網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策

0

34
0

文字

分享

0
34
0

照出黑洞不算什麼,科學家連量子纏結都能拍到!?

linjunJR_96
・2020/02/26 ・2523字 ・閱讀時間約 5 分鐘 ・SR值 535 ・七年級
  • 文/林祉均 就讀清大物理系的斜槓理工男,喜歡學習與嘗試新事物。目前對科學和翻譯有點上癮,看到 Netflix 上奇怪的字幕翻譯會皺眉頭。

除了數百萬光年外的遙遠黑洞,現在就連最微小、最難以捉摸的量子現象,也透過成像技術呈現在我們眼前。不過要了解這張照片,得先從量子物理糾纏不清的歷史開始說起。

你看過量子纏結的照片嗎?如果沒看過,現在讓你看看。圖/Moreau et al, 2019

「你們只是把所有東西名字前面加個『量子』吧?」儘管嘴上這麼吐槽,蟻人在穿梭量子領域時和初代黃蜂女所產生的量子纏結,後來依舊成為劇情的重要推手。

量子纏結描述的正是像蟻人一樣的微小粒子。這些由特定方式成對產生的粒子,兩兩之間具有某種「連結」。

一般在量子系統中進行測量時,粒子的測量值會依據特定的機率來決定,也就是說,測量結果是「隨機」的。但是兩顆纏結的粒子,不論相距多遠,被測量時都會表現出一致(或是相反)的行為。

可以把它們想像成兩顆不斷滾動的骰子,當我們想要壓住其中一顆觀察上面的點數,另一顆的點數也會在那瞬間被決定。如此看來,纏結粒子似乎能夠突破相對論的限制,進行超光速的資訊交換。

量子纏結?那鬼魅一般的遠距效應

然而,老一輩的物理學家對這種觀點十分不能接受。愛因斯坦便曾稱呼量子纏結為「鬼魅一般的遠距效應(spooky action at a distance)」,顯示有部分人認為量子纏結的說法聽起來簡直就像星座運勢和心電感應一樣,不該見容於物理科學的基礎架構。

愛因斯坦:我不信這套!(設計對白)圖/giphy

於是,局域隱變數理論 (local hidden-variable theory) 吹起了反攻的號角。這個理論設想:每顆纏結的粒子在成對生成時,便各自攜帶兩份相同的指南,告訴它們被測量時該給出哪種結果。人類目前還沒探知這本「指南」的物理本體,因此被稱為「隱變數」。

儘管乍聽之下有些彆腳,但這個理論確實避開了超光速的難題──一切都是事先決定好的,沒有機率的成分,也不需要傳遞訊息。你很難反對這種說法,因為這種隱藏起來的變數似乎很難用實驗去確認。

哪種理論才正確?用貝爾實驗見真章

兩種理論之間微妙的區別,需要高明的手段來驗明正身。

約翰‧貝爾相信隱變數理論是正確的,因此構思了一個巧妙的實驗:如果纏結粒子真的遵守隱變數理論的隱形指南,那麼他的實驗結果應該會符合貝爾不等式;反之則是量子力學獲勝

貝爾實驗有點複雜,但其中原理可說是相當聰明,可以參考以下這部影片

人們往後實際進行他的實驗,利用各種方法在不同地點重複了無數次。幾乎所有實驗結果都違反他的不等式,這應該是貝爾本人沒有料到的,局域性隱變數理論也因此不再被重視。

貝爾本人惋惜地表示:「我曾經以為是其他人不願面對事實,不過歷史已經還他們一個公道了。我好希望愛因斯坦是對的。但有時候很合理的說法終究是錯的。」

(p.84,  Bernstein, Jeremy (1991). Quantum Profiles

圖(一)、貝爾實驗的理論預測。紅色線代表古典的隱變數理論,藍色則是量子力學的預測。圖/Moreau et al, 2019

貝爾實驗已經被多次驗證,而量子纏結現象也早已走入實際應用,像是量子電腦和量子加密技術。不過,一直到 2019 年 7 月,研究人員才首次捕捉到量子纏結的面貌。所以,它究竟長什麼樣子?

所以說,量子纏結到底長什麼樣?

像是黑洞這類的天文奇觀,儘管十分遙遠,畢竟還是個實際的物體。「量子纏結」卻是抽象物理現象。該怎麼拍攝這種東西呢?

如果要拍攝的是「重力加速度」,你可以去拍攝一顆掉落的蘋果。蘋果的位置隨時間的變化會遵守某種數學關係,呈現某種模式或圖案(在這個例子中是一個二次曲線。)只要找出模式,你就可以告訴新聞媒體:「我不是在拍蘋果。我拍到了重力加速度!」

有了這個觀念,讓我們來看看量子纏結的「照片」:

圖(二)對,這就是「量子纏結的照片」,也是實驗結果照。圖/Moreau et al, 2019

……看不懂沒關係。雖然這不是蘋果,但其實不難懂。

上圖所呈現的其實是貝爾實驗的原始結果,白點代表著影像技術所記錄的「事件數」。我們選用最左邊的圖,幫它加上顏色,並沿著圓心攤開(如紅色框線所示),變成右下角的長條。將事件數繪製成數據點之後,便出現了非常類似圖(一)的曲線!

圖(三)實驗結果分析。by Moreau et al, 2019

在這裡必須說明,圖(三)中的曲線和圖(一)並不完全一樣。它們之間還相差幾個物理和數學上的步驟,不過概念上是相同的。

這次的實驗是由格拉斯哥大學的團隊所完成,並刊登在《Science Advances》上。他們利用新穎的材料和極為敏感的成像技術,成功捕捉了貝爾不等式被打破的圖案。

「我們捕捉到的前所未見的影像,巧妙的展示了宇宙最根本的性質,」研究論文的第一作者,Dr. Paul-Antoine Moreau 這麼說:「這個技術帶來了讓人振奮的結果,未來可以被應用在發展中的量子計算領域,或是帶來全新的成像技術。」

參考資料:

文章難易度
linjunJR_96
23 篇文章 ・ 274 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。


0

12
5

文字

分享

0
12
5

揭開人體的基因密碼!——「基因定序」是實現精準醫療的關鍵工具

科技魅癮_96
・2021/11/16 ・1998字 ・閱讀時間約 4 分鐘

為什麼有些人吃不胖,有些人沒抽菸卻得肺癌,有些人只是吃個感冒藥就全身皮膚紅腫發癢?這一切都跟我們的基因有關!無論是想探究生命的起源、物種間的差異,乃至於罹患疾病、用藥的風險,都必須從了解基因密碼著手,而揭開基因密碼的關鍵工具就是「基因定序」技術。

揭開基因密碼的關鍵工具就是「基因定序」技術。圖/科技魅癮提供

基因定序對人類生命健康的意義

在歷史上,DNA 解碼從 1953 年的華生(James Watson)與克里克(Francis Crick)兩位科學家確立 DNA 的雙螺旋結構,闡述 DNA 是以 4 個鹼基(A、T、C、G)的配對方式來傳遞遺傳訊息,並逐步發展出許多新的研究工具;1990 年,美國政府推動人類基因體計畫,接著英國、日本、法國、德國、中國、印度等陸續加入,到了 2003 年,人體基因體密碼全數解碼完成,不僅是人類探索生命的重大里程碑,也成為推動醫學、生命科學領域大躍進的關鍵。原本這項計畫預計在 2005 年才能完成,卻因為基因定序技術的突飛猛進,使得科學家得以提前完成這項壯舉。

提到基因定序技術的發展,早期科學家只能測量 DNA 跟 RNA 的結構單位,但無法排序;直到 1977 年,科學家桑格(Frederick Sanger)發明了第一代的基因定序技術,以生物化學的方式,讓 DNA 形成不同長度的片段,以判讀測量物的基因序列,成為日後定序技術的基礎。為了因應更快速、資料量更大的基因定序需求,出現了次世代定序技術(NGS),將 DNA 打成碎片,並擴增碎片到可偵測的濃度,再透過電腦大量讀取資料並拼裝序列。不僅更快速,且成本更低,讓科學家得以在短時間內讀取數百萬個鹼基對,解碼許多物種的基因序列、追蹤病毒的變化行蹤,也能用於疾病的檢測、預防及個人化醫療等等。

在疾病檢測方面,儘管目前 NGS 並不能找出全部遺傳性疾病的原因,但對於改善個體健康仍有積極的意義,例如:若透過基因檢測,得知將來罹患糖尿病機率比別人高,就可以透過健康諮詢,改變飲食習慣、生活型態等,降低發病機率。又如癌症基因檢測,可分為遺傳性的癌症檢測及癌症組織檢測:前者可偵測是否有單一基因的變異,導致罹癌風險增加;後者則針對是否有藥物易感性的基因變異,做為臨床用藥的參考,也是目前精準醫療的重要應用項目之一。再者,基因檢測後續的生物資訊分析,包含基因序列的註解、變異位點的篩選及人工智慧評估變異點與疾病之間的關聯性等,對臨床醫療工作都有極大的助益。

基因定序有助於精準醫療的實現。圖/科技魅癮提供

建立屬於臺灣華人的基因庫

每個人的基因背景都不同,而不同族群之間更存在著基因差異,使得歐美國家基因庫的資料,幾乎不能直接應用於亞洲人身上,這也是我國自 2012 年發起「臺灣人體生物資料庫」(Taiwan biobank),希望建立臺灣人乃至亞洲人的基因資料庫的主因。而 2018 年起,中央研究院與全臺各大醫院共同發起的「臺灣精準醫療計畫」(TPMI),希望建立臺灣華人專屬的基因數據庫,促進臺灣民眾常見疾病的研究,並開發專屬華人的基因型鑑定晶片,促進我國精準醫療及生醫產業的發展。

目前招募了 20 萬名臺灣人,這些民眾在入組時沒有被診斷為癌症患者,超過 99% 是來自中國不同省分的漢族移民人口,其中少數是臺灣原住民。這是東亞血統個體最大且可公開獲得的遺傳數據庫,其中,漢族的全部遺傳變異中,有 21.2% 的人攜帶遺傳疾病的隱性基因;3.1% 的人有癌症易感基因,比一般人罹癌風險更高;87.3% 的人有藥物過敏的基因標誌。這些訊息對臨床診斷與治療都相當具實用性,例如:若患者具有某些藥物不良反應的特殊基因型,醫生在開藥時就能使用替代藥物,避免病人服藥後產生嚴重的不良反應。

基因時代大挑戰:個資保護與遺傳諮詢

雖然高科技與大數據分析的應用在生醫領域相當熱門,但有醫師對於研究結果能否運用在臨床上,存在著道德倫理的考量,例如:研究用途的資料是否能放在病歷中?個人資料是否受到法規保護?而且技術上各醫院之間的資料如何串流?這些都需要資通訊科技(ICT)產業的協助,而醫師本身相關知識的訓練也需與時俱進。對醫院端而言,建議患者做基因檢測是因為出現症狀,希望找到原因,但是如何解釋以及病歷上如何註解,則是另一項重要議題。

從人性觀點來看,在技術更迭演進的同時,對於受測者及其家人的心理支持及社會資源是否相應產生?回到了解病因的初衷,在知道自己體內可能有遺傳疾病的基因變異時,家庭成員之間的情感衝擊如何解決、是否有對應的治療方式等,都是值得深思的議題,也是目前遺傳諮詢門診中會詳細解說的部分。科技的初衷是為了讓人類的生活變得更好,因此,基因檢測如何搭配專業的遺傳諮詢系統,以及法規如何在科學發展與個資保護之間取得平衡,將是下一個基因時代的挑戰。

更多內容,請見「科技魅癮」:https://charmingscitech.pse.is/3q66cw

文章難易度
科技魅癮_96
15 篇文章 ・ 12 位粉絲
《科技魅癮》的前身為1973年初登場的《科學發展》月刊,每期都精選1個國際關注的科技議題,邀請1位國內資深學者擔任客座編輯,並訪談多位來自相關領域的科研菁英,探討該領域在臺灣及全球的研發現況及未來發展,盼可藉此增進國內研發能量。 擋不住的魅力,戒不了的讀癮,盡在《科技魅癮》