0

5
2

文字

分享

0
5
2

織布機的進化戰爭,計算機的關鍵突破│《電腦簡史》 齒輪時代(十九)

張瑞棋_96
・2020/06/29 ・3236字 ・閱讀時間約 6 分鐘 ・SR值 513 ・六年級

-----廣告,請繼續往下閱讀-----

上一篇提到巴貝奇放棄差分機,轉而投入分析機的設計,意欲打造什麼都能算的通用型計算機。分析機必須採用全新架構,巴貝奇受困許久,沒想到最後讓他突破盲點的靈感,竟是來自於看似毫無關聯的織布機……。

本文為系列文章,上一篇請見:兩艘軍艦換不到兩噸重的計算機?巴貝奇與差分機│《電腦簡史》 齒輪時代(十八)

紡織業落後英國,沃康松臨危受命

還記得發明「便便機器鴨」的沃康松嗎?他結束吹笛人、鼓手與機器鴨等機械玩偶的展演後,本來要更進一步,打造具有肌肉運動、呼吸、血液循環的機械生物,不料突然於 1741 年接到一項官方任務,而不得不擱置這個計畫。(前情提要:如果上帝就像鐘錶匠,當然我們也能?│《電腦簡史》 齒輪時代(十二)

原來法國政府發現英國紡織業這幾年突發猛進,背後的助力就是英國發明家約翰.凱 (John Kay) 於 1733 年發明的飛梭。以往織布機至少要有兩人操作:一個工人提起縱向的經紗,然後將梭子推向另一端,帶著橫向的緯紗穿過經紗,然後另一端的工人待另一組經紗又提起後,再將梭子推回來,如此不斷往返。

-----廣告,請繼續往下閱讀-----

有了飛梭之後,一部織布機只需要一個工人操作,而且速度快上好幾倍,還能織出更寬更大的布。因此英國的紡織業無論是成本、產量或樣式,都遙遙領先其它各國,一躍為歐洲的領頭羊。法國政府不甘落後,於是找上沃康松,冀望他運用設計自動機器的長才,也能改善法國的織布機,好迎頭趕上英國。

前人已曾改善織布機,靈感來自滾筒風琴

其實早在沃康松之前,法國就曾有兩位紡織工人試圖改造織布機,時間比約翰.凱發明飛梭還早;不過他們針對的是提花布的編織。織布機織的布有兩種,一種是沒有圖案的素面布,另一種是有圖案的提花布。製造素面布比較簡單,每次提起的經紗相當固定,例如這次是奇數線,下次則是偶數線,如此不斷輪流。但提花布就相當麻煩,每次要提起的經紗組合都不一樣,非常耗時費工。紡織工人布雄 (Basile Bouchon) 想改善的,便是製造緹花布的方法。

其實布雄找到的解決方案已經存在很久了,只不過它一直隱藏在與紡織業毫無關聯的一樣東西──滾筒風琴 (barrel organ) 。

滾筒風琴的內部結構。圖/wikipedia

滾筒風琴通常用於街頭表演,只要轉動搖柄,就會自動奏出樂曲。事實上,滾筒風琴的原理與音樂盒類似,旋律變化都是取決於圓筒表面參差不齊的突起。差別在於音樂盒是直接撥動鋼製簧片發出聲音,滾筒風琴則是間接造成不同音管阻塞,由風箱產生氣流通過音管而發出聲音。就這點而言,滾筒風琴反而更接近穆薩三兄弟於 850 年設計的吹笛手。

-----廣告,請繼續往下閱讀-----

布雄的父親原本就是製作滾筒風琴的工匠,布雄從小耳濡目染,對滾筒風琴的構造瞭若指掌。因此當他踏入紡織業後,觀察到織布機的經紗起起落落,編織出規律的幾何圖案,便聯想到這其實與滾筒風琴有異曲同工之妙。規律的圖案相當於不斷重覆的樂曲,經紗相當於音管;既然可以藉由轉動圓筒而奏出樂曲,那麼同樣的原理應該也能用於織布機,控制經紗起落而織出圖案。

用紙卷控制經線,織出不同的圖樣

布雄很清楚滾筒風琴的圓筒如何製作:先按照樂譜上的音符在紙上畫好記號,接著將紙裹住圓筒表面,然後在記號處──釘上鐵釘,再取下紙張即大功告成。不過布雄並沒有依樣畫葫蘆,打造另一個用於織布機的圓筒。這是他的另一個洞見:打了孔的紙已經包含如何控制音管的資訊,做成圓筒只是沿襲自音樂盒的作法,並非絕對必要。也許織布機無需圓筒,用打孔的紙張就能控制經線起落?

布雄所設計用打孔紙帶控制的織布機。圖/wikipedia

1725 年,布雄公開展示他的發明:在現有織布機上外加一個編織控制裝置。這個裝置有條寬寬長長、打了許多洞的紙帶,首尾相連成環,再用兩根圓筒狀的軸桿上下撐開,就像輸送帶或跑步機那樣,只不過紙帶是直立的,而且要靠手拉動。

以往要靠人工挑選要提起的經紗,現在只要把上方軸桿推向前去頂整排勾針。由於軸桿表面是鏤空的,所以哪些勾針會被頂到而移動,取決於對應到紙帶的位置是否有洞。沒有洞,紙帶才會推動勾針提起經紗;如果有洞,勾針就會穿過洞而文風不動。等梭子穿過經紗後,再將紙帶拉下一點,再次推軸桿去頂勾針,如此不斷地拉紙帶、推軸桿。由於洞的分布位置都不相同,所以每次會提起不同的經紗,而織出特定圖案。

-----廣告,請繼續往下閱讀-----

這是史上第一台半自動織布機,也堪稱第一台可編程的工業機器,因為只要更換不同紙帶,就能織出不同圖樣。可惜布雄的劃時代發明並未獲得青睞,因為它仍有許多缺陷,例如紙張很容易破裂,用沒多久就要整卷更換;紙的強度不足也限制了紙帶寬度,只能織出窄福的提花布;此外,紙帶長度受限於織布機的高度,圖案很快就又重覆,太過單調呆板。

紙卷太短又容易破,何不改用串接的卡片?

三年後,布雄的助理法爾肯 (Jean-Baptiste Falcon) 克服了這幾個缺陷。他把上方的軸桿改成方形,並且改用一片一片串起來的厚紙板取代紙帶,如此一來,就不需要下方軸桿,卡片串接的長度便不受限制,可以織出更複雜的圖案。厚紙板也可以做成更寬,就能織出更寬的提花布。此外,厚紙板較不易破損,就算破損,也只需要更換壞掉的卡片,不用像紙帶那樣要整卷換新。

不過即使解決了這幾個問題,紡織廠仍然不願意花錢改裝織布機,因為方形軸桿仍得靠人工轉動,還要對齊打洞的位置,織布速度沒快多少,也未減少人力,投資效益並不高。法國紡織業的自動化腳步就此打住,直到十多年後,沃康松奉命提升法國織布技術,布雄與法爾肯的發明才又被挖出來。

沃康松以布雄的設計為基礎,但將紙帶改為裹住一個金屬大圓筒,運用自動機器的原理做出連動機制,讓圓筒轉動與推壓勾針的動作一氣呵成,持續不斷地自動織出圖案。沃康松果真不負法國政府所托,於 1745 年展示史上第一架全自動織布機。不過紡織工人可不高興,他們深恐因此失業,群起抗議;有些工人怪罪到沃康松頭上,還朝他丟石頭。織布機自動化的計畫再次受挫,沃康松也不如歸去,重拾他的擬人機器人計畫。

-----廣告,請繼續往下閱讀-----

其實紡織工人無須太過驚慌,因為沃康松改良布雄的設計後,雖然可以減少人力、提高效率,但所織的布仍然無法太寬、圖案不能太複雜,所以還是沒有幾家工廠願意購置。為什麼沃康松要延用紙帶,而不是選擇法爾肯所設計的卡片?這的確令人費解。打孔卡片直到半個世紀後,才被另一位法國發明家雅卡爾 (Joseph Marie Jacquard) 重新發掘,他成功地結合前人的設計,打造出可編程的全自動織布機。

雅卡爾統合成功建織布機,巴貝奇承襲設計造分析機

雅卡爾於 1752 年出生於法國的紡織重鎮里昂 (Lyon) ,這裡正是當初布雄與法爾肯工作的地方。雅卡爾的父親也是紡織工匠,有自己的工坊;雅卡爾從小就要幫忙打雜,直到十三歲才在姊夫的指導下識字念書。二十歲時父親過世,雅卡爾繼承了紡織工坊,然而才十年時間,他就敗光家產,只能離鄉背井四處打工謀生,直到 1789 年才回到家鄉,重返熟悉的紡織業。

歷經法國大革命的十年動盪後,雅卡爾自 1800 年開始,陸續發表各種自動化的紡織設備,包括用腳踩踏的織布機、魚網編織機。1803 年,拿破崙特地召見雅卡爾,讓他住進巴黎的工藝學院,任意使用裡面的設施,進一步研究如何改善織布機。雅卡爾仔細研究工藝學院收藏的布雄、法爾肯、沃康松等人的設計,最後他決定將沃康松所用的大圓筒與紙帶換成打孔的卡片,利用棘輪控制卡片轉動,果然成功打造出真正實用的全自動織布機。

雅卡爾織布機的控制裝置。圖/wikipedia

雅卡爾織布機 (Jacquard loom) 其實是個控制裝置,可以加裝在現有的織布機上。原本兩個工人一天才能合力織出 3 公分的提花布,改裝後只需要一個工人,一天就能織到 60 公分長,而且布寬與圖案都不受限制。雅卡爾織布機自 1805 年發表,到 1811 年專利期滿為止,共出貨了一萬一千台,大幅提升法國紡織業的競爭力。

-----廣告,請繼續往下閱讀-----

雅卡爾不僅改變了紡織業,也間接促進了計算機的進展。打孔卡片的可編程功能在他手中發揚光大,遠在英國的巴貝奇正是受此啟發,才能設計出史上第一台通用計算機。

文章難易度
張瑞棋_96
423 篇文章 ・ 998 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
計算機先驅:巴貝奇與他的小型差分計算機——《資訊大歷史》
azothbooks_96
・2022/07/01 ・3045字 ・閱讀時間約 6 分鐘

查爾斯.巴貝奇

查爾斯.巴貝奇(Charles Babbage),1792 至 1871 年。

1843 年,一位英國數學家提出了分析機原理,這個構思將在一百零三年後由後人付諸實踐,並有了一個為大家熟知的名字——計算機(今日俗稱電腦)。很遺憾,查理斯.巴貝奇終其一生也沒能實現造出分析機的願望,但他依舊是當之無愧的計算機先驅。

直到今天,許多計算機書籍扉頁裡仍然刊載著他的照片,以表紀念。

巴貝奇發明小型差分計算機

一七九二年,巴貝奇出生於倫敦一個富有的銀行家家庭,十八歲進入著名的劍橋大學三一學院,成為牛頓的校友。後來他擔任了牛頓擔任過的「盧卡斯數學教授」職務。在進入大學之前,他就展現出極高的數學天分。

進入大學後,巴貝奇發現,當時英國人普遍接受的牛頓建立在運動基礎之上的微積分,不如萊布尼茨基於符號處理的微積分那樣便於理解和傳播。為了推廣已被歐洲大陸普遍接受的萊布尼茨的微積分,他和其他人一同創辦了英國的(數學)分析學會。

不過巴貝奇並不是一個安分的學生,他一方面顯現出超凡的智力,另一方面又不按照要求完成學業,為此他不得不轉了一個學院,才能繼續學業。在學校裡,他還對很多超自然的現象感興趣。

延伸閱讀:巴貝奇誕辰|科學史上的今天:12/26

如果不是趕上工業革命,巴貝奇或許會尋找某個傳統的數學領域或者自然哲學領域做一輩子研究,並且留下一個巴貝奇定律或者巴貝奇定理。但是,工業革命的大背景,讓他把畢生精力和金錢都投入研究一種能夠處理資訊的機械中。

-----廣告,請繼續往下閱讀-----

這也不奇怪,因為工業革命為資訊處理提供了思想上的依據、技術上的條件和廣闊的市場。工業革命是人類歷史上最偉大的事件。它不僅第一次讓人類從此進入可持續發展的時代,也改變了人們的思想。人類從相信神,到今天開始變得自信起來,相信這個世界是確定的、有規律的,而自己能夠發現世界上所有的規律。

早在牛頓時代,著名物理學家玻意耳(Robert Boyle)在總結牛頓等人的科學成就之後,就提出了「機械論」,也被稱為「機械思維」。

提出「機械論」的玻意耳(Robert Boyle)。圖/Wikipedia

玻意耳等人(包括牛頓、哈雷等)認為,世間萬物的規律都可以用機械運動的規律來描述,包括蒸汽機和火車在內的工業革命中那些最重要的發明,都受益於機械思維。人們熱衷於用機械的方法解決問題,從精密的航海導航,到能夠奏樂的音樂盒,再到能織出各種圖案的紡織機。

既然能想到的所有規律都可以用運動規律來描述,那麼就很容易想到讓具有特殊結構的齒輪組運動來完成計算,這便是設計機械計算機的思想基礎。

其實,這種想法早在十七世紀就有人嘗試過。法國數學家帕斯卡(Blaise Pascal)發明了一種手搖計算器——雖然有時人們將它稱為最早的機械計算機,但實際上它和我們今天理解的電腦概念沒有太多相似之處,稱之為「計算器」更為恰當。

-----廣告,請繼續往下閱讀-----

帕斯卡計算器從外觀上看有上下兩排旋鈕,每個旋鈕上都刻著○至九這十個數字。在做加減法時,只要將參加運算的兩個數字分別撥到相應的位置,然後轉動手柄,計算器裡的一組組齒輪就會轉動,完成計算。

帕斯卡計算器。圖/Wikipedia

帕斯卡計算器最初只能做加法,後來經過改良, 可以做減法和乘法, 但做不了除法。在帕斯卡之後,萊布尼茨改良了計算器。他發明了一種以他名字命名的轉輪「萊布尼茨輪」,方便實現四則運算中的進位和借位。

到了十九世紀初,經過近兩個世紀的改進,機械計算器已經能夠完成四則運算,但是計算速度很慢,精度也不夠高,而且設備造價昂貴。不過,這種計算器更大的缺陷在於,對於複雜的運算(比如對數運算和三角函數運算)都做不到。

十九世紀機械工業的發展需要進行大量的複雜計算,比如三角函數的計算、指數和對數的計算等。在微積分出現之前,完成這些函數的計算是幾乎不可能的事。

-----廣告,請繼續往下閱讀-----

十八世紀之後,歐洲數學家用微積分找到了很多計算上述函數的近似方法,不過這些方法的計算量極大,需要很長的時間,而且當時除了數學家,一般人是完成不了那些計算的。為了便於工程師在工程中和設計時完成各種計算,數學家設計了數學用表,如此一來工程師就可以從表中直接查出計算的結果。

不過,那個時代的數學用表錯誤百出,為生產和科學研究帶來了很多麻煩。而這個問題很難避免,因為手算很難保證完全不出錯。如果很多數學家分別獨立計算,還可以比對結果發現錯誤。但是巴貝奇發現,那些不同版本的數學用表都是抄來抄去,而犯的錯也都一樣。

因此,巴貝奇想設計一種機械來完成微積分的計算,然後用它來計算各種函數值,得到一份可靠的數學用表。當時他只有二十二歲。

延伸閱讀:兩艘軍艦換不到兩噸重的計算機?巴貝奇與差分機|《電腦簡史》 齒輪時代(十八)

在隨後的十年裡,巴貝奇造出來一台有六位精度(巴貝奇最初的目標是達到八位精度)的小型差分計算機。隨後巴貝奇用它算出了好幾種函數表,用於解決航海、機械和天文方面的計算問題。

-----廣告,請繼續往下閱讀-----

值得指出的是,巴貝奇的這次成功受益於工業革命的成就——當時機械加工的精度比瓦特時代已經高出了很多,這讓巴貝奇能夠加工出各種尺寸獨特的齒輪。

但是,當時並沒有二十世紀的精密加工技術,製造小批量特製齒輪和機械部件的成本高、難度大,這給巴貝奇後來的工作帶來了諸多不便。

巴貝奇小型差分計算機的部分模組。圖/Wikipedia

不過,首次成功還是讓巴貝奇獲得了英國政府的資助,用以打造一台精度高達二十位的計算機。

幾年後,他又獲得了劍橋大學盧卡斯數學教授的職位,讓他有了穩定的收入。在此之前,他一直在花自己繼承的十萬英鎊遺產。勝利女神似乎正向他招手,但接下來的時日,他在計算機研究方面一籌莫展。

-----廣告,請繼續往下閱讀-----

從表面上看,巴貝奇遇到的困難是因為那台差分機太複雜了,裡面有包括上萬個齒輪的二點五萬個零件,當時的加工水準根本無法製造。但更本質的原因是,巴貝奇並不真正理解計算的原理。他不懂得對於複雜的計算來說,不是要把機器做得更複雜,而是要用簡單的計算單元來實現複雜的計算。

當然,在那個年代沒有人瞭解這些。作為現代計算機基礎理論的布林代數要再等十幾年才會被提出來,而且要再過近一個世紀,才會被應用到計算技術中。

後人根據巴貝奇的設計打造而成的差分機。圖/Wikipedia

——本文摘自《資訊大歷史:人類如何消除對未知的不確定》,2022 年 6 月,漫遊者文化,未經同意請勿轉載。

azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

8
2

文字

分享

0
8
2
學測該怎麼出題?——點評高中數學教育與 111 年數學學測
科學月刊_96
・2022/03/02 ・3952字 ・閱讀時間約 8 分鐘

  • 文/張鎮華|臺灣大學數學系名譽教授。

Take Home Message

  • 今年學測試題為 108 課綱實施的第一次學測。數學考題公布後,各界普遍對本次的試題感到失望。張鎮華認為,本次試題大多符合 108 數學課綱的精神,但試題的份量太重,學測應回歸「初步篩選門檻」的定位。
  • 張鎮華表示,數學考題的份量應調整適中,過去考題內容大多偏難,學生學習時遂常以對付考試為方向,以歷年考試題型為依據,背公式以求速解,忽略基礎概念的學習。
  • 近年來數學教學及評量已融入計算機使用,但大考仍禁止使用計算機,張鎮華認為,培養數感是計算機融入教學的重要理念之一,未來大考應允許使用計算機。
  • 張鎮華建議大考中心除了公布簡答之外,也能出版詳細的文件,闡述出題理念,協助引導教師的教學方向。

111 年學測於今(2022)年元月下旬登場,這是 108 課綱實施之後的第一次學測,各界都引頸觀望大考中心會如何回應 108 課綱,這更是教學現場師生關注的焦點。在數學科有兩個為人重視的方向,其一是回應數學自高二起分流教學,數學 A 和數學 B 如何命題;其二是學測數學科考題近年來在難易間來回擺盪,今年會是如何?

學測宜回歸「初步篩選門檻」的定位

學測始於民國 83 年,其定位是「初步篩選門檻」。但是數學科的考題並沒有對位,一直到民國 100 年之前,試題普遍都較難,滿級分人數占考生的百分比幾乎各年都只比 1% 略多,民國 85 年的 0.16% 更是歷年來滿級分比例最低的一次。這樣的難題,引發大部分學生害怕數學,現場老師更無法正常教學。自民國 100 年起,數學科考題逐漸回歸基礎,但卻在難易之間來回擺盪,讓師生每年惴惴不安。

民國 108、109 年的學測數學科試題極為適當,但卻因為滿級分考生的百分比高而獲罪,讓人無法理解;隔年數學科考題轉難,這雖在大家預料之內,但是各界熱切期望其回歸基本。本來期盼分程度測驗的數學 A 和數學 B 能解此困境,但是在今年數學 A 考完當晚,許多國高中老師、大學教授紛紛發表評論,對考題表示失望與不解。

筆者因為要協助高中數學學科中心,拍攝數學 A 和數學 B 的解答影片,先獨自逐題解答了兩份試卷,感覺題目其實都出得很好,大致上回應了 108 數學課綱的精神。但是其份量太重,100 分鐘的考試時間並不是合理的安排,難怪各界覺得太難;就連數學 B 試卷,其對象是低數學需求的學生,筆者也認為份量太重。

-----廣告,請繼續往下閱讀-----

我猜想,數學 A 的份量會如此重,可能是想與數學 B 有所區隔。但是兩份試卷內容都太重了,學測還是應該回歸「初步篩選門檻」的定位,以利現場教學。

數學的教與學宜重視基礎概念,避免依考試題型學習

面對大考,數學的教與學也應該反思。數學的知識密度高,比起其他學科,有更多的邏輯推理,解題更宜細緻緩慢,需要充分的時間。可惜的是,面對「科科等值」的壓力,數學科的考試時間只能和各科一樣。在這樣的限制下,如果數學考題份量適當,也無不可;偏偏各處的考題大多偏難,學生的學習遂常以對付考試為方向,以歷年考試題型為依據,背公式以求速解,忽略基礎概念的學習。

在引導學生的學習應注重基礎概念這件事情,大考中心歷年來極盡努力。以今年數學 A 第 1 題為例,就是在傳達一個理念,排列組合只要重視基礎原理及組合數 Ckn 就夠了。早年有關排列組合的學習內容極多,許多內容都是被「製造」出來的考試難題,不關乎組合學的根本。後來 99 課綱刪除了環狀排列,108 課綱則刪除重複組合,將內容回歸到基礎概念。審視大考中心這些年來有關排列組合的試題,其實都是基本的概念,高中師生應該要理解,重視基礎概念才是王道。

111 年學測數學 A 第 1 題。資料來源/大學入學考試中心

再以今年數學 A 第 4 題為例,涉及的只有等差數列的定義,以及對數的換底公式和常用對數的 3 條對數律。早年有關對數的教學,涉及極多一般底的變形對數律公式,也出現底為函數的偏鋒考題,於對數本質的學習幫忙不大,但學生卻窮於背公式、解難題。其實對數相關的問題,只要以換底公式回歸常用對數,必要時再輔以常用對數的 3 條對數律,均能順利回答。99 及 108 數學課綱均重視此理念,大考中心的試題亦都契合此想法,高中師生當可放心依此教與學。

-----廣告,請繼續往下閱讀-----
111 年學測數學 A 第 4 題。資料來源/大學入學考試中心

今年學測數學 A 還有許多值得稱道的題目。例如第 7 題中,絕對值代表數線上兩點間的距離,若能搭配數線上的圖形判斷,並不需要進行去絕對值的耗時計算;第 10 題有關三次函數的性質,不必記憶對稱中心的公式,不淪為費時的三次配方,是相當用心的題目;第 12 題揭示,不必背誦一元二次方程式的公式解;第 6、15 題提醒,不能忘記國中所學的基礎平面幾何知識,凡此種種都很精采。

更多有關今年數學 A 考題的分析,可參考延伸閱讀的《高中數學學科中心電子報》文章。

計算機融入教學與評量

108 數學課綱除了從高二起分三軌教學以外,還有一個重點,就是計算機融入教學與評量。108 數學課綱高中範圍的 84 條學習內容中,有 24 條使用計算機作為參考教具。實施要點各處亦闡明,教材要設計計算機相關內容,教學應重視學生使用計算機的方法與態度,教學資源應包括計算機,學習評量宜容許學生使用計算機。

如今,6 家出版社的高中數學教科書,均依照課綱的精神將計算機教學融入,學校老師們也開始教導學生正確使用計算機的方法與態度,許多回應都指出,計算機融入教學收到不錯的成效,過去一些害怕數學的學生,因為有了工具,逐漸開始喜歡數學。只是令人不解的是,大考中心並不允許學生在學測考試時使用計算機,理由之一是害怕學生利用計算機作弊;這是一個不可思議的藉口,請看世界極多國家的考試都已經允許學生使用計算機,並沒發生什麼不良事件。

審視今年學測數學科考題可以發現,為了害怕被批評不能使用計算機,一些需要使用真實數據的應用題目都不見了,因此考題中缺少高二的一些重要學習內容,例如指數、對數、三角函數的應用問題。取而代之的竟然是設計了第 2 題那種虛假情境的問題,如下:「某品牌計算機在計算對數 logab 時需按 log(a,b)……。」這種考題在以前的題目鋪陳上,是以題目抄錯順序為情境,這次刻意以計算機的操作布題,實為假情境。市售計算機的對數計算皆以 10 或自然對數 e 為底,並沒任意底數操作的方式,與現實矛盾的情境,無法回應 108 數學課綱的理念,倒不如讓學生在考試時使用計算機,才能讓他們更有感。

-----廣告,請繼續往下閱讀-----
111 年學測數學 A 第 2 題。資料來源/大學入學考試中心

另外,數學 B 第 15 題的答案:機率為 14/15,以及第 16 題的答案:機率為 31/45,都不如 0.93、0.69 能讓人感受機率的大小。讀者可試想,你會跟朋友說買了一間 2022 坪的房子嗎?當然要說 44.97 坪才讓人有感。培養「數感」是計算機融入教學的一個重要理念。另外,第 19 題需要學生動手計算 2.3/48、2.3/19、4/57 來作答,也不是高中數學學習的重點,應該允許他們用計算機算。

另外有些小瑕疵的題目,例如數學 A 第 14 題的高斯消去法宜慎重出題。

大考中心宜出版學測參考答案,闡述出題理念以引導現場教學

整題來說,今年學測的數學科考題大方向可圈可點。回顧大考中心成立的歷史,民國 80 年 10 月 14 日,教育部長毛高文在臺灣省教育行政會議中頒發的書面致詞說:「如果將來的入學方式能多元化,學生的學習方式就不能固定一個模式,要用最基本的道理來應付各種的需求和挑戰,導向正常教學。」

反應在教育部於 1992 年提出的《我國大學入學制度改革建議書-大學多元入學方案》,其第五項理念是:

(五)考試方法應輔助教育,而非教育去適應考試方法。

而「良好的大學入學制度」的 14 項評判規準中,被認為「第一重要」的規準是:

3. 能引導高中正常教學。

由前述文件觀之,大考中心應平衡兩個服務面向,一面是為大學選才服務,另一面是為高中學習成效檢定服務,不該過度傾向於某一面的需求而犧牲另一面。目前仍顯得太傾向為大學服務,數學相對表現令多數高中教師失望。

-----廣告,請繼續往下閱讀-----

本文最後不禁要再多提出一個請求。除了因為時間有限,宜減輕數學試題的份量以外,建議大考中心能出版學測參考答案,闡述出題理念以協助現場教學。雖然有許多人都已經釋出參考答案,但他們到底不是出題者,有些地方並不一定能精確了解出題的用心,如果中心能在公布簡答之外,出版詳細的文件、闡述出題理念、引導教學方向,對現場教學將有極大助益。

延伸閱讀

  1. 張鎮華,〈學測數學怎麼考?分程度測驗或許是正解〉,《科學月刊》,第 615 期,2021 年。
  2. 歐志昌,〈從 111 年學測數學 A 試題省思 108 數學課綱之教學與學生學習〉,《高中數學學科中心電子報》,第 168 期,2022 年。
  3. 大學入學考試中心,《我國大學入學制度改革建議書-大學多元入學方案》, 1992 年。
  • 〈本文選自《科學月刊》2022 年 3 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
科學月刊_96
249 篇文章 ・ 3653 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。