Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
0

文字

分享

0
0
0

光之深海,深海之光:那些在幽暗深處依然閃閃發光的動物們

鳥苷三磷酸 (PanSci Promo)_96
・2020/01/21 ・3524字 ・閱讀時間約 7 分鐘 ・SR值 514 ・六年級

-----廣告,請繼續往下閱讀-----

本文由國立海生館BOT經營團隊海景世界企業(股)公司委託,泛科學企劃執行

  • 作者/曾柏諺

提起深海,你的印象會是什麼呢?寒冷、漆黑、寂靜,甚至還可能有些面貌猙獰的生物神出鬼沒向你問好?

人們對深海的諸多印象,大多來自於它幽冥般的漆黑,但深海為什麼會是漆黑一片?這還得追溯到一個更古老的問題:海為什麼是藍色的?

想到深海的動物,往往給人有點猙獰的印象。圖/ wiki commons

吞噬光線的海水

如果你用容器撈起一把海水,如果沒有意外應該可以預期它會是透明無色的。因為「海水」裡絕大多數的成分是水,即便溶解了些許鹽類在其中,也大多是透明無色,看起來一點也不會影響海水顏色……對吧?

-----廣告,請繼續往下閱讀-----

其實影響海水顏色最大的因素正是「水」本身。太陽光是由許多不同波長的光所組成,不同波長的光線在水中被水分子吸收、散射的程度也不同,簡單來說,波長越長的光越容易被水分子所吸收。正因長波長的光線很快就消失殆盡,因此反射到我們眼裡的色光,就只剩下了波長較短的藍、紫色,這才顯得大海一片蔚藍呀!

科學家發現,在大約兩百公尺深左右,光線就會衰弱到再也無法負擔光合作用,因而大筆一畫,在此之上的區域稱為「表層帶」(epipelagic zone),又稱真光層、光合作用區。

圖/pixabay

不過倒也不是越此一步就漆黑無光,從兩百公尺再往下直到一千公尺深的區域,稱為中層帶(mesopelagic zone),生物還能藉由這一點點的光線,來看到東西,這裡也稱作黃昏帶(twilight zone)

離開了中層帶,再往下潛就是進入真正的深海了。在一千公尺以下,科學家依四千、六千公尺為界劃分了深層帶(bathypelagic zone)、深淵帶(abyssopelagic zone)以及超深淵帶(hadopelagic zone)等區域。

-----廣告,請繼續往下閱讀-----

在這樣的深海之中,生物的眼睛應該沒有什麼用武之地吧?如果這麼想可就大錯特錯啦。自從寒武紀淺海中,第一隻演化出感光能力的生物打響了生存競逐的槍響,自此誰能看的清、看的準就成了兵家必爭之地。正因為光線可以擴大生物的感官範圍,能夠掌握光線就再也不必瞎子摸象,能夠精準的掌握獵食、移動、避敵的效率,因此對海洋生物而言,即使是活在暗無天日的深海中,如果能掌握「光線」以及「視覺」的攻防戰,還是能享有獨特的優勢。

海洋生物的視覺攻防戰:透明、鏡像、色素、發光

海洋生物在視覺上的攻防不脫透明、鏡像、色素以及發光四項。

透明在許多動物的幼生時期都是相當普遍的伎倆,藉由讓自己的身體處於輕薄、無色素的情況,讓獵食者在茫茫大海中一眼望過去彷若無物;而鏡像則是在表層帶比較常見的手法,將身體表層藉由嘌呤之類的色素,讓體表呈現一片銀光閃閃,就好像在身體表面帶了一層鏡子般,能將背景的景象穿在自己身上,獵食者猛然一看,還真是看不出什麼東西來。

章魚也是海中生物視覺攻防戰的好例子,藉由色素的變化可以快速的融入環境中進行偽裝。圖/pixabay

色素就相當好理解了,在我們熟悉的陸生動物身上也很常見,最後一招就是照明了,既然深海裡沒有光線,那何不自己發光呢?不過生物是怎麼發光的,或者更進一步問,生物怎麼開始發光的呢?

-----廣告,請繼續往下閱讀-----

科學家在 1998 年曾提出假說,認為生物發光(Bioluminescenc)最重要的成份──螢光素(luciferin)最初的功能,其實是做為「抗氧化劑」使用,由於在大海中充斥著光化學產生的氧化物,以及藻類為了禦敵而衍生出的毒素,如何對抗這些無處不在的「毒物」就成了生存的大問題。

科學家發現,有些螢光素雖然美其名是螢光素,但事實上在許多不發光的部位,甚至不發光的生物身上也大量存在,尤其是皮膚、肝臟、腸道等地方更是常見。在驗證了化學活性後,科學家認為螢光素一開始的確是用來中和掉環境中無所不在的氧化物。

深海一片漆黑,那就自己來發光吧!

而發光的契機,則發跡自生物向深海移動的路上。還記得前面提過的深海環境特徵嗎?無光、低溫與缺氧的條件,讓光化學與藻類在這邊毫無用武之地;同時也因為生物的新陳代謝降低,氧化物帶來的生存壓力大幅滑落,正是在這樣的環境中,這套抗氧化系統逐漸演化出了新的可能。

因為深海無光的環境,釋出的光線意外成為了生物在生存競爭上的新武器,至此,海洋生物開啟了新的生存競賽。

-----廣告,請繼續往下閱讀-----

生物發光的用途相當廣泛,在防禦方面,生物可以在身體各處發出點狀、帶狀的光源,讓自己的輪廓顯得破碎,讓天敵認不出來眼前正是「食物的形狀」,因而錯過了一頓大餐;又或者當天敵靠近時,突然爆出一陣強光,就好像在一片漆黑的房間中開了一盞大燈,讓天敵睜不開眼,看不清楚眼前的視線,這時發光生物當然就可以逃之夭夭啦。

另外,有防守自然也有出擊啦!在月黑風高的路上如果看到遠方的燈火,是不是很吸引人呢?在海洋中生物也會利用光線來吸引獵物,讓獵物自己找上門來。

自備手電筒的燈眼魚與採用鏡像伎倆的櫛水母

燈眼魚就是個特別有趣的例子。在燈眼魚科 (Anomalopidae)家族下一共有六屬九種成員,這些魚的眼眶下方有著能翻轉的發光器,裏頭養著許多發光細菌。燈眼魚就像是我們用眼皮眨眼一樣,靠著遮蓋發光器與否,如同在海中帶了把可以自行開關的手電筒。

  • 影片說明:成群的燈眼魚在海裡游動,光點就像海中的螢火蟲。

燈眼魚帶著這個手電筒做什麼呢?曾經有人認為燈眼魚是為了與同伴溝通,才像燈塔一樣打著明明暗暗的光線,當作通訊訊號。不過在 2017 年,科學家在研究燈眼魚的成員之一的燈頰鯛( Anomalops katoptron)時發現,當周遭環境中出現食物時,燈眼魚會從一閃、一暗的打光模式,切換到長時間「開燈」的情況,這讓研究團隊推斷,燈眼魚其實是用這副手電筒尋找浮游生物來飽餐一頓。

-----廣告,請繼續往下閱讀-----

燈眼魚除了打著燈用餐外,還有一套「閃帶跑」(blink and run) 的功夫,讓天敵措手不及。科學家在 1975 年就曾經藉由研究另一種燈眼魚──眼燈眼魚 (Photoblepharon palpebratus) 時發現,燈眼魚在游泳時會先「開著燈」,讓光線在水中畫出一套軌跡;緊接著馬上把燈關掉,這時捕食者按著軌跡推理,想必燈眼魚就在軌跡末端的前方了對吧?

想得美!燈眼魚早在「關燈」的那一剎那,轉身朝著反方向遊走!依據研究團隊所述,「根本無法推測關燈後的游泳方向」,是不是很讓人佩服燈眼魚的這一套光把戲呢?

另外,雖然同樣看起來像有發光,在櫛水母 (Ctenophores)身上就是個完全不同的故事了!櫛水母最知名的就是牠在泳動時,身上擺動的櫛板輝映著彩虹的光芒,讓人以為櫛水母正不斷「發出」彩色的光。

  • 影片說明:櫛水母在泳動時,身上擺動的櫛板輝映著彩虹的光芒。

還記得前面提過的「鏡像」伎倆嗎?櫛水母雖然也有自己的螢光素與螢光素酶,但一種螢光素與螢光素酶的搭配,往往只能放出單色的螢光,無法造成彩虹般的效果呀!我們在櫛水母身上看到的這層彩虹,其實是在白光的照映下被結構精細的櫛板反射、折射,就像是光碟反面一般映照出多彩的顏色。在漆黑無光的深海裡,生物們利用光線,讓彼此間的競爭提升到了新的維度。除了文章中提到的例子,你還能想到哪些用光線過招的生物呢?

-----廣告,請繼續往下閱讀-----

深海可以講的故事實在太多了。因為環境所限,一般人難以親身進行觀察、體會這些生物奧妙之處。國立海生館今年度新開展了深海特展,首度在館中展出深海中的「夜光俠」燈眼魚。而在「究境海洋探索科技展覽」也展現了我們近年來對於深海的新發現。連假期間不妨去走走,親眼了解一下奇妙的「光之深海」吧!

參考資料

  • Bessho-Uehara, M., Yamamoto, N., Shigenobu, S., Mori, H., Kuwata, K., & Oba, Y. (2020). Kleptoprotein bioluminescence: Parapriacanthus fish obtain luciferase from ostracod prey. Science Advances, 6(2), eaax4942.
  • Haddock, S. H., & Dunn, C. W. (2015). Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biology open, 4(9), 1094-1104.
  • Hellinger, J., Jägers, P., Donner, M., Sutt, F., Mark, M. D., Senen, B., … & Herlitze, S. (2017). The flashlight fish Anomalops katoptron uses bioluminescent light to detect prey in the dark. PloS one, 12(2), e0170489.
  • Johnsen, S. (2014). Hide and seek in the open sea: pelagic camouflage and visual countermeasures. Annual review of marine science, 6, 369-392.
  • Morin, J. G., Harrington, A., Nealson, K., Krieger, N., Baldwin, T. O., & Hastings, J. W. (1975). Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science, 190, 74-76.
  • Rees, J. F., De Wergifosse, B., Noiset, O., Dubuisson, M., Janssens, B., & Thompson, E. M. (1998). The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools. Journal of Experimental Biology, 201(8), 1211-1221.

本文由國立海生館BOT經營團隊海景世界企業(股)公司委託,泛科學企劃執行

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
螃蟹有痛感嗎?我們是怎麼知道的?
F 編_96
・2025/01/16 ・1666字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live science

螃蟹一直是海鮮美食中的明星,從油炸軟殼蟹到清蒸螃蟹,餐桌上經常見到牠們的身影。有地方也習慣直接將活螃蟹丟沸水煮熟,認為這能保留最多的鮮味。過去人們認為甲殼類缺乏複雜神經結構,不會感受到痛苦,因此不必過度憂心道德問題。但近年來,越來越多研究開始挑戰此一想法,指出螃蟹與龍蝦等甲殼動物可能具備類似疼痛的神經機制。

以前大家相信甲殼類缺乏複雜神經結構,但近期這一認知逐漸受到質疑。 圖 / unsplash

甲殼類是否能感覺到痛?

人類長期習慣以哺乳類的神經構造作為痛覺判斷依據,由於螃蟹沒有哺乳動物那樣的大腦腦區,便被認為只憑簡單反射行動,談不上真正「痛」。然而,新興科學證據顯示包括螃蟹、龍蝦在內的甲殼類,除了可能存在被稱為「nociceptors」的神經末梢,更在行為上展現自我防禦模式。這些研究結果顯示,螃蟹對強烈刺激不僅是本能抽搐,還有可能進行風險評估或逃避策略,暗示牠們的認知或感受方式比我們想像更精緻。

關鍵證據:nociceptors 與自我保護行為

近期實驗在歐洲岸蟹(Carcinus maenas)中觀察到,當研究人員以刺針或醋等刺激手段測量神經反應,牠們顯示與痛覺反應類似的神經興奮;若只是海水或無害操作,則無此現象。此外,透過行為實驗也可看出,寄居蟹在受到電擊時,會毅然捨棄原本的殼子逃離電源,但若同時存在掠食者味道,牠們會猶豫要不要冒著風險離開殼子。這些結果使科學家認為,螃蟹並非單純反射,而可能有對於痛感的判斷。若只是「低等反射」,牠們不會考慮掠食風險等外在因素。

痛覺與保護:實驗結果引發的道德思考

以上發現已在科學界引發廣泛關注,因為餐飲業與漁業中常見「活煮」或「刺穿」處理螃蟹方式,如今看來很可能讓牠們承受相當程度的不適或疼痛。瑞士、挪威與紐西蘭等國已開始禁止活煮龍蝦或螃蟹,要求先以電擊或機械方法使其失去意識,試圖減少痛苦。英國也曾討論是否將甲殼類納入動物福利法保護範圍,最後暫時擱置,但此爭議仍在延燒。

-----廣告,請繼續往下閱讀-----
英國對於是否將甲殼類列入動物福利法的保護範圍,有所爭議。 圖 / unsplash

部分學者保持保留態度,認為雖然甲殼類展現疑似痛覺的行為與神經反應,但與哺乳類相同的「主觀痛感」仍需更多研究證明。大腦與神經系統結構畢竟存在很大差異,有些反射也可能是進化而來的自衛機制,而非真正意義上的感受。然而,科學家普遍同意,既然相關證據已經累積到一定程度,毋寧先採取更謹慎與人道的處理模式,而非輕易推卸為「牠們不會痛」。

海洋生物福利:未來的規範與影響

如果螃蟹被證實擁有痛覺,將牽動更廣泛的海洋生物福利議題,包括鎖管、章魚或多種貝類也可能具有類似神經機制。人類一直以來習慣將無脊椎動物視為「低等生物」,未必給予與哺乳類相同的法律或倫理關注。但若更多實驗持續指出,牠們同樣對嚴重刺激展開避痛行為,社會或終將呼籲修訂漁業與餐飲相關法規。未來可能要求業者在捕撈與宰殺前使用電擊或麻醉,並限制活煮等方式。這勢必對漁業流程與餐廳文化造成衝擊,也引發經濟與文化折衷的爭議。

龐大的實驗數據雖已暗示螃蟹「會痛」,但確鑿的最終定論仍需更多嚴謹研究支持,包括更深入的大腦活動成像與突觸路徑分析。同時,落實到實際操作也需追問:是否存在更快、更人道的宰殺或料理方式?能否維持食材鮮度同時保障動物福利?這種思維轉變既考驗科學進程,也考驗人類對自然資源的態度。也許未來,既然我們仍會食用海產,就該以最小痛苦的方式對待那些可能感受痛苦的生物,為牠們提供基本尊重。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
大象你的鼻子怎麼伸得這麼長?因為多功能皮膚也能伸展!
Peggy Sha/沙珮琦
・2022/08/24 ・1627字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「大象~大象~你的鼻子怎麼那麼長?」

在象鼻皺皺的皮膚下面,隱藏著超強伸展力。 圖/envatoelements

喬治亞理工學院(Georgia Institute of Technology)最新的研究發現,大象皺巴巴的「皮膚」竟然隱藏著超強的「伸展之力」,跟肌肉簡直就是完美搭檔。有了隱藏的伸展力,大象就能夠加倍發揮象鼻的各種功能,還能將象鼻伸得更長、更遠!

又硬又軟的萬用工具!象鼻究竟有多強?

象鼻實在是非常神奇的存在,它擁有超過四萬條肌肉,既能柔軟靈活地捲起水果和樹葉,又能強悍地打斷樹幹、抵禦攻擊。究竟它為何能這樣「又硬又軟」靈活切換呢?

神奇的象鼻,靈活地就像大象的手一樣。 圖/GIPHY

為了深入探索象鼻的秘密,研究團隊特別跑去亞特蘭大動物園(Zoo Atlanta),設置了高速攝影機,紀錄下非洲大象用象鼻拿取食物的過程。

乍看之下,軟軟的象鼻似乎就像我們的舌頭一樣,是充滿肌肉的無骨組織。然而,它真正派上用場時,可一點兒也不像舌頭呢!透過鏡頭,研究人員發現:象鼻頂部底部的運動狀況完全不一樣。當大象伸長象鼻時,象鼻外側的延伸能力比內側強多了。仔細看看畫面,就能發現外側的象鼻其實伸得更長!

-----廣告,請繼續往下閱讀-----
非洲象用象鼻拿取食物的過程。影/Georgia Tech College of Engineering

秘密就在皮膚裡!打開皺紋發揮伸展之力吧!

至於兩邊的長度為何會有如此大的差距呢?秘密原來就藏在象鼻的皺褶中!研究團隊解剖了大象屍體,發現象鼻外側與內側的皮膚非常不同——象鼻外側那摺疊起來的皮膚,比另一側的皮膚多出了約 15% 的彈性。

更有趣的是,大象移動象鼻的方式,跟章魚觸手這種軟趴趴器官常用的「平均伸展大法」十分不同,象鼻伸展時就像是打開了一把折疊傘,內部是固定的,而傘面則可以向外變寬、延伸。不只如此,大象們還會如同開折傘一樣「分批運動」象鼻喔!

怎麼說呢?牠們運用象鼻時,會先探出頂端,然後視需求一節一節依序運用後面的肌肉,不到萬不得已,絕對不會動到靠近身體這側的肌肉群!學者們表示,大象之所以會這樣動,是因為象鼻前端部分的肌肉量較少,動起來也比較不費勁,而大象其實就跟人類一樣懶,當然是追求越省力越好囉!

在拿取東西時,象鼻會由前往後一節節伸展。圖/envatoelements

借我學一下啦!皺褶象皮竟能應用在機器人身上?

另一方面,象鼻上這些皺巴巴的皮膚其實也十分堅硬,能起到重要的保護作用。比如說,在關節部分,一般肌肉容易拉伸,甚至拉傷,但如果有了皺褶,則需要花上整整 13 倍的力量才能拉伸。

-----廣告,請繼續往下閱讀-----

這樣的保護力有什麼用呢?在未來,或許可以應用在仿生機器人身上喔!許多仿生機器人都會設計液壓系統,雖然十分靈活,但施力時卻也非常容易斷裂。如果我們能在機器人身上添加一些皺巴巴的皮膚,不僅能提供更強大的保護力,也讓機器人在運用上出現更多不同的可能性。

  1. Skin: An additional tool for the versatile elephant trunk
  2. Schulz, A. K., Boyle, M., Boyle, C., Sordilla, S., Rincon, C., Hooper, S., Aubuchon, C., Reidenberg, J. S., Higgins, C., & Hu, D. L. (2022). Skin wrinkles and folds enable asymmetric stretch in the elephant trunkProceedings of the National Academy of Sciences of the United States of America119(31), e2122563119. https://doi.org/10.1073/pnas.2122563119
  3. How Skin Helps Elephants Move and Twist Their Trunks
  4. 動物奇門功夫.象鼻神奇構造
-----廣告,請繼續往下閱讀-----
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

2
1

文字

分享

0
2
1
海邊戲水要小心!一次帶你認識刺毒魚類,與被刺傷後的自救方法
自然保育季刊_96
・2022/07/20 ・4724字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

刺毒魚類是什麼?有刺的魚 ≠ 刺毒魚類

海洋是生命的發源地,其環境複雜多樣,孕育出多種多樣的海洋生物。在漫長的演化過程魚類發展出多樣適應環境的機制,包括物理性、化學性及生物性的調適,其中刺毒(venoms)屬於較為複雜的化學性防禦機制。

然而具有尖刺的魚類就等於是刺毒魚類嗎?答案是「否」的。

刺毒魚類的硬棘上附有毒腺,除了能為掠食者帶來物理性(刺傷)傷害以外,並會造成化學性(毒液)的二次傷害,毒腺所分泌的毒液會使傷口產生更為強烈的疼痛感,是一種特殊的防禦機制。

可能比你想像中多:世界上的刺毒魚類有多少?

全世界的魚類約有 30,000 多種,曾被報導過的刺毒魚類約有 2,500 多種(表 1),約占所有魚類的 8%,其主要可分為四大類,分別為:

-----廣告,請繼續往下閱讀-----

(一)軟骨魚類中的銀鮫目(Chimaeriformes)、異齒鯊科(Heterodontidae)、角鯊科(Squalidae)

(二)軟骨魚類中的燕魟亞目(Myliobatoidei)

(三)硬骨魚類中的鯰形目(Siluriformes)

(四)硬骨魚類中的鰭棘魚類(Acanthomorphs)(Smith and Wheeler 2006;邵廣昭 2021)。

-----廣告,請繼續往下閱讀-----
表 1 各類群刺毒魚類種類數量及毒刺部位。表/自然保育季刊

第一類刺毒軟骨魚類的毒刺主要分布於背鰭上,數量 1 至 2 根。

第二類魟類,現生種類約 200 多種,毒刺分布於尾柄上(Nelson et al. 2016),當其尾柄上的毒刺擊中掠食者後,毒液會經由外皮鞘(integumentary sheath)的破壞而全數釋出(Fenner 2004)。著名的電視節目主持人鱷魚先生 Steve Irwin 就是被大型魟類尾部的毒刺傷及心臟而喪命的。

黑線銀鮫(Chimaera phantasma)。箭頭標示處為其毒刺。圖/自然保育季刊

第三類鯰形目魚類,大多為淡水種類,其中有毒的種類大約為 1,500 種,毒刺分布於胸鰭及背鰭(Wright 2009),其毒刺外緣具鋸齒(圖 1A)。

鯰形目魚類在美洲具較高的多樣性,占所有種類的 60%(Nelson 2006)。臺灣產12種,淡水的種類有鈍頭鮠科(Amblycipitidae)1 種、鯰科(Siluridae)1 種、鬍鯰科(Clariidae)2 種、鱨科(Bagridae)2 種,鱨科的種類因背鰭(1 根毒刺)、胸鰭(2 根毒刺)具毒刺,故俗稱為三角姑;

-----廣告,請繼續往下閱讀-----

海水的種類有鰻鯰科(Plotosidae)1 種,及海鯰科(Ariidae)5 種,兩者的俗稱分別為沙毛及成仔丁,毒刺的位置與鱨科一致。

圖 1 刺毒魚類毒刺形態之一。圖/自然保育季刊

A. 線紋鰻鯰(Plotosus lineatus)胸鰭硬棘。 B. 瞻星魚(Uranoscopus sp.)匙骨上的棘。C. 褐臭肚魚(Siganus fuscescens)背鰭硬棘。 D. 托爾逆鈎鰺(Scomberoides tol)背鰭硬棘。縮寫:gr,groove 溝槽。

第四類鰭棘魚類,由六個類群所組成,分別為蟾魚目(Batrachoidiformes)、鮋亞目(Scorpaenoidei)、刺尾魚亞目(Acanthuroidei)、䲁亞目(Blennioidei)、逆溝鰺亞科(Scomeroidinae)及鱷亞目(Trachinoidei),雖然僅有 585 至 650 種,但相對於前面的三個大類群,毒刺的形態則顯得更為多樣化,毒腺可發現於牙齒、主鰓蓋骨(opercle)、匙骨(cleithrum) (圖 1B)、背鰭、腹鰭和臀鰭多個部位(Smith and Wheeler 2006)。

圖 2 刺毒魚類毒刺形態之二。圖/自然保育季刊

A. 中華鬼鮋(Inimicus sinensis )背鰭硬棘。 B. 魔鬼簑鮋(Pterois volitans )背鰭硬棘。C. 眉鬚鱗頭鮋(Sebastapistes strongia)背鰭硬棘。 D. 眉鬚鱗頭鮋頭部的棘。縮寫:gr, groove 溝槽;vg, venom gland 毒腺。

雙斑櫛齒刺尾鯛(Ctenochaetus binotatus)。圖/自然保育季刊

臺語有云:「一魟、二虎、三沙毛」

在海岸活動頻繁的臺灣,亦不乏關於刺毒魚類的諺語:一魟、二虎、三沙毛、四斑五、五象耳、六倒吊,或者是四臭肚、五變身苦;四變身苦、五成仔丁。

不管何種版本,「魟、虎、沙毛」均是刺毒危險程度的前三名。

線紋刺尾鯛(Acanthurus lineatus)。圖/自然保育季刊
線紋鰻鯰(Plotosus lineatus)。箭頭標示處為其毒刺。圖/自然保育季刊

諺語中的,是泛指所有尾部具有毒刺結構的燕魟亞目魚類,身體呈圓盤形,大部分種類尾巴為細長的鞭狀,依不同種類尾部毒刺的數量可達 2 根或以上,大部分漁民在捕獲後,均會把尾部的毒刺去除。多數的魟類為底棲性魚類,部分種類更具潛藏於沙中的習性,因此在沙灘嬉水遊玩時,須多加注意腳下情況以免誤踩而被其刺傷。

-----廣告,請繼續往下閱讀-----

沙毛指的是線紋鰻鯰(Plotosus lineatus),廣泛分布於臺灣沿海並常被釣獲,其體表光滑無鱗不易被抓住,故處理時須多加注意以免被刺傷;其幼魚常成聚集成群,被稱為鯰球。

黑帶稀棘䲁(Meiacanthus grammiste)。其毒腺位於下頜兩顆大型犬齒中。圖/自然保育季刊

二虎:多樣性豐富的刺毒魚類大家族

虎魚泛指臺灣產鮋亞目(Scorpaenoidei)的種類,其英文俗名有 scorpionfishes、stonefishes 、 waspfishes 等,有關 scorpionfishes 名稱的由來,或許命名者對其毒刺如蝎子螫到的觸感有著很深刻的體會。

除了虎魚這俗名外,石狗公、石頭魚亦為牠們常見的中文俗稱,因其偽裝(camouflage,一些種類會利用特化的皮瓣偽裝成礁石及表面的生物)或保護色,致使體態、體色與棲地環境極為相似而得名。

該類群是著名且危險的刺毒魚類,毒刺十分發達(圖 2),雖然鮋亞目魚類的頭部具有不少的棘(圖 2D),但具毒腺的部位僅為背鰭、腹鰭及臀鰭之硬棘(圖 2A-C) (Nelson et al. 2016),為海洋刺毒魚類的最大宗(Low et al. 1993;Church and Hodgson 2002;Vetrano et al. 2002;Fenner 2004),臺灣大約有 42 屬 100種(邵廣昭 2021)。

-----廣告,請繼續往下閱讀-----

多數種類為底棲性魚類,棲息於沿海岩礁地形,行動緩慢並常靜止於礁石上,即使靠近之亦不動如山,其體色與環境十分相似不易被察覺,因此在潮間帶或岩礁海岸活動時,稍一不慎則有可能誤踩而遭其刺傷。目前被刺傷的個案僅國外有報導,被刺傷者大部分為漁業從事人員(Haddad et al. 2003),臺灣雖暫無相關學術文章報導,但大部分地區的海洋活動亦相對頻繁,相信有不少被刺傷的個案。

金圓鱗鮋(Parascorpaena aurita)。鮋科魚類多具備良好的偽裝能力,其體色與周遭環境融為一體。圖/自然保育季刊

鮋亞目魚類毒素均為蛋白質(Kiriake et al. 2013),結構並不穩定,遇熱後因蛋白質變性而失去毒性(伍漢霖 2006),亦有研究顯示斑點鮋(Scorpaena guttata)的毒素在 50°C 的條件下處理,短期內即失去活性(Schaeffer et al. 1971),表示魚肉在加熱煮熟後可食用。

俗稱獅子魚(Lionfish, Turkeyfish)的危險刺毒魚類亦同屬於鮋亞目家族的成員(簑鮋類 Pteroini),但與石狗公、石頭魚的不同之處在於其十分花枝招展的外觀,平常毫不躲藏、並徐徐地遊弋於礁石間。

因其華麗的外觀而常見於觀賞魚市場,亦因此經由水族觀賞魚途徑被棄養放生(Hamner et al. 2007;Betancur et al. 2011;Johnson et al. 2016),魔鬼簑鮋(Pterois volitans)自 1980 年起現踪於佛羅里達(Florida) (Freshwater et al. 2009),延長及發達的毒刺使其在當地幾乎沒有天敵,並逐漸擴張遍布整個大西洋西岸形成穩定的族群(Betancur et al. 2011;Ferreira et al. 2015;Johnson et al. 2016),而其驚人的食量對當地魚類族群造成極大的威脅,與另一種獅子魚—斑鰭簑鮋(P. miles)為知名的入侵物種。

-----廣告,請繼續往下閱讀-----
毒擬鮋(Scorpaenopsis diabolus)。具備良好偽裝能力的鮋科魚類之一,喜靜止於礁石上伺機捕食路過之獵物。圖/自然保育季刊

毒刺的部位、結構及釋出毒液的機制

刺毒魚類的毒刺結構可發現於胸鰭、腹鰭、背鰭、臀鰭、尾柄、牙齒、主鰓蓋骨、肩帶上的匙骨等部位。大部分毒刺均由硬棘(spine)、溝槽(groove)及毒腺(venom gland)所組成。刺毒魚類這類用毒動物不同於河魨,其毒素由自體產生(河魨毒素由食物累積於體內),經毒腺分泌,藉由硬棘導引或注射到防禦對象身上(Bulaj et al. 2003;Fenner 2004;Smith and Wheeler 2006)。

毒腺附著於硬棘上,硬棘具溝槽。毒液的釋放是一種被動形式,並不能主動發射,當毒腺受壓迫時,毒液釋出並沿著溝槽導流至防禦對象的傷口上。被刺後傷口附近立刻產生劇烈疼痛感,隨後延伸擴散,會伴隨噁心、嘔吐、呼吸困難等症狀(伍漢霖 2006)。疼痛感可持續數小時之久,過敏體質者更會休克、甚至死亡。

波氏擬鮋(Scorpaenopsis possi)。具備良好偽裝能力的鮋科魚類之一,體表具備海藻狀之皮瓣。圖/自然保育季刊

如何預防刺傷,刺傷後應該如何處理?

刺毒魚類並不會主動利用毒刺進行攻擊,因此進行海岸活動或沿海作業時,應注意隨時週遭環境並穿戴相關保護措施(如手套、涉水鞋等)避免身體裸露、降低被刺傷的機會;若在必要情況下須接觸具尖刺且種類不明的魚類時,應避免徒手直接捕捉並藉由工具謹慎處理之。

刺毒魚類另一個對人類造成危害的地方,在於其造成的傷口可能會因為細菌感染而產生二次傷害,嚴重者會導致局部組織壞死、敗血症,甚至感染創傷弧菌(Vibrio vulnificus),而創傷弧菌感染後惡化快速,其所引致的併發症通常具較高的死亡率。

-----廣告,請繼續往下閱讀-----
輻紋簑鮋(Pterois radiata)。獅子魚在遭遇威脅時,胸鰭及背鰭會展開,並以腹部朝著礁石、背部朝外的方式抵禦掠食者。圖/自然保育季刊

刺毒魚類的毒性依種類及釋放量而有所不同,而毒素主要為蛋白質,其結構不穩定,易受熱、酸鹼所破壞而失去毒性。遭刺傷後應盡快移除毒刺,在適當的條件下擠出毒液,使用熱、酸、鹼條件處理傷口,破壞毒素的活性,並做好傷口的清潔及消毒的工作,防止細菌的感染。

刺毒魚類所造成的傷害反應因人而異,經過現場初步處理後,應盡早送醫處理。

野外活動時要注意

刺毒魚類約占所有魚類的 8%。牠們形態多樣,彼此並非姐妹群關係,亦即起源於多個祖先,換言之,刺毒機制是多次獨立演化出來的,刺毒魚類一共可分為四個大類群,軟骨魚和硬骨魚各占兩大類,包括軟骨魚中的:(一)銀鮫目、異齒鯊科、角鯊科,(二)燕魟亞目;以及硬骨魚類中的(三)鯰形目,(四)鰭棘魚類。毒刺結構可發現於多個部位,如胸鰭、腹鰭、背鰭、臀鰭、尾柄、牙齒、主鰓蓋骨、肩帶上的匙骨等。

因為臺灣為海島地形,海岸線曲折漫長,周邊海域均有刺毒魚類的分布,民眾於海域進行經濟或休閒活動時均有機會接觸到刺毒魚類。雖然刺毒多為被動的防禦機制,並不是主動攻擊的手段,但部分刺毒魚類具備十分良好的偽裝能力,在靜止的狀態下難以被察覺,因此在野外活動時應隨時注意周遭環境是否存在刺毒魚類,並穿戴相關防護衣物、鞋子,避免誤觸而受傷,增加海域活動的安全性。

若不幸被刺毒魚類刺傷,在現場進行緊急處理後,應盡早求醫,以策安全。

斑馬短鰭簑鮋(Dendrochirus zebra)。胸鰭內側顏色鮮艷,具警戒作用。圖/自然保育季刊
-----廣告,請繼續往下閱讀-----
自然保育季刊_96
15 篇文章 ・ 14 位粉絲
自然保育季刊為推廣性刊物,以推廣自然教育為宗旨,收錄相關之資源調查研究、保育政策、經營管理及生態教育等成果,希望傳達自然科普知識並和大家一起關注自然!