0

0
0

文字

分享

0
0
0

五十年三十諾貝爾,日本諾貝爾獎的八卦

活躍星系核_96
・2019/11/01 ・3893字 ・閱讀時間約 8 分鐘 ・SR值 554 ・八年級
  • 文/姚荏富

每年十月是諾貝爾獎開獎的時刻啦,由於諾貝爾獎嚴格限制候選人和提名人必須保密,要直接猜出得主實在有點困難。但如果是猜哪個國家會得獎,似乎就容易許多了,不外乎是美國、英國、德國這些傳統科學的強國,而亞洲比較能打的就只有我們的鄰居日本了。基於對科學的興趣,筆者找到了一些有關日本諾貝爾獎相關的小資訊在這邊和大家分享。

五十年三十諾貝爾,日本的諾貝爾之路

1. 2001 年日本科學技術基本計畫目標為 50 年內至少培育出 30 名諾貝爾得主

這項發言相信有在關注日本科學界的人應該多少有聽過,而日本在 2000 年後也因為幾乎年年獲獎所以這項宣言再度被人們提起,截至目前為止科學類物理、化學、生醫得獎人數分別為 11、8、5 人共計 24 人。以下附上科學獎得獎清單。

日本歷屆諾貝爾獎(科學類)得主名單

姓名得獎年分最高學歷得獎研究主要產出單位(日本大學分類)諾貝爾獎得獎原因基礎/應用
湯川秀樹1949大阪大學理學博士京都大學(研究型)物理學獎以核作用力理論基礎預言介子的存在基礎
朝永振一郎1965東京大學理學博士筑波大學(研究型)物理學獎量子電氣力學基礎
江崎玲於奈1973東京大學理學博士東京通信工業(Sony前身)(產)物理學獎發現半導體與超導體的隧道效應發明江崎二極體應用
福井謙一1981京都大學工學博士京都大學(研究型)化學獎量子化學基礎
利根川進1987加州大學聖地牙哥分校博士瑞士巴塞爾免疫研究所等生理醫學獎發現抗體多樣性的遺傳學原理應用
白川英樹2000東京工業大學工學博士賓州大學化學獎導電高分子應用
野依良治2001京都大學工學博士名古屋大學(研究型)化學獎不對稱氫化反應應用
田中耕一2002東北大學名譽博士島津製作所(產)化學獎發明軟雷射揮離法(SLDI)解析蛋白質應用
小柴昌俊2002美國羅徹斯特大學博士、東京大學理學博士東京大學宇宙線研究所神岡實驗室(研究型)物理獎天體物理學,探測宇宙中微子基礎
下村修2008名古屋大學理學博士普林斯頓大學化學獎綠色螢光蛋白(GFP)基礎
小林誠2008名古屋大學理學博士京都大學(研究型)物理獎夸克研究基礎
益川敏英2008名古屋大學理學博士京都大學(研究型)物理獎夸克研究基礎
南部陽一郎2008東京大學理學博士芝加哥大學物理學獎亞原子物理學中的自發對稱破缺機制基礎
鈴木章2010北海道大學理學博士北海道大學(研究型)化學獎以鈀金屬做為觸媒的有機偶合反應應用
根岸英一2010賓夕法尼亞大學博士普渡大學等化學獎以鈀金屬做為觸媒的有機偶合反應應用
山中伸彌2012大阪府市立大學大學院醫學研究科博士奈良先端科學技術大學院大學(NAIST)(研究型)生理醫學獎iPS幹細胞應用
赤崎勇2014名古屋大學工學博士名古屋大學(研究型)物理學獎氮化鎵結晶化技術藍光LED應用
天野浩2014名古屋大學工學博士名古屋大學(研究型)物理學獎氮化鎵結晶化技術藍光LED應用
中村修二2014德島大學工學博士日亞化學工業(產)物理學獎藍光LED應用
梶田隆章2015東京大學理學博士(大學畢業於琦玉大學理學部)東京大學(研究型)物理學獎微中子研究基礎
大村智2015東京藥學博士、東京理科大學理學博士北里大學(私立大學)生理醫學獎寄生蟲新療法應用
大隅良典2016東京大學理學博士東京大學(研究型)生理醫學獎自噬機制應用
本庶佑2018京都大學醫學博士京都大學(研究型)生理醫學獎免疫療法應用
吉野彰2019大阪大學博士(大學碩士畢業自京都大學)旭化成公司(產)化學學獎鋰離子電池應用

由上面的資料可以知道,日本在不到一半的時間內就已經超過達標一半的人數,以這樣的速度 50 年要達成目標似乎只是時間的問題,不過也有人開始注意到日本本身結構性上的問題,預言未來日本得獎的頻率可能會開始下降,這個部份我們在後面再提出他們的觀點給大家了解一下。

2.在日本拿過最多諾貝爾獎的是京大而不是大家熟知的第一志願東大

截至 2018 年京大已經出了十位諾貝爾獎(科學類)主,我們在課本上曾經看過的湯川秀樹(推論有介子)就是京都大學的傑出校友,至於東大則是出了五位(科學類),以及名古屋大學也出了五位,大阪市立大學出了一位,北海道大學一位,東北大學一位,東京工業大學一位,琦玉大學一位,神戶大學一位,山梨大學一位,長崎大學一位。(這邊數量超過總得獎人數,因為學者的畢業學校和他做研究得獎的學校可能不同所導致。)

由次上述資料可以發現除了京大得獎人數較多之外,日本的地方大學在研究上也有不錯的成果。

湯川秀樹です 圖/Wikimedia Commons

3.京大比東大強在哪裡?

兩間學校學風相差甚遠,東大是以「菁英」著稱,在高度競爭的體制下,東大的秩序感十分強烈,在規則下的佼佼者們都聚集在這裡,這樣的風氣更多產出社會的菁英分子,舉凡醫師、律師、政治家多為東大出身。

而京大則是以「奔放」著稱,京大的自由學風造就了他們在日本大學中的獨特性。

京大的校長山極曾說過:「自由學風是以對話為中心的自習自學,幫助學生啟發自我」,而這種重視學生思考與找到興趣的教育方式,正是產出「興趣使然的專家」的重要關鍵。

簡單比較完之後跟大家報告幾個有趣數據,日本一般大學生無法準時畢業的比例大約在 10.9% 左右,但學風自由的京大卻是 20.6%,看來自由也是有些代價的XD,另外京大女子占比約為 23% 而東大約為 19%,所以京大生生活起來似乎真的會比東大生更快樂些(喂。

日本《さんまの東大方程式》綜藝節目還做了一集「東大 v.s. 京大」的主題也引起熱烈迴響,由此可見京大跟東大誰更優秀的話題在日本也還算熱門。

4.過去日本的諾貝爾獎多建立在企業研發上

過去人們曾認為日本因為基礎學歷高所以科研項目才會有如此高的成就,但事實上日本非研究型機構在科學研究上也有相當多成就,像是發明藍光 LED 得到 2015 年諾貝爾物理獎的中村修二以及 2015 年生醫獎得主大村智他們皆是由應用向的研究得到學術界的肯定

這其實是因為日本在科學的發方向上是以「開發研究」與「基礎研究」並行的方式來運作。

日本企業在 1980 年代主導了基礎研究的發語權,像是量子力學、電磁學、材料科學……等諸多領域日本的企業內研究所皆為技術領導者,而這些企業內的研究成果,因為產業的需求便能夠繼續研發,同時產業最高級別的相關設備以及技術支援又能提供良好的實驗環境,這樣便成為了一個相對正向的循環。

更重要的是日本企業不僅擁有強大的技術實力,還會給予研究者自由的研究空間,有趣的是能夠做到這樣的並不只限於日本大企業,同樣能做到這些研究的公司其實有大有小,像是前面提過發明藍光 LED 的諾貝爾獎得主中村修二就是在一家名為日亞化學的中小企業實驗室中完成研究,而過去曾經風靡一時的 iPS 細胞研究者山中伸彌(2010年諾貝爾生醫獎得主)則是受到樂天集團的支持,由此可見日本企業與研究領域關係確實相當密不可分。

2015 年諾貝爾物理獎得主中村修二。圖/Ladislav Markuš, CC BY-SA 4.0, via Wikimedia Commons

5.經費減少、研究人員短缺、諾貝爾獎的得獎力道難以維持?

在日本經濟泡沫後整個社會乃至於政府對於基礎研究的投入漸漸減少,在世界各國在加碼投資科研項目時,日本政府的投資比重卻沒什麼變化(2000 年為 350 億美元左右,2017 年還是 350 億元左右)。

在世界各國在加碼投資科研項目時,日本政府的投資比重卻沒什麼變化。圖/參考資料2

而企業端也把研發的重心放在可以快速商業化的開發項目,甚至將資金開始轉向國外的研究所,如此一來無疑是對日本科研領域雪上加霜。

另外日本近年來除了人口下滑外,就讀博士學位的人數也開始逐年減少,自 2003 年的頂點 1.8 萬人到  2016 年的 1.5 萬人,與國際情況相比,先進國家中只有日本的博士人數是下降的,除此之外這樣的變化也將造成科研人員高齡化的現象,這些現象對於一個國家的科研動能來說並不是很好的現象。

日本科研人員高齡化的情況逐漸明顯,紅線為國立大學 35歲以下全職科研人員占比,藍線為平均年齡。圖/參考資料2

此外因為受限於經費的關係,大學為了拿到補助所以會努力達到論文發表數量與刊登數這些標準,而且為了要通過審核機制,學術的研究方向便逐漸往「主流」的方向走,如此一來過去日本研究的多樣化特色的發揮空間便受到擠壓,願意挑戰新研究的人變得更少,研究的心態就越趨保守。

以上五點目前日本與諾貝爾獎有關的小資訊和大家分享,其實還蠻想跟大家分享更多日本目前結構性上的問題的,但如果要再說深一點可能就要變成專題報導了,所以將來如果有機會的話再和大家討論吧。今年日本吉野彰以鋰電池的貢獻再下一城,但後續是否有機會直奔 30 座諾貝爾獎的目標呢?還是在達標前後繼無力咧?讓我們看下去。

參考資料

  1. 日本科學技術學術政策研究所
  2. NHK world-japan 《Nobel Laureates Sound Alarm over Japan’s Basic Research
  3. 日経TECH《【電子産業史】1980年代》
  4. 綜藝節目《さんまの東大方程式》

文章難易度
活躍星系核_96
756 篇文章 ・ 70 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia


0

3
0

文字

分享

0
3
0

糖漿加了小蘇打粉就膨漲?解析《魷魚遊戲》中的椪糖製作原理

Evelyn 食品技師_96
・2021/10/27 ・2842字 ・閱讀時間約 5 分鐘

超夯韓劇《魷魚遊戲》近期成為熱門討論話題,尤其椪糖關卡使南韓童年美食遊戲「戳椪糖」爆紅,劇情中玩家必須使用牙籤將椪糖上的圖案取下來,若失敗可是會直接被開槍爆頭,不過在臺灣其實也有很相似的古早味的零食椪糖喔!

韓式椪糖。圖/WIKIPEDIA by 도자놀자

臺南人的童年零食——古早味椪糖

椪糖,又名膨糖、發財糖、泡糖,是四、五年級生臺南人的童年零食。那個年代生活單純,還沒有太多的娛樂、精緻美食可供選擇,在廟口歌仔戲、布袋戲戲棚下煮椪糖的攤販,是當時孩童的娛樂及零食來源。

剛煮好的椪糖長得就像胖嘟嘟的核桃酥餅,吃起來焦香酥脆、入口即化,雖然只是純粹的甜味,在物質稀缺的當時,已經十分幸福了。

而椪糖的製作流程很簡單,將砂糖或二砂與水倒入大湯勺中,置於爐火上加熱並攪拌,至糖漿變成紅褐色時,加一點小蘇打粉至大湯勺中拌勻,糖漿便會迅速膨脹鼓起,待其冷卻定型後即完成。

而韓國的椪糖與臺灣的椪糖作法及原理大同小異,只是塑形的方式不太一樣,韓版的會壓扁再壓上圖案,弄成扁扁的薄餅狀;臺版的就讓他自然膨脹成球狀,表面帶點裂痕,模樣也是十分討喜可愛。

台式椪糖。圖/WIKIPEDIA

影響椪糖質地最關鍵的因素——溫度

若有做過椪糖就會知道,小蘇打粉加進去的時機點很重要,太早或太晚皆會導致成型失敗,這是為什麼呢?因為加熱溫度是影響糖的結晶、軟硬度和焦糖化的主要因素,不同的加熱溫度,糖的結晶狀態、質地和色澤都會不同。

糖液在加熱時,會有兩種情況發生:

  • 一、水分不斷蒸發,使溶液濃度增加。
  • 二、隨著溶解的糖增加,沸點會不斷上升,因此糖液的溫度要小心控制。

「糖液的濃度」與最後成品的「軟硬度」有直接關係,濃度不夠會過軟,椪糖表面無法形成保護殼而無法膨脹成型;濃度過高會過硬,椪糖膨脹不易,容易縮小或塌陷。

而當糖液加熱至攝氏 130 度左右時滴入冷水中,會形成能保持形狀且具可塑性的硬球,這時候糖液的質地是能讓椪糖膨發效果最佳的狀態,因此不會用肉眼判斷添加小蘇打粉至糖漿的好時機沒關係,可以在加熱的同時,使用專門測糖液的溫度計測量糖溫就可以了!

東京淺草的街頭小販手工製作椪糖。圖/WIKIPEDIA

糖怎麼轉變成令人誘惑的焦糖色呢?

說到糖的加熱,就不得不提到焦糖化反應(caramelization)了,它是自催化的非酵素性褐變(non-enzymatic brownin)反應,指的是蔗糖這類的小分子醣類於高溫環境發生脫水、聚合的反應,顏色逐漸轉變成金黃、淺褐至深褐色的產物 (通稱為焦糖) 的過程。

這個過程非常複雜,反應溫度通常在攝氏 120 度以上,在酸性與鹼性環境下均會發生。在食品工業上可製造成焦糖色素,作為食品添加物使用,常添加於醬油、糖漿、可樂或酒類等食品中。

焦糖的色澤會隨加熱溫度及時間的增加,由金黃、琥珀、淺褐、褐、深褐色至焦黑碳化;味覺的變化則是先為甜味,隨著顏色加深逐漸轉至苦味,最後甚至可能出現辛辣味。 

攝氏 130 度的糖液大概是呈現淡淡的金黃色,不過這是單純以細砂糖製作來看,若使用二砂製作椪糖的話,那糖液一開始就會是呈現金黃色了。

糖漿色澤與溫度的變化。圖/參考資料 4

椪糖膨脹的關鍵——碳酸氫鈉遇熱分解

在加熱攪拌過程中,糖液已經拌入許多空氣,隨著加熱空氣持續在膨脹,水氣也一直持續蒸發,直到糖液加熱到攝氏 130 度的糖漿時,須離開熱源並加入小蘇打粉。

小蘇打粉即是碳酸氫鈉(sodium bicarbonate),受到高溫直接分解產生大量二氧化碳氣體。最外層接觸到空氣的糖液最先冷卻,變硬形成保護殼,椪糖膨脹隆起,待膨脹停止後,內部的構造就形成具有許多小氣孔的蓬鬆質地。

椪糖會不會致癌?

就從焦糖化反應可製造出焦糖色素的標準來看,聯合國農糧醫藥食品添加物專家聯席委員會(Joint FAO/WHO Expert Committee on Food Additives, JECFA)將焦糖色素分成四類:

第一類:普通焦糖 (plain caramel)

第二類:亞硫酸鹽焦糖 (sulfite caramel)

第三類:銨鹽焦糖 (ammonia caramel)

第四類:亞硫酸-銨鹽焦糖 (sulfite ammonia caramel)

不同類別的焦糖色素,具有不同的焦體電荷、安定性與色度,用途亦各不相同。我國針對這四類焦糖色素有明確訂定,規範細節可見衛福部食藥署公告的食品添加物使用範圍及限量暨規格標準[8]

數十年來眾多針對焦糖色素所進行的毒理學研究,特別是安全疑慮比較高的第三類及第四類焦糖色素,都發現焦糖色素不具基因毒性、遺傳毒性與致癌性,確認焦糖色素是安全的食品添加物。

加上椪糖才加熱到攝氏 130 度,焦糖化反應影響因素很少,所以吃椪糖其實不必太過擔心致癌風險。

可樂、醬油經常添加焦糖色素。圖/WIKIPEDIA

跟致癌比起來,你比較需要擔心熱量

比起擔憂致癌疑慮,椪糖的熱量才是比較需要注意的地方,畢竟它幾乎都是由精製糖所製成。

我國衛福部國民健康署建議「精製糖建議攝取上限為 10% 以內,例如:總攝取熱量若為 2000 大卡,精製糖攝取量就不宜超過 200 大卡,每日精製糖攝取量最好能控制在 50 克以內。」最佳的情況,是每日不超過 25 克,其實就相當於一個椪糖 (20 克上下) 的重量了。

所以當你開心吃著好吃又好玩的椪糖時,還是要記得別吃太多,以避免攝取過多的精製糖及熱量,而賠上健康喔!

參考資料

  1. 國立台中教育大學科學教育與應用學系 科學遊戲實驗室,膨糖:http://scigame.ntcu.edu.tw/chemistry/chemistry-005.html
  2. 施明智 (2021)。食物學原理 (第三版)。新北市:藝軒圖書出版社。
  3. Mcdowell, E. J. (2015) Everything You Need to Know to Make Caramel Candies at Home. Retrieved from https://food52.com/blog/12212-everything-you-need-to-know-to-make-caramel-candies-at-home (Oct 10, 2021)
  4. 徐若瑄 (2017)。利用科學方法研究古早味椪糖。中華民國第 57 屆中小學科學展覽會。新北市。
  5. 戴士傑,2006。焦糖化產物的特性及其與酚類物質交聯程度之探討。國立屏東科技大學食品科學系碩士學位論文。屏東。
  6. 張月櫻,焦糖色素與 4-MEI (4-甲基咪唑) 說明稿 (2013)。檢自https://www.food.org.tw/TW/DisquisitionDetail.aspx?DisquisitionID=iZcsl/uRyXg= (Oct 10, 2021)
  7. 衛生福利部食品藥物管理署,食品添加物使用範圍及限量暨規格標準 焦糖色素 (2013)。檢自https://consumer.fda.gov.tw/Law/FoodAdditivesListDetail.aspx?nodeID=521&id=854 (Oct 10, 2021)
  8. 灃食公益飲食文化教育基金會,精製糖與非精製糖的差別為何? (2019)。檢自https://www.foodnext.net/science/machining/paper/5470279180 (Oct 10, 2021)

Evelyn 食品技師_96
952 篇文章 ・ 245 位粉絲
國立大學食品科學研究所畢業,現為一名食品技師兼食品研發專員,對食品科學充滿熱忱。有鑒於近年發生許多食安風暴,大眾對於食品安全的關注越來越高,網路上卻充斥著不實資訊或謠言。希望能貢獻微薄之力寫些文章,讓更多人有機會認識食品科學的正確資訊!想獲得更多食品營養資訊可追蹤作者的粉絲專頁 https://www.facebook.com/profile.php?id=100066016756421
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策