重出題。

大考中心宜出版學測參考答案,闡述出題理念以引導現場教學

整題來說,今年學測的數學科考題大方向可圈可點。回顧大考中心成立的歷史,民國 80 年 10 月 14 日,教育部長毛高文在臺灣省教育行政會議中頒發的書面致詞說:「如果將來的入學方式能多元化,學生的學習方式就不能固定一個模式,要用最基本的道理來應付各種的需求和挑戰,導向正常教學。」

反應在教育部於 1992 年提出的《我國大學入學制度改革建議書-大學多元入學方案》,其第五項理念是:

(五)考試方法應輔助教育,而非教育去適應考試方法。

而「良好的大學入學制度」的 14 項評判規準中,被認為「第一重要」的規準是:

3. 能引導高中正常教學。

由前述文件觀之,大考中心應平衡兩個服務面向,一面是為大學選才服務,另一面是為高中學習成效檢定服務,不該過度傾向於某一面的需求而犧牲另一面。目前仍顯得太傾向為大學服務,數學相對表現令多數高中教師失望。

本文最後不禁要再多提出一個請求。除了因為時間有限,宜減輕數學試題的份量以外,建議大考中心能出版學測參考答案,闡述出題理念以協助現場教學。雖然有許多人都已經釋出參考答案,但他們到底不是出題者,有些地方並不一定能精確了解出題的用心,如果中心能在公布簡答之外,出版詳細的文件、闡述出題理念、引導教學方向,對現場教學將有極大助益。

延伸閱讀

  1. 張鎮華,〈學測數學怎麼考?分程度測驗或許是正解〉,《科學月刊》,第 615 期,2021 年。
  2. 歐志昌,〈從 111 年學測數學 A 試題省思 108 數學課綱之教學與學生學習〉,《高中數學學科中心電子報》,第 168 期,2022 年。
  3. 大學入學考試中心,《我國大學入學制度改革建議書-大學多元入學方案》, 1992 年。
  • 〈本文選自《科學月刊》2022 年 3 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
231 篇文章 ・ 2264 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

10
7

文字

分享

0
10
7
改變在一「矽」之間——半導體的誕生│《電腦簡史》數位時代(十六)
張瑞棋_96
・2021/04/05 ・6669字 ・閱讀時間約 13 分鐘 ・SR值 542 ・八年級

本文為系列文章,上一篇請見:邁向商用化——電腦產業的形成│《電腦簡史》數位時代(十五)

真空管的先天缺陷:易報銷

二次大戰後,電腦全面使用真空管後,速度大幅提升,隨著需要大量計算的企業越來越多,電腦前景看似一片光明。不過當電腦上線運作後,真空管的先天缺陷終於曝露出來,嚴重阻礙電腦產業的發展。

真空管是靠加熱極細的燈絲而產生游離電子,電子被吸引至做為正極的金屬片而產生單向電流。由於燈絲與電極都會逐漸耗損,真空管的壽命原本就不長;即使是特別為電腦生產的真空管,在正常狀況下也不過能用兩千個小時。更何況在進行高速運算時,真空管不斷開開關關,燈絲很容易因此燒斷而提早報銷。

真空管二極體的構造。圖:Wikipedia

一部電腦至少有幾千個真空管,只要有一、二個壞掉,就會影響整體電路的運作。以 UNIVAC 為例,平均故障間隔 (MTBF, Mean Time Between Failures) 的時間不超過 24 小時;美軍的 ENIAC 用的真空管超過一萬七千個,MTBF 更是只有 12 小時。而一旦發生問題,要排除故障也相當耗費時間,平均得花幾個小時才能找出損壞的真空管,予以更換。

電腦如果動不動就得停機檢修,不僅效益大打折扣,還會影響正常作業,誰想花大錢購置電腦卻惹來內部抱怨連連。可靠性的問題沒有解決,電腦就難以獲得全面採用,只是真空管的物理特性就是如此,能再改善的空間有限,只能期待全新的電子元件出現。

如今我們知道,這革命性的電子元件就是電晶體。它不僅解決了可靠性的問題,而且大幅降低成本、縮小體積、提升速度,讓電腦改頭換面,並催生出各種電子產品,人類文明從此邁入新紀元。電晶體之所以能帶來革命性的改變,乃因它是奠基於一種革命性的材料——半導體。要知道電晶體如何發明,得先知道什麼是半導體。

半導電性:導體與絕緣體之間

顧名思義,半導體就是具有半導電性的物體。但何謂半導電性?

我們知道不同元素有不同電子數,以原子核為核心,由內而外分布於不同殼層。越外層的電子能量越高,其中最外層的電子稱為「價電子」,所處的能階稱為「價帶」。價電子仍被束縛在原子內,所以無法導電,必須獲得能量躍遷到「傳導帶」才能導電。傳導帶與價帶的能量差距稱為「能隙」,導電性便取決於能隙的大小。

金屬的能隙非常小,甚至傳導帶與價帶有部分重疊,所以導電性很高;反之,絕緣體的能隙很大,價電子無法跨越,因此無法導電。半導電的能隙則介於金屬與絕緣體之間。

三種不同導電性。圖:Wikipedia

能隙的大小與價電子的個數有關。每個殼層可容納的電子數都有上限,當價電子殼層越接近填滿狀態,就越穩定,需要越多能量才能激發價電子跳到傳導帶;當價電子越少,就越容易脫離束縛,跑到傳導帶。

金屬的價電子通常不超過 3 個(過渡金屬除外),很容易形成自由電子,到處移動。絕緣體通常有 5 個或以上的價電子。碳、矽、鍺、錫、鉛等 IV 族元素有 4 個價電子,剛好是半滿狀態,導電性介於導體與絕緣體之間,屬於半導體。

IV 族元素如果摻雜其它元素,導電性也會跟著改變。例如把磷摻到矽裡面,因為磷有 5 個價電子,其中 4 個與矽共用後,還多一個價電子,就更容易跑到傳導帶成為自由電子,這種半導體稱為 n 型 (n 代表 negative)。

矽如果摻的是有三個價電子的硼,只差一個價電子就是最穩定的狀態,猶如有個「電洞」讓經過的電子落入陷阱。旁邊的電子掉進這個電洞後又產生一個新的電洞,形成骨牌效應,從另一個角度看,就像是帶正電的電洞會移動一樣,因此稱為 p 型半導體 (p 代表 positive)。

偶然發現半導體

除了摻雜,化合物也可能形成半導體。半導體最早被發現,就是與 IV 族元素無關的化合物。1833 年,法拉第有一次在做電力實驗時,無意間將燈火靠近硫化銀,結果發現導電能力竟然大增;一旦移走燈火,導電性又隨著溫度下降而降低。一般金屬在高溫時,導電性會變差,硫化銀卻剛好相反,令法拉第大感訝異。

硫化銀就是一種半導體。高溫之所以增加半導體的導電性,是因為熱能會讓更多價電子躍遷到傳導帶,因此增加了導電性。一般金屬原本僅需一點能量就能產生自由電子,集體往正極方向移動。但電子如果吸收太多熱能,反而四處亂竄,原本的定向性受到破壞,導電能力也就隨之下降了。

法拉第雖然發現半導體這個特性,卻無法了解其中原理。畢竟當時距離道爾吞提出原子說還不到 30 年,是否有所謂的基本粒子仍頗受質疑,更無從想像原子內部還有電子與原子核。因此法拉第發表這個奇特的現象後,就不了了之,也沒有人想到在導體與絕緣體之外,還有一種半導體。下次半導體再度躍上檯面,已是四十年之後。

1874 年,才 24 歲的德國物理學家布勞恩 (Ferdinand Braun) 在研究各種硫化物的導電性時,將硫化鉛接上電,卻發現檢流計的指針紋風不動。他試著調換正負極,結果指針馬上就有反應。這實在太奇怪了,一個物體的導電性應該是一致的,怎麼會因為正負極不同接法,一下是絕緣體,一下又是導體?

發現半導體具有單向導電性的布勞恩。圖:Wikipedia

單向導電性是半導體另一項重要特性。硫有 6 個價電子,所以硫化鉛是 n 型半導體,一般情況下,電子只能從硫化鉛往正極移動,才會從另一個方向測不到電流。同樣地,由於當時仍然不清楚原子的構造(湯姆森於 1897 年才發現電子),不知如何解釋這個奇特現象。

大家毫無頭緒,單向導電性又看不出有何用途,因此布勞恩發表實驗結果後,並沒有激起任何漣漪。半導體再次受到忽視,要等到赫茲於 1888 年發表無線電波的實驗後,硫化鉛這類的半導體礦石才引起大家的興趣。

接收無線電波

赫茲的實驗吸引很多人投入無線電波的研究,印度科學家博斯 (Jagadish Chandra Bose) 也是其中之一。他發現 IV 族元素的礦石不但有單向導電性,而且不遵守歐姆定律:電流與電壓成正比。當施予礦石的電壓小於某個臨界值時,電流微乎其微;一但超過臨界電壓,電流便突然大幅增加。

博斯想到可以利用這個特性偵測微弱的無線電波。只要先對接收裝置施以適當電壓,讓無線電波所產生的感應電壓恰好超過臨界電壓,電流便會出現明顯變化,就能如實呈現無線電波。

1894 年,博斯將金屬天線的一端與硫化鉛的表面接觸,做成無線電偵測器(也稱「檢波器」),成功接收到一英哩之外的無線電波,這中間還隔了三道磚牆。

博斯發明的無線電收發器。圖:Wikipedia

馬可尼 (Guglielmo Marconi) 也在這一年發明無線電報系統,兩年後他和博斯在倫敦會面,不過博斯對商業應用不感興趣,並未與馬可尼合作。馬可尼也沒有採用博斯這個技術,而是利用感應電流產生的磁場變化,來吸引金屬屑或發出聲響,作為判斷電波的依據。

事實上,博斯自己後來也改用別種技術設計檢波器,因為礦石檢波器的確不是很靈光。礦石中的雜質分布並不均勻,不是每次用金屬線接觸硫化鉛表面都能形成迴路,往往得嘗試很多次才能找到「熱點」,得到訊號。

儘管如此,AT&T 的工程師匹卡德 (Greenleaf Pickard) 仍看好礦石檢波器的潛力,試圖找出收訊效果更好的礦石。

1902 年,匹卡德檢測一塊礦石的熱點時,懷疑施加的電流造成背景雜訊太大,於是伸手拿掉部分電池,結果雜訊果然馬上消失,無線電的訊號變得清楚許多。這時他看了一眼器材,才發現他剛剛不小心把電池的接線弄掉了,也就是礦石檢波器竟然不需要電,就可以接收無線電。

這個奇妙的現象完全違背過去的認知,於是匹卡德更加專心研究還有哪些礦石不用電就可以當檢波器。他花了三、四年的時間測試上千種礦石,發現有 250 種可以做為天然檢波器,其中又以熔融後的矽(原本用來製造石英玻璃)收訊效果最佳。

礦石收音機

匹卡德進行實驗的這段期間,無線電也正在發展另一項應用:傳送聲音。當時電話已是成熟的技術,可以將聲音轉換為音頻訊號,但音頻是連續波形,無線電波卻是脈衝電波,因此只能靠長/短、有/無來代表摩斯密碼,無法傳送音頻訊號。

1900 年,加拿大發明家范信達 (Reginald Fessenden) 發明一種高速交流發電機,終於能產生連續波形的無線電波(稱為「載波」,波形為規律的正弦波)。

原本規律的載波與音頻疊加後,變成起伏變化的無線電波,電波的振幅大小便代表音訊的變化。這種調變電波振幅的技術便稱為「調幅」(Amplitude Modulation, 簡稱AM),就是現在 AM 廣播所用的技術。

調幅示意圖。圖:Wikipedia

調幅無線電到了接收端,還得經過「解調」才能還原成原來的音訊。首先,由於天線接收無線電波後,所產生的感應電流也是交流電,因此必須先把反方向的電流去掉,成為單一方向的直流電;這個步驟便稱為「整流」。接著再濾掉其中的載波,留下的就是原來的音頻訊號。

范信達直到 1904 年才成功做出有整流功能的檢波器,並於 1906 年的聖誕夜成功發送 AM 廣播到大西洋上的美國軍艦。不過范信達所發明的檢波器不易製造,又常需要調校,只適合專業人士使用。而半導體的單向導電性恰好可以將交流電整流為直流電,這類礦石便可直接做為無線廣播的檢波器。

1906 年,匹卡德獲得矽石檢波器的專利,並在隔年創立公司,製造用耳機收聽的礦石收音機,銷售給一般大眾。由於價格低廉、體積小巧又不需要電,因此頗受歡迎。礦石收音機成為史上第一個半導體商品;誰會想到如今半導體與各種電子產品密不可分,但最早卻是以不用電為訴求。

匹卡德於1916年發明的矽石檢波器。圖:Wikipedia

三極真空管橫空出世

就在匹卡德於 1906 年申請專利這一年,美國專利局也收到另一項影響更深遠的專利申請,那就是由德佛瑞斯特 (Lee De Forest) 改良的新型真空管。

原本弗萊明 (John A. Fleming) 於1904 年發明的真空管只有正負兩極,德佛瑞斯特用金屬柵格擋在金屬片與燈絲之間,變成除了正、負極,還多了「柵極」(Grid) 的三極管

柵極用來控制電流大小。當柵極施以負電壓,產生的電場與電子相斥,部分電子便被擋下,無法抵達正極金屬片,電流也就變小了。負電壓越大,被擋下的電子越多,電流也就越小;柵極就像家裡的水龍頭,不用動到水管的閥門,就可以各自調節水流大小。

三極管在金屬片與燈絲之間多了金屬柵格。圖:Wikipedia

德佛瑞斯特原本設計三極管只是為了調節電流,他沒想到六年之後,這項設計竟被發掘出放大訊號的功能。

原本只有二極管時,若要調整電流大小,正極電壓就要有相對幅度的改變,就如前面水管的比喻,沒有水龍頭的話,只能從源頭閥門控制水量。例如要讓電流從 12 mA 減半降為 6 mA,電壓要從 110 V 降到 60 V;但若使用三極管,則無須改變正極電壓,只要對柵極施以 -2 V 的電壓就可以了。

三級管的電壓變化只需二級管的 1/25 ,便能達到同樣的效果(若搭配適當的阻抗,相差還能到百倍以上),就像水龍頭那樣,轉動一點點,出水量就差很多。如果讓柵極做為訊號的輸入端,正極做為輸出端,那麼原本微弱的訊號,就會放大成強烈的訊號。

有了三極管做為訊號放大器,無線電可以傳得更遠,收訊效果也更好,而且收音機還可以配上喇叭。隨著廣播電台自 1920 年代開始快速發展,真空管收音機也進入一般家庭,成為民眾重要的休閒娛樂與資訊來源。相對地,礦石收音機的收訊效果與方便性都遠遠不如,自然不受青睞,逐漸沒落。好不容易找到舞台的半導體於是又被棄置一旁,沒想到十幾年後,同樣是由來自 AT&T 的工程師,再度讓半導體起死回生。

德佛瑞斯特於1914年用三極管打造的訊號放大器。圖:Wikipedia

真空管搞不定短波

三極真空管有助於無線廣播,當然也有助於電話傳得更遠。 AT&T 利用真空管擴大電話網路,於 1915 年開通橫跨東西兩岸的長途電話。1927 年 1 月 7 日, AT&T 總裁進一步透過無線電波,從紐約打電話到倫敦,完成史上第一通越洋電話。不過這通電話只是試驗性質,真要提供越洋電話服務,還有項技術問題須要克服。

紐約與倫敦相隔甚遠,無線電波無法橫越地表弧度直接送達,必須經大氣的電離層反射到地面。然而一年四季、晴雨晨昏,大氣條件都不一樣,對電波的影響也大不相同。因此若要維持越洋電話全年暢通,通訊設備須要能夠收發不同波長的無線電波。不過真空管在高頻(也就是短波)的表現不是很好,如何克服這個問題便成為貝爾實驗室的首要任務。

貝爾實驗室於 1925 年成立,初期的工程師大多從 AT&T 陸續轉調過來,歐偉 (Russell Ohl) 也是其中之一,他對無線電的興趣始自大學時期。1914 年第一次世界大戰爆發,當時大學二年級的歐偉,在課堂上第一次聽到礦石收音機發出聲音,而且竟然是遠在大西洋的英國船隻,遭到德國潛艇攻擊所發出的求救訊號,從此他便對無線電深深著迷。

歐偉原本在 AT&T 就是負責短波的研發,1927 年轉到貝爾實驗室後仍繼續這個項目。他們不斷將無線電電波推向更高的頻率,但最終遇到瓶頸難以跨越。當其他同事仍執著於真空管時,歐偉於 1935 年決定從頭開始,一一檢視過去無線電的各種實驗與論文,從中發掘可行方案。最後他把目標瞄準礦石收音機的矽石,相信這才是解答。

歐偉 (Russell Ohl) 在他的實驗室裡。圖:Engineering and Technology History Wiki

一道裂痕開啟「矽」的半導體時代

礦石收音機不是才被真空管淘汰嗎?同事與主管都認為歐偉異想天開,但他認為只要去除矽石中的雜質,就能收發頻率更高的無線電波。歐偉自己多次嘗試用矽粉製造,卻不得其果,最後終於在 1939 年找到具有冶金專長的同事,用高溫熔製的方法精煉出高純度的矽。

1940 年 2 月 23 日,歐偉決定檢測一塊去年製出的矽石,據他的同事說,這塊矽石相當奇特,每次測的導電性都不一樣。歐偉仔細檢查這塊矽石,發現中間有條裂痕,他猜想這就是導電性不一致的原因,原本不以為意。但他接上示波器,赫然發現矽石在檯燈的照射下,竟然會產生電流。

光電效應是會產生電流,但那是以紫外線照射金屬,而這顆 40 W 的燈泡發出的是可見光,矽的導電性也遠遠不如金屬。雖然美國發明家弗里茲 (Charles Fritts) 曾於 1884 年將硒鍍上金箔,做成太陽能電池,但這樣的光伏效應 (Photovoltaic effect,也稱「光生伏特效應」) 轉換效率非常低,只有 1% 左右。歐偉所測到的電壓,超過當時所知的光電效應與光伏效應十倍以上,絕對是項前所未有的發現。

歐偉趕緊找主管來看,同時和同事繼續深入研究這塊矽石。他們發現電流總是由裂痕的上半部流往下半部,而不會反向而行。經過進一步分析發現,裂痕兩邊含有不同的雜質,上半部含有少許的硼,而下半部的雜質則是磷。

他們推測應該是這塊矽石經過高溫熔化,在自然冷卻的過程中,較重的磷下沉得比較快,較輕的硼下沉得比較慢,裂痕出現的地方剛好將這兩種元素阻隔開,以致矽石的上、下半部各有不同的雜質。

歐偉推測電流就是兩邊不同的雜質所致。磷有 5 個價電子,而硼有 3 個價電子,在白熾燈泡的照射下,磷的多餘電子被激發而越過裂痕,填補含硼那一邊矽石的電洞,而產生電流。這就類似電池的負極提供電子給正極,於是歐偉也用「n型」、「p型」來稱呼這兩種矽石,然後把劃分兩邊的裂痕——也就是這兩種半導體的接觸面——叫做「p-n 接面」(p-n junction)。這幾個名稱便一直沿用到現今的半導體。

半體體的基本名稱不但源自歐偉的命名,如今我們懂得利用摻雜來改變半導體的導電性,也是始自他這次的發現。不過對歐偉而言,他一心只想研究無線電波,發現半導體的光伏效應只是偶然,他無意也沒有能力再深究其中原理。

半導體的後續研究隨即由貝爾實驗室另一個團隊接手,這群有量子力學背景的物理學家將釐清 p-n 接面的奧秘,進而發明改變世界的電晶體。

張瑞棋_96
423 篇文章 ・ 625 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。