Loading [MathJax]/extensions/tex2jax.js

0

4
0

文字

分享

0
4
0

一小口也能當單位?讓伊麗莎白一世看不下去的野蠻傳統——《從奈米到光年:有趣的度量衡簡史》

時報出版_96
・2020/04/17 ・3319字 ・閱讀時間約 6 分鐘 ・SR值 504 ・六年級

-----廣告,請繼續往下閱讀-----

  • 作者/李開周
  • 編按:本文中的單位換算,是中世紀歐洲的計算方式,現代的計算方式已和過去不同,一起來看看那時的單位計算有多野蠻吧!

蕭邦之所以姓「蕭邦」,來自於「一瓶紅酒」

弗雷德里克.蕭邦(Frédéric François Chopin) ,波蘭鋼琴家、作曲家,十九世紀歐洲浪漫主義音樂的代表人物,弗雷德里克是名字,蕭邦是姓氏。

蕭邦為什麼姓蕭邦呢?因為他父親姓蕭邦。他父親為什麼姓蕭邦呢?因為他父親的父親的父親的父親,也就是蕭邦的祖宗,在法國賣過紅酒。

波蘭作曲家弗雷德里克.蕭邦,他的姓氏來源於容量單位Chopin。圖/時報出版提供

幾百年前的法國,單瓶紅酒的標準容量是一超品(Chopin)。當時法國人說到紅酒,就會想起超品;而說到超品,就能想起紅酒。蕭邦的祖宗既然賣紅酒,所以就把「超品」當作家族的姓氏。

後人再把這個姓氏譯成漢語,就成了「蕭邦」。實際上,按照現代漢語讀音,把 Chopin 譯成「超品」並不恰當,譯成「蕭邦」才比較接近。

-----廣告,請繼續往下閱讀-----

現在我們知道了,蕭邦的姓氏和度量衡有關,是法國傳統容量單位超品的另一種譯法。那麼這個容量單位到底有多大呢?折算成現在國際通用的毫升,到底有多少毫升呢?算一下就知道了。

  • 一法國超品等於 1.5 英制品脫,一英制品脫又等於 0.125 英制加侖,所以一法國超品等於 0.1875 英制加侖。
  • 一英制加侖是多少呢?大約是 4546 毫升。所以,一法國超品就相當於 852.375 毫升,約等於 850 毫升。
兩只伏特加酒杯,容量均為一超品。圖/時報出版提供

現在市面上的法國紅酒,單瓶容量通常是 750 毫升或 700 毫升。也就是說,蕭邦的祖上售賣的紅酒,比現在的紅酒要實惠,酒瓶更大,裝得更多。

但我們必須說明的是,將一超品折算成 850 毫升,完全是根據現代英制加侖與毫升的換算關係來計算。而在幾百年前,並沒有「毫升」這個概念,一加侖的實際大小是不確定的,可能比 4546 毫升略大,也可能比 4546 毫升略小,所以一超品的實際大小並不能十分確定。

這些容量單的換算關係如下:

-----廣告,請繼續往下閱讀-----
  • 一蒲式耳=二坎寧
  • 一坎寧=二配克
  • 一配克=二加侖
  • 一加侖=二波特爾
  • 一波特爾=二夸脫
  • 一夸脫=二品脫
  • 一品脫=二大杯
  • 一大杯=二及耳
  • 一及耳=二傑克
  • 一傑克=二小杯
  • 一小杯=二口

做為容量單位,超品已經退出歷史舞臺,現代法國人不再使用,英國人、德國人和美國人也不再使用。事實上,英國人從來就沒用過超品,他們過去常用的容量單位,是品脫(Pint) 、夸脫(Quart) 、波特爾(Pottle) 、加侖(Gallon) 。

從中世紀歐洲流傳至今的幾種常用容量單位,由左而右分別是:大杯/品脫/夸脫/加侖。圖/時報出版提供

此外還有更大的容量單位,例如配克(Peck) 、坎寧(Kenning) 、蒲式耳(Bushel);以及更小的容量單位,例如大杯(Cup)、及耳(Gill) 、傑克(Jack) 、小杯(Pony)。

幾種較大的容量單位,由左而右分別是:品脫/夸脫/配克/半蒲式耳(坎寧)/蒲式耳。圖/時報出版提供

根據以上換算關係,我們可以瞧出兩點端倪:

  1. 傳統英制容量單位之間都是倍數關係,典型的二進制;
  2. 所有英制容量單位都是建立在「口」之上的。

「口」:喝下去、吐出來,單位跑出來

什麼是「口」?就是一小口。喝一小口紅酒,再吐到量杯裡,這個容量就是一口。

不停地喝,不停地吐,一口一口地累加,吐 2 口是一小杯,吐 4 口是一傑克,吐 8 口是一及耳,吐 16 口是一大杯,吐 32 口是一品脫,吐 64 口是一夸脫,吐 128 口是一波特爾,吐 256 口是一加侖,吐 512 口是一配克,吐 1024 口是一坎寧,吐 2048 口是一蒲式耳。

-----廣告,請繼續往下閱讀-----
噗……單位竟然是這樣吐出來的嗎?圖/GIPHY

說到這兒,您會覺得噁心——那麼多、那麼高大上的容量單位,竟然要一口一口去量,多不衛生啊!

是的,確實不衛生。不衛生倒也罷了,最可怕的是不精準。

您想啊,人的嘴有大有小,小芳櫻桃小口,一口能吐 5 毫升;小強血盆大口,一口能吐 50 毫升。都是一口,差了十倍。即使是同一個人,每一口也不一樣大:喝清爽啤酒,一口能灌半斤;喝燒刀子,一口最多半兩。還是一口,又差了十倍。

每一口都差一點點,累積起來就會越差越多。圖/GIPHY

《淮南子》有云:「寸而度之,至丈必差;銖而稱之,至石必過。」一寸一寸地累積,累積到一丈,微小的誤差會變成巨大的誤差;一銖一銖地累積,累積到一石,微小誤差會變成更加巨大的誤差。

寸和丈是古代中國的長度單位,十寸為一尺,十尺為一丈。從寸到丈,要累積一百次,假如每寸有一公釐誤差,那麼每丈就能差出 100 公釐,差不多和您的手機一樣長了。

-----廣告,請繼續往下閱讀-----

銖是古代中國的重量單位,24 銖為一兩,16 兩為一斤,120 斤為一石(這裡的「石」是「禾石」簡稱,讀ㄕˊ;如果做為容量單位,則讀ㄉㄢˋ)。從銖到石,要累積 46080 次,假如每銖有一克誤差,每石就能差出 46080 克,也就是 46.08 公斤,差不多和極致瘦身的女模特兒一樣重了。

古代英國人把各種容量單位建立在「口」的基礎上,假如每一口只有一毫升誤差,當累積到品脫的時候,誤差 32 毫升;累積到加侖,誤差高達 256 毫升;如果累積到蒲式耳,誤差將是 2048 毫升。朋友們,二千多毫升,那是什麼概念?相當於三瓶紅酒啊!

你的一超品,不是我的一超品呀!圖/GIPHY

設想一下,蕭邦的祖宗用一口一口吐酒的方式替您稱量,您受得了嗎?當然,人家也不可能用這種笨法子,應該是用標準量器去量。問題在於,當時所謂的標準量器,都是建立在「口」之上的,怎麼可能做到「標準」呢?

商家拿出來一只量杯,標的是一超品;顧客怕吃虧,也從懷裡摸出來一只量杯,標注也是一超品。兩只量杯一比較,顧客的量杯比蕭邦祖宗的量杯大得多,那怎麼辦?用誰的量杯?您堅持用您的,蕭邦祖宗堅持用他的,於是就爭執起來,紅酒沒有買成,買到一肚子氣。

-----廣告,請繼續往下閱讀-----

用嘴測度容量,女王覺得母湯

1559 年,伊麗莎白一世登上英國女王的寶座,她發現了容量單位既不標準也不衛生的弊端,於是下令廢除用口稱量的野蠻傳統,並讓容量與重量相結合,重新定義英國的容量單位。

伊麗莎白一世是這樣做的:她保留了品脫、夸脫、加侖等傳統單位,但她讓這些容量與「口」脫鈎,與「盎司」結合起來。她規定,一品脫等於 20 盎司,一夸脫等於 40 盎司,一加侖等於 160 盎司。

幾種常用英制容量單位的換算關係。一大杯=8 液盎司,一品脫=2 大杯,一夸脫=2 品脫,一加侖=4 夸脫。圖/時報出版提供

盎司本來是重量單位,一盎司等於 360 顆大麥加起來的重量。伊麗莎白一世讓人用天平稱重,在一個托盤裡放入 360 顆成熟、飽滿、晒到乾透的大麥,在另一個托盤裡注入同等重量的清水,再把托盤裡的清水倒進玻璃杯,玻璃杯裡的清水有多少,做為容量單位的一盎司就有多少。

也就是說,一盎司既是 360 顆大麥的重量,又是與 360 顆大麥等重的一杯水的容量。

十六世紀蘇格蘭的木雕扇貝雙耳酒杯,容量為一盎司。

盎司確定了,品脫、夸脫、加侖也就確定了。稍做計算就能知道,一品脫的水與 7200 顆大麥等重,一夸脫的水與 14400 顆大麥等重;一加侖的水與 57600 顆大麥等重。大麥有大有小,但是將幾百顆、幾千顆、幾萬顆大麥混在一起稱重,得到的會是平均重量,可以抵消顆粒之間的一些誤差。

伊麗莎白一世用上述方法改革英國容量單位,至少有以下三種好處:

-----廣告,請繼續往下閱讀-----
  1. 新的容量單位不再需要用嘴測度,更衛生、更精準;
  2. 讓容量與重量掛鈎,為進一步統一度量衡奠定了基礎;
  3. 大麥是當時歐洲最常見的穀物,是最天然、最公平的容量測定標準,當交易雙方在量度上有分歧時,不用找標準容器,不用找政府裁決,隨隨便便抓一把大麥,找一架天平,簡簡單單測量一下,就能消除分歧,這對促進市場交易非常有幫助。

——本文摘自《從奈米到光年:有趣的度量衡簡史》,2020 年 2 月,時報出版

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
3

文字

分享

1
4
3
貝多芬頭髮保存 DNA,讓台灣人肝同身受
寒波_96
・2023/04/26 ・2722字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

貝多芬,是歷史上最知名的音樂家之一。2023 年問世的論文報告貝多芬的基因組,得知他有肝硬化的遺傳高風險,另外還感染 B 型肝炎病毒,令台灣人肝同身受。

符合一般人心目中貝多芬形象的畫像。圖/GL Archive/Alamy

貝多芬留下很多頭髮,哪些是真的?

貝多芬在公元 1770 年 12 月 16 日出生,1827 年 3 月 26 日去世。他在生前就非常知名,去世後名聲歷久不衰,相關研究很多,這項研究從遺傳學切入,獲得寶貴的新觀點。

貝多芬去世後留下一些遺物,但是不見得是真品。這項研究由 8 份獨立收藏的頭髮抽取 DNA,據說源自貝多芬不同年紀留下的頭髮。

8 份樣本,有 1 份「Kessler」的 DNA 含量不足,其餘 7 份足夠分析。5 份長期由不同人保存,遺傳訊息卻完全一致,應該就是貝多芬本人的。其餘 2 份看來分屬沒有關係的 2 個人,顯然不是貝多芬的頭毛。

-----廣告,請繼續往下閱讀-----
很可能來自貝多芬的 5 份頭髮。圖/參考資料1

值得一提的是,「Hiller」頭毛之前檢驗出重金屬,有人藉此提出貝多芬去世前健康惡化,和重金屬中毒有關。但是這回得知這根本不是貝多芬的頭髮,推翻此一論點。

貝多芬的Y染色體,有點謎

從 5 個獨立來源獲得的古代 DNA,能拼湊出完整的基因組,覆蓋率高達 24。遺傳上看來是一位歐洲中部的男生,血緣上沒有特殊之處。Y 染色體型號為 I1a-Z139,也是歐洲的常見型號。

由不同頭髮中取樣拼湊而成的基因組,幾乎可以確認來自貝多芬本人。然而,和貝多芬家族如今的親戚比對,Y 染色體卻不一樣。

貝多芬整個基因組看來,與如今歐洲中部的人群最相似。圖/參考資料1

音樂家貝多芬在 1770 年出生,名字為 Ludwig van Beethoven。歷史可考有一位 1535 年出生、1609 年去世的祖先 Aert van Beethoven,比他更早好幾代,並且有男性後裔流傳至今。

-----廣告,請繼續往下閱讀-----

歐洲的姓是父系傳承,Y 染色體也是;所以同姓的人 Y 染色體應該類似,只有歷代突變累積的少數差異。然而比對發現,如今五位貝多芬的 Y 染色體皆為 R-FT446200,和音樂家貝多芬不同。

如果歷史記載正確,這五位應該都是 Aert 的直系後裔。論文推測,從 Aert 到音樂家貝多芬的兩百多年間,或許發生過某些缺乏紀錄的事。

另一方面,貝多芬類似款式的 Y 染色體,如今依然存在,而且在歐洲人資料庫中可以搜尋到 5 款,估計共同祖先能追溯到一千年前。奇妙的是,五群人的姓氏都不一樣,而且都沒有人姓貝多芬。

如今姓貝多芬的人,Y 染色體都和音樂家貝多芬不一樣。Y 染色體和音樂家貝多芬一樣的人,都不姓貝多芬。圖/參考資料1

爆肝的遺傳風險

有很明確的記載指出,貝多芬 56 歲去世前便長期健康欠佳,有腸道和肝的毛病。另外聽力問題也很出名,身為史上一流音樂家,貝多芬的聽覺竟然從 20 多歲起逐漸退化,去世前聽力極差,原因成謎。

-----廣告,請繼續往下閱讀-----

這些問題和遺傳有關嗎?人類遺傳學研究已經找到不少與疾病、健康有關的風險因子,檢查發現,聽力與腸道方面的毛病,貝多芬沒有配備哪些 DNA 變異明顯有關,後天因素的影響也許更大。

貝多芬的肝實際上大有問題,遺傳上看來,幾處基因上也具備高風險的變異。純以 DNA 來說有酗酒傾向,而他晚年確實會酗酒。

不過風險最明確的是 PNPLA3 基因,貝多芬在此基因 rs738409 位置,配備的一對變異與「肝硬化」高度相關,也就是先天上,肝硬化的機率更高。

貝多芬去世前留下的「Stumpff」頭髮,其中存在 B 型肝炎病毒的 DNA 片段。頭毛中竟然可以抓到 B 型肝炎病毒,奇怪的知識增加惹!圖/參考資料1

最終命運:肝硬化×酗酒×B型肝炎?

另一很難想像的發現是,貝多芬去世前不久留下的「Stumpff」頭髮中,偵測到 B 型肝炎病毒的 DNA 片段。

-----廣告,請繼續往下閱讀-----

儘管出乎意料,最近確實有研究報告,在病患的頭髮中檢驗到 B 肝病毒。因此頭髮中的病毒 DNA 或許不是後人汙染,而真的是曾經感染貝多芬的病毒。

B 肝病毒有很多款,貝多芬感染的型號是歐洲常見款式 D2。他在 1827 年 3 月去世,留下這些頭髮的日期則早於 1826 年冬天,由此可知去世前幾個月,貝多芬正在感染 B 型肝炎。

即使體內有 B 肝病毒,也不見得能在頭髮中偵測到,所以更早留下的頭髮中沒有病毒,不等於他當時沒有感染。貝多芬也有可能是長期感染的慢性帶原者。

無人不知的貝多芬,我們懷念他。圖/小賈斯汀 VS 貝多芬 – 經典饒舌爭霸戰 #6(正體中文)

貝多芬中年起健康明顯走下坡,去世前幾年或許同時受到肝硬化、酗酒、B 型肝炎的夾擊,才會導致嚴重的肝病問題。

-----廣告,請繼續往下閱讀-----

歷史記載 1826 年 12 月時,貝多芬出現黃疸、四肢腫脹,很像肝功能衰竭的症狀。他就此臥床,直到長眠。

貝多芬,我們懷念他。大家也要注意健康,小心肝。

延伸閱讀

參考資料

  1. Begg, T. J. A., Schmidt, A., Kocher, A., Larmuseau, M. H., Runfeldt, G., Maier, P. A., … & Krause, J. (2023). Genomic analyses of hair from Ludwig van Beethoven. Current Biology.
  2. Beethoven’s cause of death revealed from locks of hair

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
0

文字

分享

0
1
0
以暴制暴!?無政府的封建時代——《戰爭憑什麼:從靈長類到機器人的衝突與文明進程》
黑體文化_96
・2022/11/28 ・1550字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

一七七○年代,愛丁堡經濟學家亞當.史密斯(Adam Smith)在安全開明的環境下撰寫《國富論》(The Wealth of Nations),他把當時井然有序的世界與德.庫西、伯爵羅伯、亨利國王和菲利浦國王身處的動盪時代進行比對。

史密斯感傷地總結表示,那是個「無政府的封建時代」(「封建」一詞源自於拉丁文的feoda或feuda,意即「封地」,這種授予土地的做法導致主僕關係極為複雜),「勢力龐大的領主繼續按照自己的心意開戰,他們幾乎不停息地襲擊他人,也常常攻打國王。在原野上,暴力、掠奪和混亂場景還屢見不鮮。」

自史密斯的年代起,各個學者都無法斷定「無政府的封建時代」有何意義。愛里亞斯正是在一九三○年代試著解讀這段混亂時期之際,才認定歐洲必然經歷過文明的進程,使暴力死亡率下降。但愛里亞斯只對了一半,他並沒有從長遠角度分析,就逕自認定封建時期的紛亂只是人類的自然狀態。但事實上這個時期所代表的是古代帝國瓦解後,帶來反效果的戰爭在千年之間不斷重新上演,最後才有如此混亂的局勢出現。

無政府的封建時代:1218年,分別為基督徒和穆斯林的菁英騎兵在埃及達米艾塔陷入一團混戰(摘自某本在1255年左右問世的書)。(黑體文化提供)

無政府的封建時代:「一二一八年,分別為基督徒和穆斯林的菁英騎兵在埃及達米艾塔陷入一團混戰(摘自某本在一二五五年左右問世的書)。」

-----廣告,請繼續往下閱讀-----

然而,到了一九六○年代,越來越多學者受《薩摩亞人的成年》影響,相信人類天生愛好和平,許多歷史學家開始思考:「用『無政府的封建時代』來形容德.庫西身處的世界是否恰當?」每當有征服者威廉之類的暴君砍掉人頭時,都會有像聖方濟各(Francis of Assisi)的聖人同時在照顧蒼生,而且歐洲人解決紛爭時大多不會訴諸暴力。當然,二十世紀的亞諾馬米人也是如此,但他們之中卻還是有四分之一死於暴力。「無政府的封建時代」之所以很適合用來形容十四世紀的歐洲,是因為當時許多人都極度隨意使用暴力,在這方面很像亞諾馬米人。

得以流傳的故事數以千計,我最喜歡的故事是——「一個騎士到鄰國城堡拜訪用餐,他寒暄問道:『殿下,這瓶醇厚的酒花了您多少錢?』」

國王親切地回應說:「啊,從來沒有活人向我要過一分錢。」[註1]

對我而言,「無政府的封建時代」一詞不但精確地形容了九○○年至一四○○年的西歐,還貼切描述了同期大部分歐亞幸運緯度的狀況。從英格蘭到日本,隨著各地利維坦政府自行瓦解,這些社會都一步步走向「無政府的封建時代」。

文獻提到「部曲」[註2]在三、四世紀於中國北方崛起,他們是跟隨軍閥出戰以分得戰利品的私兵。至於在印度,笈多王朝在六世紀開始衰落,各地的「薩曼塔」(samanta,封建首領)在政府崩塌時提供士兵,統治者漸漸承認他們已完全獨立。在中東,哈里發有種土地政策叫「伊克塔」(iqta’),把土地授予各地蘇丹,但他們卻不一定會組建軍隊作為回報。

-----廣告,請繼續往下閱讀-----

到了九世紀,阿拉伯世界靠著伊克塔政策的微薄力量,才能維持團結。到了一○○○年,拜占庭帝國走上同一道路,君主透過授予土地來換取軍事服務,這種制度稱為「普羅諾埃」(pronoia)。各地的古代帝國君主都在走進自己的墳墓。

 註譯

  • 註1:意思是向他要錢的人沒有一個活下來。
  • 註2:中國魏晉南北朝的一種社會階級,主要指家兵、私兵。

——本文摘自《戰爭憑什麼:從靈長類到機器人的衝突與文明進程》,2022 年 11 月,黑體文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----