0

0
0

文字

分享

0
0
0

一層樓高的氣象雷達球成功上船啦!美國研究船「莎莉萊德號」的神秘任務是什麼呢?

Suzuki
・2019/10/30 ・4631字 ・閱讀時間約 9 分鐘 ・SR值 554 ・八年級

八月底,美國海軍所屬的研究船「莎莉萊德號(Sally Ride)」在基隆港邊短暫停留。這艘船身懸掛「中華民國」國旗、長度將近 73 公尺、3000 噸的大洋級研究船,格外引起大家的注意。

這難道有什麼八卦嗎?其實,莎莉萊德號剛剛結束印度洋的任務,停泊在基隆港邊,進行補給和研究人員更替的任務,而船身掛國旗其實是對停泊港國的尊重。

莎莉萊德號首次來到臺灣,停泊基隆港補給,之後前往帛琉海域執行 PISTON 計畫。(圖片提供/臺大海洋研究所)

儘管沒有軍事八卦,這艘莎莉萊德號的來頭實在不小!2016 年由美國耗資 8900 萬美金(約台幣 27 億)打造完工,最長可在海上闖蕩 42 天以上。

目前是美國最新的大洋級研究船,交由美國聖地牙哥史奎普斯海洋研究所管理。船內不僅裝載十幾項最新海洋科學儀器,甲板作業區也相當寬敞。前甲板可放置一個 20 呎貨櫃實驗室,後甲板則可放置三個,

-----廣告,請繼續往下閱讀-----

而本次莎莉萊德號來到基隆,一直與美國海洋研究緊密互動的臺灣大學海洋研究所,因此受美國 PISTON 研究團隊之邀,得以上船參觀。

不可能的任務:一層樓高的氣象雷達球上船

一登上船,臺大大氣科學系教授林博雄的讚嘆之情溢於言表,驚呼:「把整顆氣象雷達球搬上去,是件不可思議的事!再加上放置數據的貨櫃實驗室,這艘研究船儼然是行動氣象站。」

這艘研究船共有三顆雷達,分別是兩小顆位於船頂最高處的通訊雷達和一大顆位於船首的氣象雷達。這顆氣象雷達將近一層樓高(4.3 公尺),功能相當於氣象局放在山上觀測雲滴的氣象雷達,而貌似足球的外型是雷達的罩子。

你注意到Sally Ride上有三顆大球嗎?船頭那顆最大就是氣象雷達喔!(圖片提供/臺大海洋研究所,拍攝連政佳)

這顆氣象雷達是俄勒岡州立大學 (Oregon state university) 所屬的「海基型雙偏極化氣象雷達」(ship deployable dual-polarization meterological rada, SEA-POL)。技術人員特別從美國飛到臺灣,運用一週的靠港時間,將雷達完成組裝、測試後,再用吊臂將雷達與實驗室放在前甲板上。

-----廣告,請繼續往下閱讀-----

林博雄表示,海上雷達運轉不只要需要克服船上的強烈風速及搖晃,而快速從零搭建、組裝雷達也是門學問。

目前為止,自 2018 年啟用至今,只有三艘船使用過這顆氣象雷達,莎莉萊德號便是其中一艘。

SEA-POL原本並不在船上,是在地面安裝完畢後,由吊臂掛上去的(圖片拍攝/簡鈺璇)。

這種雷達是最新型的雷達設施,能藉由發射水平和垂直兩方向的電磁波,再依據都卜勒效應回推水平、垂直方向的回波,就可推測雷達周遭的雨滴型態、降雨機率和降雨量1, 2。它能在每十分鐘完成一次雨量觀測、雲滴分析,經過資料處理後,就能繪製即時雨圖。

SEA-POL的資料,可以分析雲滴的組成成分(圖片拍攝/簡鈺璇)。

而且波段是 C-band,觀測距離能延伸至 200 公里,解析度為 100 公尺,相當於每 100 公尺有一個雨量站。

-----廣告,請繼續往下閱讀-----

一般來說,氣象雷達常見的波段有 10公分(S-band)、5公分(C-band),3公分(X-band)。S-band 波長最長,發射距離最遠,可達 400 公里,但雷達半徑最大、耗電大、建置成本高,是氣象局使用的觀測雷達;相反的 C-band 的波長較短,解析度高,可檢視更小的雲滴,但信號容易衰減,適合小地方的觀測,加上零組件較小,機動性更強。

從雷達球的內部可知,SEA-POL 其實是個大耳朵(圖片拍攝/簡鈺璇)。

「大足球」的秘密任務:研究海上氣團 BSISO

大家可能會好奇:為何要特地在台灣將氣象雷達搬上船呢?這跟 Sally Ride 的任務有關。

莎莉萊德號離開臺灣基隆後,將至帛琉海域進行為期 25 天的海上研究,執行美國、菲律賓和臺灣合作的「季內熱帶震盪的傳播觀測計畫」(Propagation of Intraseasonal Tropical Oscillations,PISTON)。PISTON主要研究目的為瞭解「北半球夏季熱帶季內震盪現象」( Boreal summer intraseasonal oscillation,BSISO)原因。

BSISO 聽起來好像很複雜,但一點也不難喔!簡言之,你可以想像大氣就像一個盒子,裏頭有不同的勢力在互相影響,BSISO 就是其中一股勢力。

-----廣告,請繼續往下閱讀-----

它是赤道周圍有一坨氣團,裡頭有對流區旺盛和無對流兩區,這坨氣團以每 30-60 天為一個週期,由印度洋東側自西向東至太平洋中央移動,此氣候現象現象類似於馬登-朱利安振盪(Madden Julian Oscillation, MJO)3。由於準確度、現象描述的差異,MJO 指數通常適用於北半球冬季觀測,BSISO 指數則適用於夏季。

美國氣候預報中心(CPC)在2006年的MJO指數的變化(五日移動平均、EEOF分析)。縱軸為時間軸,橫軸為經度。圖中顯示對流活動較強的藍色區域,隨時間而向東移動(從4/16-6/16),約每30-60天為一個循環(圖取自維基百科)。

當 BSISO 對流區掃過的地方,就會帶來豐沛的降雨。過往研究指出, BSISO 主要對流區從菲律賓海向西北移至台灣附近時,會使西南風更強,臺灣降雨量更大。BSISO 也會影響颱風、陸上高溫的變化,氣象局科技中心在2015年也加入 APCC(亞太經濟合作會議氣候中心)的 BSISO預報實驗。4, 5

目前科學家未完全掌握 BSISO 的成因,而 PISTON 任務便是透過海氣交互現象相關參數的觀測,釐清水和空氣在海洋與大氣層之間交換的過程,如何影響 BSISO 的發展與移位,這對於東南亞國家、臺灣預報颱風生成和降雨皆有助益。

氣象歸氣象,海洋歸海洋?不行!海氣會有交互現象

PISTON 研究團隊結合了海洋物理、大氣專家進行研究。大氣組會利用雷達(SEA-POL、W-band 雷達)、氣象塔,以及定點施放探空氣球,來蒐集數據,跑數值模型進行分析;海洋組則會利用「紊流儀」,分析海表水溫、海洋上層流速、紊流、水文剖面等觀測。

-----廣告,請繼續往下閱讀-----

這裡出現了一個關鍵字「紊流」,紊流指的是亂流,例如水碰到障礙物時,水中產生擾動或漣漪就是紊流。好der,那紊流與海氣現象又有什麼關係呢?為什麼研究氣候現象要特別觀測紊流呢?

試想我們在靜止的水面上加熱,熱其實是很難傳到底層的,但如果拿根棒子在水上攪動,熱就傳下去了。臺大海洋研究所副教授張明輝表示,紊流就像攪拌棒,能將太陽的熱從海表面傳下去,一定要有紊流,海洋和大氣的交互現象才會進行,上層的熱下去,底層的冷水上來,造成海水溫度變化及風向改變。著名的聖嬰現象,就是東太平洋水溫上升,使得赤道東風減弱,導致太平洋東岸出現乾旱。

張明輝解釋,海溫跟風向會不斷箝制,風帶起海底層的冷水,但冷水又讓上方空氣冷,會使大氣對流變得薄弱,風就又變小了,此時底層海水又上不來了,這是個複雜的交互作用,也是 PISTON 研究需要湊合大氣和海洋物理專家的原因。

PISTON 量測紊流的儀器有兩種,都是研究團隊自行開發的,一是像洗衣板型的儀器「Surfotter」,上面會掛溫度計,以及測海水導電度的溫鹽探儀,主要是掛放在距離船 200 公尺處,測量近海表層紊流所造成的現象;二是像掃帚的長型紊流儀「Chameleon」, 設計成掃帚是為了讓紊流儀可以垂直、慢慢下降至海底觀測區,主要是測量海洋混合層(200公尺)以下的紊流現象。

-----廣告,請繼續往下閱讀-----
測量紊流的儀器有兩種,此為類似洗衣板的Surfotter,會掛在船的兩側約200公尺處,上面一根根桿子裡都有放溫度計,最下面的白色筒子是鹽度計(圖片提供/謝欣崧)。
掃帚型的紊流儀Chameleon,是垂直觀測紊流的儀器(圖片拍攝/簡鈺璇)

張明輝表示,垂直觀測紊流是因為海水過了混合層後就急遽降溫,因此深水區的紊流擾動就會影響海表層溫度變化。他笑著表示,長型紊流儀探測也十分有趣,就像是把一根竿子直直投進海中,看它被紊流干擾、轉動的狀況,即量測紊流造成的「動能消散率」。

不過,用 Chameleon 這隻「掃帚型」的儀器做研究可不簡單。美國研究人員表示,無論風吹日曬雨淋,24小時都必須有人輪班站在甲板上,把 Chameleon 慢慢放置海底 200-300 公尺處,然後再慢慢拉回來,整個航程會累積數千筆的資料。

此次,臺大海研所也有兩位研究人員登船 25 天,協助這個任務。臺大貴重儀器中心技術員謝欣崧表示,投放 Chameleon 必須垂直入水,儀器下水後兩人一組,一人在電腦前監控數據、存擋資料,另一人則在外面聽從裡面指示操作絞機,將 Chameleon 回收,但要控制收攬的速度,避免儀器抓不到數據,整個過程下放和回收的過程約 8-10 分鐘,一小時做六組,然後換班。

「大太陽底下工作很熱!外面一站就是滿頭汗。」謝欣崧開玩笑地說,在甲板工作時,電腦室的人會用耳機跟外頭夥伴聊天,避免施放儀器恍神,掉到海裡。

-----廣告,請繼續往下閱讀-----
將紊流儀Chameleon放入水中後,工作人員必須聽從電腦操控端的指示,右手控制收纜繩的速度,左手操作控制桿(圖片提供/謝欣崧)。

臺大海研所也與 PISTON 計畫合作,在去年及今年將美國奧勒岡州立大學 Jim Moum 教授的紊流儀掛放在 NTU3 海氣象觀測浮標上,此浮標位於臺灣東南方海域,位在東經 125 度、北緯 21 度的錨碇站位上。去年 PISTON 計畫是由美國華盛頓大學研究船 Thompson 靠港,那時海研所也有八位研究人員上船協助。

臺大海研所楊穎堅副教授表示,早在 1980 年臺大海研所與美國有許多研究的交流,這段期間建立了深厚的友誼,讓美方這次相當樂意來台補給、交流,台灣這邊當然也把握機會開開眼界啦。

台灣研究團隊、船廠至Sally Ride上的參訪合照(圖片拍攝/簡鈺璇)。

對海研船設計的啟發

參訪完畢後,研究人員與新海研船的造船師皆對船上的研究設備配置、空間安排表示讚賞。

「我們真的很羨慕這艘船!」林博雄教授表示,以往海研船為了海洋研究都著重後甲板的設計,但忽視氣象觀測的前甲板需求,例如:莎莉萊德號設計一根快兩層樓高的在氣象塔在船頭,且這根氣象塔可以傾倒更換儀器,儘管可能會影響前面開船的視線,但可透過攝影機彌補阻礙。

船上的氣象塔可以橫躺,讓研究人員保養、更換儀器設備(圖片拍攝/簡鈺璇)。

「莎莉萊德號為了研究需求而設計的,但現行台灣的海研船比較像是研究人員去適應船上的空間,想辦法把儀器放上去。」臺大貴重儀器中心技術員謝欣崧則表示,莎莉萊德號上很多東西都可以拆裝,連圍住甲板的圍欄都可拆,這對於採集海底岩心等需大空間的研究作業相當方便,但這對造船廠一般的認知會認為這樣設計很危險。

後甲板的藍色圍欄可以拆卸,利於海上研究作業(圖片拍攝/簡鈺璇)。

執行「新海研船」建造的台灣國際造船(台船)施經理則表示,莎莉萊德號甲板留很多放置移動式儀器的空間與固定儀器的卡榫,雖然新海研船也有,但就沒那麼多,這是他們未來可以學習的。

甲板尚有許多孔,使得這艘船就像組樂高一樣,可以拆卸、裝載不同儀器,適合各類海上研究(圖片拍攝/簡鈺璇)。

看了美國大洋級的海研船,大家是否也開始期待預計將於今(2019)年底明年初開工的 MIT 的三艘「新海研1、2、3號」呢?記者也想跟著出航 25 天啊~這樣就沒人找得到我啦~

參考資料

  1. 科技大觀園,電磁波知多少:氣象雷達
  2. 中央氣象局,聽見雨的聲音—雷達
  3. Intraseasonal rainfall variability in North Sumatra and its relationship with Boreal Summer Intraseasonal Oscillation (BSISO)
  4. 臺灣師範大學地理學系洪致文教授 出國報告書:  Intraseasonal Oscillation and the Taiwan Climate
  5. 中央氣象局科技研究中心盧孟明、李思瑩:APCC BSISO 預報計畫與氣象局的參與
文章難易度
Suzuki
18 篇文章 ・ 0 位粉絲
超純社會組學生,對未知的一切感到好奇,意外掉入科技與科學領域,希望在猛點頭汲取知識的同時,也能將箇中妙趣分享給大家。

0

1
0

文字

分享

0
1
0
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
美國將玉米乙醇列入 SAF 前瞻政策,它真的能拯救燃料業的高碳排處境嗎?
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/06 ・2633字 ・閱讀時間約 5 分鐘

本文由 美國穀物協會 委託,泛科學企劃執行。

你加過「酒精汽油」嗎?

2007 年,從台北的八座加油站開始,民眾可以在特定加油站選加「E3 酒精汽油」。

所謂的 E3,指的是汽油中有百分之 3 改為酒精。如果你在其他國家的加油站看到 E10、E27、E100 等等的標示,則代表不同濃度,最高到百分之百的酒精。例如美國、英國、印度、菲律賓等國家已經開放到 E10,巴西則有 E27 和百分之百酒精的 E100 選項可以選擇。

圖片來源:Hanskeuken / Wikipedia

為什麼要加酒精呢?

單論玉米乙醇來說,碳排放趨近於零。為什麼呢?因為從玉米吸收二氧化碳與水進行光合作、生長、成熟,接著被採收,發酵成為玉米乙醇,最後燃燒成二氧化碳與水蒸氣回到大氣中。這一整趟碳循環與水循環,淨排放都是 0,是個零碳的好燃料來源。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

當然,我們無法忽略的是燃料運輸、儲藏、以及製造生產設備時產生的碳足跡。即使如此,美國農業部經過評估分析,2017 發表的報告指出,玉米乙醇生命週期的碳排放量比汽油少了 43%。

「玉米乙醇」納入 SAF(永續航空燃料)前瞻性指引的選項之一

航空業占了全球碳排的 2.5%,而根據國際民用航空組織(ICAO)的預測,這個數字還會成長,2050 年全球航空碳排放量將會來到 2015 年的兩倍。這也使得以生質原料為首的「永續航空燃料」SAF,開始成為航空業減碳的關鍵,及投資者關注的新興科技。

只要燃料的生產符合永續,都可被歸類為 SAF。目前美國材料和試驗協會規範的 SAF 包含以合成方式製造的合成石蠟煤油 FT-SPK、透過發酵與合成製造的異鏈烷烴 SIP。以及近年討論度很高,以食用油為原料進行氫化的 HEFA,以及酒精航空燃料 ATJ(alcohol-to-jet)。

圖片來源:shutterstock

每種燃料的原料都不相同,因此需要的技術突破也不同。例如 HEFA 是將食用油重新再造成可用的航空燃料,因此製造商會從百萬間餐廳蒐集廢棄食用油,再進行「氫化」。

-----廣告,請繼續往下閱讀-----

就引擎來說,我們當然也希望用到穩定的油。因此需要氫化來將植物油轉化為如同動物油般的飽和脂肪酸。氫化會打斷雙鍵,以氫原子佔據這些鍵結,讓氫在脂肪酸上「飽和」。此時因為穩定性提高,不易氧化,適合保存並減少對引擎的負擔。

至於酒精加工為酒精航空燃料 ATJ 的流程。乙醇會先進行脫水為乙烯,接著聚合成約 6~16 碳原子長度的長鏈烯烴。最後一樣進行氫化打斷雙鍵,成為長鏈烷烴,性質幾乎與傳統航空燃料一模一樣。

ATJ 和 HEFA 雖然都會經過氫化,但 ATJ 的反應中所需要的氫氣大約只有一半。另外,HEFA 取用的油品來源來自餐廳,雖然是幫助廢油循環使用的好方法,但供應多少比較不穩定。相對的,因為 ATJ 來源是玉米等穀物,通常農地會種植專門的玉米品種進行生質乙醇的生產,因此來源相對穩定。

但不論是哪一種 SAF,都有積極發展的價值。而航空業也不斷有新消息,例如阿聯酋航空在 2023 年也成功讓波音 777 以 100% 的 SAF 燃料完成飛行,締下創舉。

-----廣告,請繼續往下閱讀-----
圖片來源:shutterstock

汽車業也需要作出重要改變

根據長年推動低碳交通的國際組織 SLoCaT 分析,在所有交通工具的碳排放中,航空業佔了其中的 12%,而公路交通則占了 77%。沒錯,航空業雖然佔了全球碳排的 2.5%,但真正最大宗的碳排來源,還是我們的汽車載具。

但是這個新燃料會不會傷害我們的引擎呢?有人擔心,酒精可能會吸收空氣中的水氣,對機械設備造成影響?

其實也不用那麼擔心,畢竟酒精汽油已經不只是使用一、二十年的東西了。美國聯邦政府早在 1978 就透過免除 E10 的汽油燃料稅,來推廣添加百分之 10 酒精的低碳汽油。也就是說,酒精汽油的上路試驗已經快要 50 年。

有那麼多的研究數據在路上跑,當然不能錯過這個機會。美國國家可再生能源實驗室也持續進行調查,結果發現,由於 E10 汽油摻雜的比例非常低,和傳統汽油的化學性質差異非常小,這 50 年來的車輛,只要符合國際標準製造,都與 E10 汽油完全相容。

-----廣告,請繼續往下閱讀-----

解惑:這些生質酒精的來源原料是否符合永續的精神嗎?

在環保議題裡,這種原本以為是一片好心,最後卻是環境災難的案例還不少。玉米乙醇也一樣有相關規範,例如歐盟在再生能源指令 RED II 明確說明,生質乙醇等生物燃料確實有持續性,但必須符合「永續」的標準,並且因為使用的原料是穀物,因此需要確保不會影響糧食供應。

好消息是,隨著目標變明確,專門生產生質酒精的玉米需求增加,這也帶動品種的改良。在美國,玉米產量連年提高,種植總面積卻緩步下降,避開了與糧爭地的問題。

另外,單位面積產量增加,也進一步降低收穫與運輸的複雜度,總碳排量也觀察到下降的趨勢,讓低碳汽油真正名實相符。

隨著航空業對永續航空燃料的需求抬頭,低碳汽油等生質燃料或許值得我們再次審視。看看除了鋰電池車、氫能車以外,生質燃料車,是否也是個值得加碼投資的方向?

-----廣告,請繼續往下閱讀-----

參考資料

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
204 篇文章 ・ 311 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
2

文字

分享

0
5
2
怪獸襲來!為什麼會有哥吉拉形狀的雲朵?:千變萬化的流體(三)
ntucase_96
・2021/12/11 ・2345字 ・閱讀時間約 4 分鐘

  • 作者/劉詠鯤

本文轉載自 CASE 報科學 《千變萬化的流體(三):哥吉拉雲—流體的不穩定性

海岸邊的雲層上緣,出現一隻隻如同哥吉拉形狀的雲;原子彈投下後,劇烈爆炸引起的蕈狀雲;土星大氣層內形狀獨特的雲帶……等。這些看似毫無相關的現象,背後其實成因都可以歸納為:流體中的不穩定性。

2020 年在青森縣的海邊,有網友分享了一張雲朵彷彿在進行「哥吉拉大遊行」的照片(圖一左上);也有飛行員在雲層上分享過類似的照片(圖一右上);除此之外,天文學家在土星的大氣層也觀察到相似形狀的雲層(圖一下)。這些「哥吉拉」的行動力竟然如此之高,不只在地球上出現,連土星上都有。這是否暗示它們背後其實具有相同的形成機制呢?

圖一左上:海岸邊的哥吉拉雲,圖/大間觀光土產中心推特
圖一 右上:飛行員在雲層上看到的哥吉拉雲,圖/世界氣象組織(WMO)推特
圖一下:土星大氣層內的雲帶照片。圖/NASA

在<千變萬化的流體(一)>一文中,我們介紹了流體流動的狀態主要可以分成兩種:層流與紊流。層流狀態的流體十分穩定,它可以被視為一層一層獨立的流動來討論;相對的,紊流如同它的名字所表示,流體內部的流動較為混亂,不同層之間的流體會互相混合、影響。而決定是層流還是紊流的關鍵因素便是「不穩定性」[1]

在描述天氣系統為甚麼難以預測時,常常會提到「蝴蝶效應」這個小故事:位在大西洋的颶風,其成因可能只是在亞馬遜森林裡面一隻蝴蝶煽動了翅膀,這個初始的小擾動,隨著時間演變,最終形成尺度龐大的結構。不穩定性在流體中扮演的角色也十分相似。起初流體內部隨機的產生十分微小的擾動,若整個流體的不穩定性足夠大,微小的擾動便有機會繼續成長,直到對整個流體都造成影響。流體中具有各式各樣的不穩定性,在本篇文章中,我們將會介紹與哥吉拉雲還有蕈狀雲有關的兩種不穩定性:克耳文-亥姆霍茲不穩定性以及瑞利-泰勒不穩定性。

克耳文-亥姆霍茲不穩定性:哥吉拉雲

這個不穩定性得名於兩位對此現象進行研究的物理學家:發明絕對溫標的克耳文爵士,以及對聲學共振系統做出系統性研究的亥姆霍茲(在<香檳聲音哪裡來?>一文中,他曾經登場過)。這個不穩定性發生的條件是:兩層流體之間具有相對速度。

請搭配圖二,讓我們一起來理解這個不穩定性是如何產生哥吉拉雲的。假設有兩層流體,分別向左與向右運動。當它們彼此完美平行時,一切無事,如圖二(a)。但這個狀態其實並不穩定,任何的擾動,都可能會破壞這個完美狀態。例如,流體中形成了如圖二(b)的擾動,接下來流體的運動會如何變化呢?

對於淺藍流體來說,A 點的體積較原本略小,因此流動速度較大,如同澆花時,將水管捏住(管徑縮小),水可以噴得更遠。此外,流速較快也會使得 A 點的壓力減小;但對於紅色流體來說,A 點的壓力反而會增大。如此會導致流體內部的壓力分佈形成圖二(c)。兩種流體之間的壓力差,會進一步使擾動長大,如圖二(d)。最後,由於流體本身橫向的速度,使擾動在橫向上出現變形,如圖二(e)。如此一來,哥吉拉形狀是不是就出現了呢?

圖二:克耳文-亥姆霍茲不穩定性形成示意圖。圖/CASE 報科學

瑞利-泰勒不穩定性:核爆蘑菇雲

接下來,讓我們來看另一種在生活中沒那麼常見,但是看過就很難忘記的不穩定性現象:核爆產生的蘑菇雲。這種現象的成因,是來自於瑞利-泰勒不穩定性,它會發生於密度較大的流體壓在密度小的流體之上時。核彈爆發會在極短時間內釋放出極大熱量,將爆炸中心的空氣瞬間加溫。我們知道,氣體的溫度越高,密度越低,因此在爆炸中心,會瞬間形成大量的低密度空氣。

讓我們用簡單的模型來看看,這種不穩定性是如何造成蘑菇雲的。圖三(a)中有兩種流體,密度較高的在上,此時整個流體系統處於不穩定態,只要有一點擾動 ,如圖三(b) ,不穩定性就會使擾動擴大。由於密度差異,重力使得密度小的流體上升,密度大的下降,使不穩定度振幅逐漸增大。此外,由於壓力差與密度差的方向並不平行,會導致流體的邊界形成渦旋,如圖三(c)。以上這些效應疊加在一起後[2],流體邊界處便會逐漸形成如蘑菇狀的特徵,如圖三(d)。

圖三:瑞利-泰勒不穩定性示意圖。圖/CASE 報科學

以上兩種流體不穩定性,其實在我們生活中也存在,例如:點燃的線香。由於線香燃燒處的溫度上升,空氣密度下降,此時就滿足瑞利-泰勒不穩定性的條件;當熱空氣上升時,和兩側靜止的空氣有一相對速度,也滿足了克爾文-亥姆霍茲不穩定性條件。只是由於規模較小,發生速度較快,肉眼未必可以清楚的看到如前文中提到的明顯特徵。儘管如此,各位讀者在了解這些不穩定性之後,若是試著觀察看看生活中的各種流體,也許也能找到隱藏起來的「蕈狀雲」喔!

註解

[1] 更詳盡的說明可以參考 CASE<上下顛倒漂浮船>一文
[2] 實際上,形成蘑菇狀構造還與流體在三維條件下的非線性效應有關,數學模型較為複雜,此處只是簡單概述其成因。

參考資料

  1. Kelvin–Helmholtz instability
  2. Rayleigh–Taylor instability
  3. “Single mode hydrodynamic instabilities” draft from Hideaki Takabe.
ntucase_96
30 篇文章 ・ 1463 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。