Loading [MathJax]/extensions/tex2jax.js

1

2
1

文字

分享

1
2
1

思想實驗 EPR悖論與匪夷所思量子纏結│科學史上的今天:5/15

張瑞棋_96
・2015/05/15 ・1275字 ・閱讀時間約 2 分鐘 ・SR值 578 ・九年級

-----廣告,請繼續往下閱讀-----

1935 年,愛因斯坦在普林斯頓的辦公室內望著窗外的天空。他還是不信上帝會玩骰子。其實他也不相信有宗教裏面那種會干涉人類命運的上帝,他所指的是支配著宇宙萬物如何運轉的優雅法則。

雖然愛因斯坦自己就是量子力學的開創者之一,但是打從他的好友玻恩(Max Born)於 1926 年用機率來詮釋薛丁格的波動方程式後, 他就與量子力學漸行漸遠了。尤其第二年海森堡提出不確定性原理,主張沒有所謂的客觀實在,只有觀測所得的結果──這所謂的「哥本哈根詮釋」更完全違背他的信念,難道月亮只有當你看它的時候才存在?!

他與他們的精神領袖波耳多次辯論,但波耳總是能成功擋下他每次的攻擊。將近十年過去,隨著量子力學日漸堅實,越來越多物理學家加入他們的陣營,但他仍堅守立場,而今他終於找出不確定性原理的漏洞了!

1935 年的今天,愛因斯坦與波多斯基(Boris Podolsky)、羅森(Nathan Rosen)三人共同發表一篇論文〈物理實在的量子力學描述能被視為完備的嗎?〉。這個後來以他們三人姓氏開頭字母簡稱的「EPR悖論」設想了一個思想實驗:

-----廣告,請繼續往下閱讀-----

A、B 兩個粒子交互作用後彼此遠離。

雖然不確定性原理指出:位置越精確則動量越不確定,反之亦然。但我們可以只測量 A 粒子的動量,而根據守恆定律推算出 B 粒子的動量;同時我們只測量 B 粒子的位置,也可得知 A 粒子的位置。如此一來,我們就可以同時知道兩個粒子的動量與位置,但量子力學卻無法同時表述出這兩個物理量的值,可見它並不完備。

薛丁格讀了這篇論文後,深表同意,並用「量子纏結」這個名詞稱呼這兩個產生交互作用的粒子,指出其荒謬之處:若按照哥本哈根詮釋,測量A粒子才讓它從各種可能性的「疊加態」崩陷為某一特定狀態;而在此瞬間,B粒子也會從疊加態崩陷為與A互補的狀態。假設我們等這兩個粒子相距甚遠才測量,那麼測量仍在地球的 A 粒子竟會瞬間影響已經遠在冥王星的 B 粒子,豈非違反了狹義相對論已經證明的「光速是無法超越的極限」?!愛因斯坦聞之也附和嘲笑這根本是「鬼魅的超距作用」

然而量子世界中似乎真的存在超距作用。愛因斯坦過世十年後,愛爾蘭物理學家貝爾(John S. Bell)於 1964 年提出檢驗量子纏結是否存在的實驗方法。等到一九八○年代技術成熟以後,許多實驗的統計結果都違反了「貝爾不等式」,代表量子纏結的確成立。

愛因斯坦為了駁斥不確定性原理而提出 EPR 悖論,沒想到反而開啟一連串研究,證實了更匪夷所思的量子纏結現象。或許正如波耳所說的:

-----廣告,請繼續往下閱讀-----

「如果你沒對量子力學深感震驚的話,表示你還沒瞭解它。」

 

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
張瑞棋_96
423 篇文章 ・ 1026 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
愛因斯坦也困惑!量子糾纏如何顛覆距離的限制?
PanSci_96
・2024/11/05 ・1765字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

量子糾纏的生活比喻:情感的同步

想像一下,你有一位從小就非常要好的朋友,無論他做什麼,你都感同身受。他吃下午茶,你也立刻想來一份;他開心,你也情不自禁地微笑;他難過,你也跟著心情低落。你們之間的情緒達到了百分之百的同步。雖然你們身處不同的地方,但似乎有一條無形的線將你們連接在一起。

這種神奇的連結,正是量子力學中的量子糾纏(Quantum Entanglement)。在微觀的量子世界裡,兩個曾經互相影響的粒子,即使相隔萬里,依然可以保持同步的狀態。一旦其中一個粒子的狀態被測量,另一個粒子的狀態也會立即確定,這種現象挑戰了我們對於時空和因果關係的理解。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

角動量守恆與粒子自旋

要理解量子糾纏,我們首先需要了解角動量守恆和粒子的自旋。想像一顆靜止的砲彈,突然爆炸成兩個旋轉的碎片。根據角動量守恆定律,兩個碎片的旋轉方向必須相反,才能使總角動量保持為零。

在量子力學中,粒子的自旋類似於這種旋轉,但並非真正的物體旋轉,而是粒子固有的一種量子性質。一個自旋為零的粒子衰變成兩個帶有自旋的粒子時,兩者的自旋方向必須相反,以維持角動量的守恆。

-----廣告,請繼續往下閱讀-----

然而,與宏觀世界不同的是,量子粒子的自旋狀態在被測量之前,處於一種「疊加態」,也就是說,它們同時具有多種可能的狀態,直到測量發生,狀態才被「塌縮」為確定的值。

EPR悖論:量子力學的挑戰

1935 年,愛因斯坦、波多爾斯基和羅森提出了著名的 EPR 悖論。他們認為,量子力學對於自然的描述並不完備,因為它無法預測單個粒子的確切狀態。他們設想,如果兩個粒子處於糾纏狀態,測量其中一個粒子的自旋方向,另一個粒子的自旋方向就立即確定,無論兩者距離多遠。

這似乎暗示著訊息以超光速傳遞,違反了相對論。然而,他們認為,應該存在一些「隱變量」來決定粒子的狀態,而不是量子力學的機率性描述。

貝爾不等式與實驗驗證

為了檢驗 EPR 悖論,物理學家貝爾在 1964 年提出了貝爾不等式。該不等式提供了一種方法,可以通過實驗來區分量子力學的預測和隱變量理論。

-----廣告,請繼續往下閱讀-----

1972 年,約翰·克勞澤和他的同事首次進行了實驗驗證,結果支持量子力學的預測,違背了貝爾不等式。這意味著,量子糾纏的現象是真實存在的,粒子之間的連結不需要透過任何已知的訊息傳遞。

之後,阿蘭·阿斯佩等科學家進一步完善了實驗,消除了可能的漏洞,堅定了量子力學的立場。2022 年,克勞澤、阿斯佩和安東·塞林格因在量子糾纏領域的貢獻,共同獲得諾貝爾物理學獎。

阿蘭·阿斯佩(Alain Aspect )的實驗堅定了量子力學的發展。圖/wikimedia

「鬼魅般的超距作用」的理解

量子糾纏挑戰了傳統物理學對於因果和現實的理解。愛因斯坦稱之為「鬼魅般的超距作用」,因為它似乎違反了光速的限制。然而,現代物理學家認為,量子糾纏並不傳遞任何可用於通信的訊息,因此不違反相對論。

糾纏粒子之間的連結被視為量子系統的整體性質,而非個別粒子的屬性。當我們測量其中一個粒子時,整個系統的波函數發生了變化,導致另一個粒子的狀態也被確定。

-----廣告,請繼續往下閱讀-----

量子糾纏的應用與未來

量子糾纏不僅僅是理論上的奇觀,它在實際應用中也展現了巨大的潛力。安東·塞林格成功地利用量子糾纏實現了量子隱形傳態,將一個粒子的量子態傳輸到遠方的另一個粒子上。

此外,量子糾纏在量子計算和量子通信中扮演關鍵角色。量子計算機利用糾纏態進行超高速的計算,而量子通信則提供了無法被破解的加密方式,保障訊息的安全。

結語:量子世界的奇妙之旅

量子糾纏揭示了自然界深層次的連結,挑戰了我們對於現實的直覺認知。儘管我們無法在宏觀世界中直接感受到這種現象,但它真實地存在於微觀的量子世界中,影響著未來科技的發展。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

4
2

文字

分享

0
4
2
量子糾纏態的物理
賴昭正_96
・2024/04/24 ・5889字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我不會稱量子糾纏為量子力學的「一般 (a)」特徵,而是量子力學「獨具 (the)」的特徵,它強制了完全背離經典的思想路線。

——薛定鍔(Edwin Schrödinger)1933 年諾貝爾物理獎得主

相對論雖然改寫了三百多年來物理學家對時間及空間的看法,但並未改變人類幾千年來對「客觀宇宙」——「實在」(reality)——的認知與經驗:不管我們是否去看它,或者人類是否存在,月亮永遠不停地依一定的軌道圍繞地球運轉。可是量子力學呢?它完全推翻了「客觀宇宙」存在的觀念。在它的世界裡,因果律成了或然率,物體不再同時具有一定的位置與運動速度……。

這樣違反「常識」的宇宙觀,不要說一般人難以接受,就是量子力學革命先鋒的傅朗克(Max Planck)及愛因斯坦(Albert Einstein)也難以苟同!但在經過一番企圖挽回古典力學的努力失敗後,傅朗克終於牽就了新革命的產物;但愛因斯坦則一直堅持不相信上帝在跟我們玩骰子!因此 1935 年提出了現在稱為「EPR 悖論(EPR Paradox)」的論文,為他反對聲浪中的最後一篇影響深遠的傑作。

1964 年,出生於北愛爾蘭、研究基本粒子及加速器設計的貝爾(John Bell),利用「業餘」時間來探討量子力學的基礎問題,提出題為「關於愛因斯坦(Einstein)-波多爾斯基(Podolsky)-羅森(Roson)悖論」的論文。貝爾深入地研究量子理論,確立了該理論可以告訴我們有關物理世界基本性質的地方,使直接透過實驗來探索看似哲學的問題(如現實的本質)成為可能。

2022 年的諾貝爾物理獎頒發給三位「用光子糾纏實驗,……開創量子資訊科學」的業思特(Alain Aspect)、克勞瑟(John Clauser)、蔡林格(Anton Zeilinger)的物理學家。讀者在許多報章雜誌(如 12 月號《科學月刊》)均可看到有關貝爾及他們之工作的報導,但比較深入討論貝爾實驗的文章則幾乎沒有。事實上貝爾的數學確實是很難懂的,但只要對基本物理有點興趣,我們還是可以了解他所建議之實驗及其內涵的。因此如果讀者不怕一點數學與邏輯,請繼續讀下去吧:我們將用古典力學及量子力學推導出在實驗上容易證明/反駁的兩個不同結果。

-----廣告,請繼續往下閱讀-----

角動量與自旋角動量

在我們日常生活裡,一個物體(例如地球)可以擁有兩種不同類型的角動量。第一種類型是由於物體的質心繞著某個固定(例如太陽)的外部點旋轉而引起的,這通常稱為軌道角動量。第二種類型是由於物體的內部運動引起的,這通常稱為自旋角動量。在量子物理學裡,粒子可以由於其在空間中的運動而擁有軌道角動量,也可以由於其內部運動而擁有自旋角動量。實際上,因為基本粒子都是無結構的點粒子,用我們日常物體的比喻並不完全準確1;因此在量子力學中,最好將自旋角動量視為是粒子所擁有的「內在性質」,並不是粒子真正在旋轉。實驗發現大部分的基本粒子都具有獨特的自旋角動量,就像擁有獨特的電荷和質量一樣:電子的自旋角動量為 ½ 2,光子的自旋角動量為 1。

量子力學裡的角動量有兩個與我們熟悉之角動量非常不同的性質:

  1. 前者不能連續變化,而是像能量一樣被量化(quantized)了,例如電子的自旋量子數為 ½,所以我們在任何方向上所能量到的自旋角動量只能是 +½(順時針方向旋轉)或 -½(逆時針方向旋轉)
  2. 後者的角動量可以同時在不同的方向上有確定的分量,但基本粒的(自旋)角動量卻不能。

EPR 論文

EPR 論文討論的是位置與動量的客觀實在性;貝爾將其論點擴展到自旋粒子的角動量上,討論兩個粒子相撞後分別往左、右兩個不同方向飛離後的實驗。因曾相撞作用之故,它們具有「關連」(correlated)的自旋角動量;但常識與經驗告訴我們,如果分開得夠遠的話,它們之間應不再互相作用影響,因此我們在任一體系所做的測量也應只會影響到該體系而已。這「可分離性」(separability)及「局部性」(locality)的兩個假設可以説是物理學成功的基石,因此沒有人會懷疑其正確性的。

讓我們在這裡假設粒子相撞後的總自旋角動量爲零。如果我們測得左邊粒子的 B- 方向自旋為順時(見圖一),則可以透過「關連」而預測右邊粒子的 B- 方向自旋應為逆時。因右邊粒子一直是孤立的,基於物理體系的「可分離性」與「局部性」,如果我們可以預測到其自旋的話,則其自旋應該早就存在,爲一「實在」的自然界物理量。

-----廣告,請繼續往下閱讀-----
EPR 與貝爾實驗裝置。 圖/作者提供   

同樣地,如果我們突然改變主意去量得左邊粒子的 C- 方向自旋為順時,則也可以透過「關連」而預測到右邊粒子的 B- 方向自旋應為逆時。但右邊粒子一直是孤立的,因此其 C- 方向自旋也應該早就存在,亦爲一「實在」的自然界物理量。所以右邊的粒子毫無疑問地應同時具有一定的 B- 方向自旋與 C- 方向自旋。同樣的論點也告訴我們:左邊的粒子毫無疑問地也應同時具有一定的 B- 方向自旋與 C- 方向自旋。如果量子力學説粒子不能同時具有一定的 B- 方向與 C- 方向自旋,而只能告訴我們或然率,那量子力學顯然不是一個完整的理論!

貝爾的實驗

貝爾將這一個物理哲學上的爭論變成可以證明或反駁的實驗!如圖一,我們可以設計偵測器來測量相隔 120 度的 A、B、C 三個方向的自旋(順時或逆時)。依照古典力學(EPR),自旋在這三個方向上都有客觀的存在定值。假設左粒子分別為(順、順、逆);則因總自旋須爲零,右粒子在三方向的自旋相對應爲(逆、逆、順)。在此情況下,如果我們「同時去量同一方向」之左、右粒子自旋,應可以發現(順逆)(順逆)(逆順)三種組合。可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,應可以發現的組合有(順逆)(順逆)(順順)(順逆)(順逆)(順順)(逆逆)(逆逆)(逆順)九種;其中相反自旋的結果佔了 5/9。讀者應該不難推出:不管粒子在三方向的自旋定值爲何,發現相反自旋的結果不是 5/9 就是 9/9,即永遠 ≥ 5/9。

量子力學怎麼說呢? 在同一個假設的情況下, 量子力學也說如果我們「同時去量同一方向」之左、右粒子自旋, 應發現的組合也是只有(順逆)(順逆)(逆順)三種。但量子力學卻說:可是如果我們「同時且隨機地取方向去量」左、右粒子自旋,則會得到不同於上面預測之 ≥ 5/9 的結果!為什麼呢?且聽量子力學道來。

量子力學與或然率

自動角動量。圖/作者提供

在古典力學裡,如果在某個方向測得的自旋角動量為 +½,則其在任何方向的分量應為 +½ cosθ,如圖二所示。但在量子力學裡,因為不可能同時在其它方向精確地測得自旋角動量,因此分量只能以出現 +½ 或 -½ 之或然率來表示;這與古典力學不同,也正是問題所在。但古典力學到底還是經過幾百年之火煉的真金,因此如果我們做無窮次的測量,則其結果應該與古典力學相同:即假設測得 +½ 的或然率是 P,則

-----廣告,請繼續往下閱讀-----

如果角度是 120º,則解得 P 等於 1/4:也就是說有 1/4 的機會量得與主測量同一方向(+½)自旋角動量,3/4 機會量得 -½ 自旋角動量。

讓我們看看這或然率用於上面所提到之貝爾實驗會得到怎麼樣的結果。依量子力學的計算,如果在左邊 A- 方向量得的是順時鐘的話,則因「關連」,右邊 A- 方向量得的便一定(100%)是逆時鐘;但因角動量不能同時在不同的方向上有確定的分量, 故在其它兩方向量得逆時鐘的或然率依照上面的計算將各爲 1/4,因此左、右同時測得相反自旋的或然率只有 ½ [=(1+1/4+1/4)*3/9,三方向、九方向組合]而己。

實驗結果呢?1/2,小於 5/9!顯然粒子在不同方向同時具有固定自旋的假設是錯的!EPR 是錯的!古典力學是錯的!量子力學戰勝了!貝爾失望克勞瑟賭輸了!

量子糾纏態

上面提到如果左邊 A- 方向量得的是順時鐘的話,則右邊 A- 方向量得的便一定(100%)是逆時鐘;可是左、右粒子在作用後,早已咫尺天涯,右粒子怎麼知道左粒子量得的是順時鐘呢?量子力學的另一大師薛定鍔(Edwin Schrödinger)從 EPR 論文裡悟到了「糾纏」(entanglement)的觀念。他認爲在相互作用後,兩個粒子便永遠糾纏在一起,形成了一個量子體系。因是一個體系,因此當我們去量左邊粒子之自旋時,量子體系波函數立即崩潰,使得右邊粒子具有一定且相反的自旋。可是右邊的粒子如何「立即知道」我們在量左邊的粒子 A- 方向及測得之值呢?那就只有靠愛因斯坦所謂之「鬼般的瞬間作用」(spooky action at a distance)了!此一超光速的作用轟動了科普讀者3!筆者也因之接到一些朋友的詢問,為寫這一篇文章的一大動機。

-----廣告,請繼續往下閱讀-----

可是仔細想一想,在古典力學裡不也是這樣——如果左邊 A- 方向量得的是順時,則右邊 A- 方向量得的便一定是逆時——嗎?但卻從來沒有科學家或科普讀者認為有「鬼般的瞬間作用」或「牛頓糾纏態」去告訴右邊粒子該出現什麼。這「鬼般的瞬間作用」事實上是因為在未測量之前,量子力學認為右邊粒子自旋是存在於一種沒有定值之或然率狀態的「奇怪」解釋所造成的。例如我們擲一顆骰子,量子力學說:在沒擲出之前,出現任何數的或然率「存在」於一種「波函數」中。但一旦擲出 4 後,波函數便將立即崩潰:原來出現 4 之 1/6 或然率立即瞬間變成 100%,其它數的或然率也立即瞬間全部變成零了。但在日常生活中,我們(包括 EPR)從不認為那些或然率「波函數」為一「客觀的實體」,故也從來沒有人問:其它數怎麼瞬間立即知道擲出 4 而不能再出現呢?波函數數怎麼瞬間立即崩潰呢?

事實上從上面的分析,讀者應該可以看出:根本不需要用「右粒子『知道』左粒子量得的是順時鐘」,我們所需要知道的只是量子力學的遊戲規則:粒子的角動量不能同時在不同方向上有確定的分量;即如果 100% 知道某一方向的自旋,其它方向的自旋便只能用或然率來表示。一旦承認這個遊戲規則,那麼什麼「量子糾纏態」或「鬼般的瞬間作用」便立即瞬間消失!這些「奇怪」名詞之所以出現,正是因為我們要使用日常生活經驗語言來解釋量子系統中訊息編碼之奇怪且違反直覺的特性4 所致。

結論

在想用日常生活邏輯或語言來了解自然界的運作失敗後,幾乎所有的物理學家現在都採取保利(Wolfgang Pauli)的態度:

了解「自然界是怎樣的(運作)」只不過是形上學家的夢想。我們實際上擁有的只是「我們能對大自然界說些什麼」。在量子力學層面,我們能說的就是我們能用數學來說的——結合實驗、測試、預測、觀察等。因此,幾乎所有其它事物在本質上都是類比和或想像的。事實上,類比或意象性的東西可能——而且經常——誤導我們。

-----廣告,請繼續往下閱讀-----

換句話說,物理學的任務是透過數學計算5,告訴我們在什麼時刻及什麼地方可以看到月亮;至於月亮是不是一直那裡,或怎麼會到那裡……則是哲學的問題,不是物理學能回答或必須回答的。如果硬要用日常生活邏輯或語言去解釋月亮怎麼出現到哪裡,那麼我們將常被誤導。

誠如筆者在『思考的極限:宇宙創造出「空間」與「時間」?』一文裡所說的:『空間與時間都根本不存在:它們只是分別用來說明物體間之相對位置與事件間之前後秩序的「語言」而已。沒有物體就沒有空間的必要;沒有事件就沒有時間的必要』,我們在這裡也可以說;「量子糾纏態」根本不存在,它只是用來說明量子力學之奇怪宇宙觀的「語言」而已;沒有量子力學的或然率自然界,就沒有「量子糾纏態」的必要。

註解

  1. 讓我們回顧一下在 1925 年最早提出電子自旋觀念的高玆密(Samuel Goudsmit)及烏倫別克(George Uhlenbeck)當時所遭遇到的困擾。如果不是因為他們那時還是個無名小卒的研究生,提出電子自旋的人大概便不是他們了!底下是烏倫別克的回憶:『然後我們再一起去請教(電磁學大師)羅倫玆(Hendrik Lorentz)。羅倫玆不只以他那人盡皆知的慈祥接待我們,並且還表現出很感興趣的樣子——雖然我覺得多少帶點悲觀。他答應將仔細想一想。一個多禮拜後,他交給我們一整潔的手稿。雖然我們無法完全了解那些長而繁的有關自旋電子的電磁性計算,但很明顯地,如果我們對電子自旋這一觀念太認真的話,則將遭遇到相當嚴重的難題!例如,依質能互換的原則,磁能便會大得使電子的質量必須大於質子;或者如果我們堅持電子的質量必須為已知的實驗數值,則電子必須比整個原子還大!高玆密及我都認為至少在目前我們最好不要發表任何東西。可是當我們將決定告訴羅倫玆教授時,他回答說:「我早已將你們的短文寄出去投稿了!你們倆還年青得可以去做一些愚蠢的事!」』。後來呢?電子自旋的概念在整個量子力學的系統裏,脫出了「點」與「非點」這類的爭論,而被物理學界普遍接受。今天當物理學家用「電子自旋」這一術語時,有他們特定的運作定義,絕不虛幻,但也絕不表示電子是一個旋轉的小球(因為那將與實驗不符);但是有時把電子看為自轉的小球,可以幫助我們理解與教育初學者。
  2. 單位為普朗克常數(Planck constant)除以 2π。
  3. 玻爾(Niel Bohr):「那些第一次接觸量子理論時不感到震驚的人不可能理解它。」
  4. 這種量子效應以前一直被認為造成困擾,導緻小型設備比大型設備的可靠性更低、更容易出錯。但 1995 年後,科學家開始認識到量子效應雖然「令人討厭」,但實際上可以用來執行以前不可能處理的重要資訊任務,「量子資訊科學」於焉誕生。
  5. 薛定鍔:「量子理論的數學框架已經通過了無數成功的測試,現在被普遍接受為對所有原子現象的一致和準確的描述。」

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。