0

2
1

文字

分享

0
2
1

五十年三十諾貝爾,日本諾貝爾獎的八卦

活躍星系核_96
・2019/11/01 ・3893字 ・閱讀時間約 8 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/姚荏富

每年十月是諾貝爾獎開獎的時刻啦,由於諾貝爾獎嚴格限制候選人和提名人必須保密,要直接猜出得主實在有點困難。但如果是猜哪個國家會得獎,似乎就容易許多了,不外乎是美國、英國、德國這些傳統科學的強國,而亞洲比較能打的就只有我們的鄰居日本了。基於對科學的興趣,筆者找到了一些有關日本諾貝爾獎相關的小資訊在這邊和大家分享。

五十年三十諾貝爾,日本的諾貝爾之路

1. 2001 年日本科學技術基本計畫目標為 50 年內至少培育出 30 名諾貝爾得主

這項發言相信有在關注日本科學界的人應該多少有聽過,而日本在 2000 年後也因為幾乎年年獲獎所以這項宣言再度被人們提起,截至目前為止科學類物理、化學、生醫得獎人數分別為 11、8、5 人共計 24 人。以下附上科學獎得獎清單。

日本歷屆諾貝爾獎(科學類)得主名單

姓名 得獎年分 最高學歷 得獎研究主要產出單位(日本大學分類) 諾貝爾獎得獎原因 基礎/應用
湯川秀樹 1949 大阪大學理學博士 京都大學(研究型) 物理學獎以核作用力理論基礎預言介子的存在 基礎
朝永振一郎 1965 東京大學理學博士 筑波大學(研究型) 物理學獎量子電氣力學 基礎
江崎玲於奈 1973 東京大學理學博士 東京通信工業(Sony前身)(產) 物理學獎發現半導體與超導體的隧道效應發明江崎二極體 應用
福井謙一 1981 京都大學工學博士 京都大學(研究型) 化學獎量子化學 基礎
利根川進 1987 加州大學聖地牙哥分校博士 瑞士巴塞爾免疫研究所等 生理醫學獎發現抗體多樣性的遺傳學原理 應用
白川英樹 2000 東京工業大學工學博士 賓州大學 化學獎導電高分子 應用
野依良治 2001 京都大學工學博士 名古屋大學(研究型) 化學獎不對稱氫化反應 應用
田中耕一 2002 東北大學名譽博士 島津製作所(產) 化學獎發明軟雷射揮離法(SLDI)解析蛋白質 應用
小柴昌俊 2002 美國羅徹斯特大學博士、東京大學理學博士 東京大學宇宙線研究所神岡實驗室(研究型) 物理獎天體物理學,探測宇宙中微子 基礎
下村修 2008 名古屋大學理學博士 普林斯頓大學 化學獎綠色螢光蛋白(GFP) 基礎
小林誠 2008 名古屋大學理學博士 京都大學(研究型) 物理獎夸克研究 基礎
益川敏英 2008 名古屋大學理學博士 京都大學(研究型) 物理獎夸克研究 基礎
南部陽一郎 2008 東京大學理學博士 芝加哥大學 物理學獎亞原子物理學中的自發對稱破缺機制 基礎
鈴木章 2010 北海道大學理學博士 北海道大學(研究型) 化學獎以鈀金屬做為觸媒的有機偶合反應 應用
根岸英一 2010 賓夕法尼亞大學博士 普渡大學等 化學獎以鈀金屬做為觸媒的有機偶合反應 應用
山中伸彌 2012 大阪府市立大學大學院醫學研究科博士 奈良先端科學技術大學院大學(NAIST)(研究型) 生理醫學獎iPS幹細胞 應用
赤崎勇 2014 名古屋大學工學博士 名古屋大學(研究型) 物理學獎氮化鎵結晶化技術藍光LED 應用
天野浩 2014 名古屋大學工學博士 名古屋大學(研究型) 物理學獎氮化鎵結晶化技術藍光LED 應用
中村修二 2014 德島大學工學博士 日亞化學工業(產) 物理學獎藍光LED 應用
梶田隆章 2015 東京大學理學博士(大學畢業於琦玉大學理學部) 東京大學(研究型) 物理學獎微中子研究 基礎
大村智 2015 東京藥學博士、東京理科大學理學博士 北里大學(私立大學) 生理醫學獎寄生蟲新療法 應用
大隅良典 2016 東京大學理學博士 東京大學(研究型) 生理醫學獎自噬機制 應用
本庶佑 2018 京都大學醫學博士 京都大學(研究型) 生理醫學獎免疫療法 應用
吉野彰 2019 大阪大學博士(大學碩士畢業自京都大學) 旭化成公司(產) 化學學獎鋰離子電池 應用

由上面的資料可以知道,日本在不到一半的時間內就已經超過達標一半的人數,以這樣的速度 50 年要達成目標似乎只是時間的問題,不過也有人開始注意到日本本身結構性上的問題,預言未來日本得獎的頻率可能會開始下降,這個部份我們在後面再提出他們的觀點給大家了解一下。

-----廣告,請繼續往下閱讀-----

2.在日本拿過最多諾貝爾獎的是京大而不是大家熟知的第一志願東大

截至 2018 年京大已經出了十位諾貝爾獎(科學類)主,我們在課本上曾經看過的湯川秀樹(推論有介子)就是京都大學的傑出校友,至於東大則是出了五位(科學類),以及名古屋大學也出了五位,大阪市立大學出了一位,北海道大學一位,東北大學一位,東京工業大學一位,琦玉大學一位,神戶大學一位,山梨大學一位,長崎大學一位。(這邊數量超過總得獎人數,因為學者的畢業學校和他做研究得獎的學校可能不同所導致。)

由次上述資料可以發現除了京大得獎人數較多之外,日本的地方大學在研究上也有不錯的成果。

湯川秀樹です 圖/Wikimedia Commons

3.京大比東大強在哪裡?

兩間學校學風相差甚遠,東大是以「菁英」著稱,在高度競爭的體制下,東大的秩序感十分強烈,在規則下的佼佼者們都聚集在這裡,這樣的風氣更多產出社會的菁英分子,舉凡醫師、律師、政治家多為東大出身。

而京大則是以「奔放」著稱,京大的自由學風造就了他們在日本大學中的獨特性。

-----廣告,請繼續往下閱讀-----

京大的校長山極曾說過:「自由學風是以對話為中心的自習自學,幫助學生啟發自我」,而這種重視學生思考與找到興趣的教育方式,正是產出「興趣使然的專家」的重要關鍵。

簡單比較完之後跟大家報告幾個有趣數據,日本一般大學生無法準時畢業的比例大約在 10.9% 左右,但學風自由的京大卻是 20.6%,看來自由也是有些代價的XD,另外京大女子占比約為 23% 而東大約為 19%,所以京大生生活起來似乎真的會比東大生更快樂些(喂。

日本《さんまの東大方程式》綜藝節目還做了一集「東大 v.s. 京大」的主題也引起熱烈迴響,由此可見京大跟東大誰更優秀的話題在日本也還算熱門。

4.過去日本的諾貝爾獎多建立在企業研發上

過去人們曾認為日本因為基礎學歷高所以科研項目才會有如此高的成就,但事實上日本非研究型機構在科學研究上也有相當多成就,像是發明藍光 LED 得到 2015 年諾貝爾物理獎的中村修二以及 2015 年生醫獎得主大村智他們皆是由應用向的研究得到學術界的肯定

這其實是因為日本在科學的發方向上是以「開發研究」與「基礎研究」並行的方式來運作。

-----廣告,請繼續往下閱讀-----

日本企業在 1980 年代主導了基礎研究的發語權,像是量子力學、電磁學、材料科學……等諸多領域日本的企業內研究所皆為技術領導者,而這些企業內的研究成果,因為產業的需求便能夠繼續研發,同時產業最高級別的相關設備以及技術支援又能提供良好的實驗環境,這樣便成為了一個相對正向的循環。

更重要的是日本企業不僅擁有強大的技術實力,還會給予研究者自由的研究空間,有趣的是能夠做到這樣的並不只限於日本大企業,同樣能做到這些研究的公司其實有大有小,像是前面提過發明藍光 LED 的諾貝爾獎得主中村修二就是在一家名為日亞化學的中小企業實驗室中完成研究,而過去曾經風靡一時的 iPS 細胞研究者山中伸彌(2010年諾貝爾生醫獎得主)則是受到樂天集團的支持,由此可見日本企業與研究領域關係確實相當密不可分。

2015 年諾貝爾物理獎得主中村修二。圖/Ladislav Markuš, CC BY-SA 4.0, via Wikimedia Commons

5.經費減少、研究人員短缺、諾貝爾獎的得獎力道難以維持?

在日本經濟泡沫後整個社會乃至於政府對於基礎研究的投入漸漸減少,在世界各國在加碼投資科研項目時,日本政府的投資比重卻沒什麼變化(2000 年為 350 億美元左右,2017 年還是 350 億元左右)。

在世界各國在加碼投資科研項目時,日本政府的投資比重卻沒什麼變化。圖/參考資料2

而企業端也把研發的重心放在可以快速商業化的開發項目,甚至將資金開始轉向國外的研究所,如此一來無疑是對日本科研領域雪上加霜。

-----廣告,請繼續往下閱讀-----

另外日本近年來除了人口下滑外,就讀博士學位的人數也開始逐年減少,自 2003 年的頂點 1.8 萬人到  2016 年的 1.5 萬人,與國際情況相比,先進國家中只有日本的博士人數是下降的,除此之外這樣的變化也將造成科研人員高齡化的現象,這些現象對於一個國家的科研動能來說並不是很好的現象。

日本科研人員高齡化的情況逐漸明顯,紅線為國立大學 35歲以下全職科研人員占比,藍線為平均年齡。圖/參考資料2

此外因為受限於經費的關係,大學為了拿到補助所以會努力達到論文發表數量與刊登數這些標準,而且為了要通過審核機制,學術的研究方向便逐漸往「主流」的方向走,如此一來過去日本研究的多樣化特色的發揮空間便受到擠壓,願意挑戰新研究的人變得更少,研究的心態就越趨保守。

以上五點目前日本與諾貝爾獎有關的小資訊和大家分享,其實還蠻想跟大家分享更多日本目前結構性上的問題的,但如果要再說深一點可能就要變成專題報導了,所以將來如果有機會的話再和大家討論吧。今年日本吉野彰以鋰電池的貢獻再下一城,但後續是否有機會直奔 30 座諾貝爾獎的目標呢?還是在達標前後繼無力咧?讓我們看下去。

參考資料

  1. 日本科學技術學術政策研究所
  2. NHK world-japan 《Nobel Laureates Sound Alarm over Japan’s Basic Research
  3. 日経TECH《【電子産業史】1980年代》
  4. 綜藝節目《さんまの東大方程式》
文章難易度
活躍星系核_96
752 篇文章 ・ 125 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
2

文字

分享

1
3
2
福島核污水是什麼?我們還能安心吃海鮮嗎?核污水全解析!
PanSci_96
・2023/10/01 ・4897字 ・閱讀時間約 10 分鐘

福島核污水正式排放入海了!食鹽要屯多少?海鮮還能吃嗎?哥吉拉要誕生了嗎?

核廢水是怎麼來的?

2011 年 3 月 11 日,一場海嘯衝擊了在福島海邊的第一核電廠,破壞了核電廠中做為緊急電源設備的發電機,在備用電池電力耗盡後,冷卻系統完全失效。然而反應爐內的連鎖反應還在持續,最後溫度不斷竄高,高溫水蒸氣與燃料護套中的鋯合金,發生鋯水反應並產生大量易燃的氫氣,最終與空氣中的氧氣作用導致爆炸。

在事故發生前後,日本政府灌入大量海水來為反應爐進行冷卻,而這些直接接觸熔融燃料棒的污水,就被稱為核污水,日文則稱為「汚染水」。至於當時的決策細節與失誤,大家可以看今年上映的日劇《核災日月》複習一下。而既然事件已經發生了,我們就重點討論核污水。

《核災日月》圖/IMDb

現在儲存在福島的核污水不只有冷卻水,其實還有受污染的降雨與地下水。事故發生後,東京電力公司在第一核電廠加裝擋水牆,阻擋因為降雨流經 1、2、3 號機組的污染水流入海洋。並且設置凍土牆隔絕地下水,同時挖水井抽出污染的地下水,讓廠區內的地下水水位下降,因此地下水只會從外部滲入,內部的污染水則不會滲到外面。不論是降雨還是抽出的地下水,都屬於污染水,平均每天都會增加 92 立方公尺的污染水。直至本集影片上架,當地已經存有 134 萬噸的汚染水,而且還會持續增加,你可以自己打開 Google Map,鳥瞰這密密麻麻的眾多大型儲槽,別忘了,核反應爐本體才是日本更迫切的問題,要是污水不先處理,要是下一個天災來襲,麻煩又會疊加。因此日本政府在 2016 年就展開討論,準備要處理掉這些污水。

-----廣告,請繼續往下閱讀-----
福島第一核電廠。圖/Google Map

為何決定排放入海?

為何核污水的最終處置決定是排放入海呢?其實 2016 年提出的方案有五種:稀釋入海、蒸發至大氣、電解水釋放氫氣、深層地質注水、以及水泥固化並地下處置。很快,電解水因為還需要相關技術研發而被否決,這個我們在氫能那集講過。深層地質注水和水泥固化並地下處置,則有選址與法規問題,無法立即實現。這部分則等同於核電使用國都面臨的核廢料處置問題,我們之前花過好幾集介紹過,歡迎前往複習。

最後僅剩稀釋入海和蒸發至大氣兩種方法,最後日本認為海洋的擴散行為更容易追蹤,最重要的是成本僅有蒸發的十分之一,因此選用了這個方法。至於有些人說,既然東電跟日本政府都保證安全,何不做成瓶裝水拿去賣?之類的建議在這我們不多討論,就請大家用理智來看待。

核廢水如何被處理?

根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。首先,污染水會經過「銫吸附裝置」,除去銫(Cs)和鍶(Sr)。接著再經過淡水化裝置除去水中的鹽分後,成為「鍶處理水」。這種鍶處理水,可以作為 1, 2, 3, 4 號機組的冷卻水再次循環利用。

最後,大部分的鍶處理水,會被送到「ALPS多核種除去設備」,將 63 種放射性核種中的 62 種放射性核種去除。「ALPS多核種除去設備」唯一不能去除的放射性核種,就是氚(H-3)。但其實啊還有一個碳-14 無法被過濾,但濃度低到可以忽視。經過「ALPS多核種除去設備」處理過後的「鍶處理水」,就稱為「含氚處理水」。

-----廣告,請繼續往下閱讀-----
根據日本政府的規劃,在這些污染水排放入海前,會先進行淨化處理成為處理水。圖/PanSci YouTube

含氚處理水中的氚,指的是氫的同位素的一種,在自然界中就存在。半衰期為 12.43 年,衰變時會進行 β 衰變,放出一顆電子並成為氦-3。β 衰變對人體的穿透距離僅限於皮膚,不會對內臟器官產生傷害。
如要能危害人體,需要長期大量攝取由氚構成的重水。關於攝取過多重水對動植物的影響,我們網站上有文章詳細說明過。

簡單來說,綜合自然界中跟福島即將排放的氚,以及我們的生活型態來看,遠遠達不到可能產生危害的程度。知道劑量決定毒性,就像我們每天都吃下不少「有害」物質,例如殘留農藥、油炸致癌物、過多的精製糖等等,但攝取的多寡,對你的健康影響差異很大。那麼重點來了,福島排放的處理水,真的有合乎標準嗎?

處理水符合標準嗎?

這個問題,我們在今年六月的核廢料主題中有提到,國際原子能總署 (IAEA) 在五月底公布了第一階段的調查結果,針對「日本的核種監控能力」進行第三方驗證。結果認為,日本的檢測標準跟分析方法沒問題,調查結果是可信任的。報告中除了氚以外,其他放射性核種的活度也都遠低於排放限值。例如鍶-90 為每公升 0.4 貝克、銫-137 為每公升 0.5 貝克,以臺灣的「食品」標準,銫-137 為每公升 100 貝克以下,雖然鍶-90 還沒有定下標準,但是依國際食品法典委員會的標準,也是在每公升 100 貝克以下。目前的排放值都遠小於標準。

國際原子能總署(IAEA)公布第一階段的調查結果。圖/PanSci YouTube

除了各單一核種的活度以外,所有水中核種加起來的「告示濃度限度比」也低於日本國家標準的每年 1 毫西弗(mSv/year), 1 毫西弗大約是多少呢?大約是一般民眾一年會接收到的輻射劑量。

-----廣告,請繼續往下閱讀-----

至於無法被 ALPS 處理的氚,因為海洋中的水中就廣泛存在,日本將透過海水稀釋後排放入海。目前世界衛生組織對於飲用水的氚含量標準訂為每公升 1 萬貝克,台灣的標準嚴格了許多,是每公升 740 貝克。東電公司的處理水是每公升 14 萬貝克,在排放前會稀釋 740 倍,以每公升 190 貝克的氚濃度排放,低於台灣的飲用水標準。

那麼食鹽呢?我們需要搶購嗎?這就更不用擔心,因為食鹽中不含水,自然也不含氚。或是更進一步可以參考東海大學應用物理系的粉專,他們計算,根據國家標準,食鹽含水量若為 3% 以下,需要每天吃超過 400 公斤的食鹽才會攝取氚超標。真的,別吃那麼鹹啊。

每天吃超過 400 公斤的食鹽才會攝取氚超標。圖/pixabay

那麼,我們就真的兩手一攤,為這件事劃下結論,核輻射只是庸人自擾嗎?

我們該如何看待排放的處理水?

當然不是,就像許多人擔心的,就算科學上告訴你沒問題,但前提是,這些數據得是沒問題的。而且不用說周邊國家,連日本自家民眾也多次抗議處理水的排放。

-----廣告,請繼續往下閱讀-----

目前在 IAEA 架設的網站上,可以看到整個排水計畫的各種即時監測資料。其中就包括出水口的輻射數值監測。

為了驗證處理水不會對海洋生物產生影響,東京電力甚至從去年 9 月開始,就開始進行海洋生物飼養實驗,並且全程公開直播放在他們的YouTube頻道上。不過這頻道訂閱人數跟觀看次數都有點低迷,有興趣的話不妨訂閱,開啟小鈴鐺。

那麼我們能下定論了嗎?在科學上,我們確實能說,在符合規範下,這些排放入海的處理水是沒問題的,食鹽、海鮮也都能照吃,把注重食安與健康的努力分配到其他危害更大、風險更高的事情上,對處理水保持健康而非病態的質疑,對個人來說應該效益更高。

臺灣從去年到今年 6 月,曾 3 次組團赴日考察,並於 8/24 公佈報告書,包含跟日方的問答內容,還有福島核廢水排放設施的照片。海委會表示,專家觀察團評估日方排放相關作業的安全性,跟國際原子能總署評估的結果一致。然而是否選擇相信日本以及 IAEA 給出的數據,如今看來成了國際政治問題。

-----廣告,請繼續往下閱讀-----

另外,在 IAEA 的小組成員中,包含周邊國家:中國、美國、韓國、越南、澳洲、加拿大、法國、俄羅斯、英國、阿根廷、馬紹爾群島,並不包含台灣。如果台灣也能以任何形式加入團隊,或得以取得樣水複測,讓我們知道,日本以及 IAEA 給出的數值是可信的,想必都能更進一步降低民眾的擔憂。

最後,也問問大家,對於這次的處理水排放事件,你會擔心我們的海鮮或食鹽受到影響嗎?

  1. 不擔心,跟人類對海洋的其他污染相比,根本小巫見大巫。
  2. 擔心,等我親眼見到泛科學到現場實測我才相信。機票我出!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1220 篇文章 ・ 2242 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

2
1

文字

分享

1
2
1
鑑識故事系列:韓男跨國尼古丁謀殺詐保案
胡中行_96
・2023/08/28 ・1718字 ・閱讀時間約 3 分鐘

2017 年 4 月 25 日,一對韓國的新婚夫婦,前往日本大阪度蜜月。[1, 2]22 歲的丈夫聲稱,發現 19 歲的妻子倒臥旅館浴室地板,毫無意識。急救團隊 1 小時後趕抵現場,判斷女子呼吸心跳停止,但仍將她送醫。女子才到醫院,就被宣告死亡。[3]

日本大阪市景。圖/Nomadic Julien on Unsplash

證物

根據男子的說法,妻子生前有割腕等憂鬱的症狀,而且會喝酒及服用不明藥物。日本警方查扣浴室衛生紙架上的針筒;以及房間裡,裝著雙氧水的綠瓶子與同色紙盒。[註1]男子解釋,針筒的用途為混合電子菸的菸油。既然他也說亡妻不抽菸,[3]那東西大概是他的。

驗屍

大阪市立大學的法醫團隊,於估計的死亡時間後 36 小時,進行驗屍:女子高 159 公分,重 45.3 公斤。外觀上,背部有暗紅紫的屍斑與瘀點;臉龐與瞼結膜鬱血;雙臂因注射而皮下出血。電腦斷層掃描顯示肺水腫,且周邊輕微氣腫。從解剖可見心臟裡的血液呈深紅,無血塊;腦部水腫;肺臟及其他諸多內臟鬱血;[3]而負責氣體交換的肺實質出血。[3, 4]另外,有些胃部的食物殘渣,跑進她的細支氣管。[3]

女子的右臂注射處。圖/參考資料 3,Figure 1a(CC BY 4.0)

法醫團隊採集了多種體液送驗,其中心臟左邊血液的白血球介素-6(interleukin-6);以及心包液和腦脊髓液的兒茶酚胺(catecholamine)濃度超標。前者意味早期系統性發炎;後者表示藥物中毒。此外,大量尼古丁(nicotine)遍佈大腦等諸多內臟、某些體液,還有注射處一帶;而其代謝物可替寧(cotinine),主要是在肌肉、內臟和注射處附近,測量得到。至於血液等各種體液裡的過氧化氫(hydrogen peroxide;H2O2),即雙氧水有效成份,濃度均未超出正常範圍。[3]

-----廣告,請繼續往下閱讀-----

死因

尼古丁能經由呼吸道、消化道或血管等途徑,進入人體。[註2]女子的胃裡,沒驗到太多。抽菸的話,血液中的濃度,幾分鐘內便能上升至 10 ng/mL。不過,檢驗結果遠超過該數字,所以應該是注射所致。隨血液流動的尼古丁,會率先湧向腦部,因為該處佈滿菸鹼型乙醯膽鹼受體(nicotinic acetylcholine receptors),之後才去其他器官。當肝臟代謝尼古丁,短短 1 小時內產生的可替寧,濃度即能達到尼古丁的 2 至 4 倍。尼古丁的半衰期為 20 分鐘到 2 小時;而可替寧則是 20 個鐘頭,它會在體內停留較長的時間,才經腎臟代謝,然後跟著尿液排出。由於這名女子的所有檢體中,尼古丁的含量皆高過可替寧,因此可以推測她注射不久便死亡。[3]

判刑

男子經亡妻的家屬同意,於日本火化遺體後返鄉。韓國警方則請國際刑警組織幫忙,從日本取得驗屍報告;並於男子住處找到籌劃謀殺的日記。[5]2018 年 3 月 28 日,世宗市的警察逮捕男子,指控他毒死妻子,好詐領 1.5 億韓圓(美金 14 萬零 187 元)的保險金。[2]事實上,這不是他第一次以此手法殺人。警察發現男子曾於 2016 年 12 月 20 日,將尼古丁摻入飲料給當時的女友喝。所幸後者覺得味道奇怪,沒喝完而逃過一劫。[5]2018 年 8 月 30 日,大田市的法庭駁回其協助妻子自殺的說法,認為男子的行為「破壞了社會基本價值」,判處他無期徒刑,以儆效尤。[2]

  

備註

  1. 原個案報告的摘要,說警察還找到尼古丁菸油;描述事件的段落,卻只提及針筒和雙氧水,而且沒講針筒裡有無菸油。[3]
  2. 儘管注射處的尼古丁濃度甚高,法醫團隊依舊在論文中,分析食用和吸入的假設性情形。不過,沒有解釋如何排除尼古丁貼片等,經皮膚吸收的可能。

參考資料

  1. Lim CW. (28 MAR 2018) ‘Man arrested for killing newly-married wife with nicotine for death benefit’. Aju Korea Daily (아주경제).
  2. Lim CW. (31 AUG 2018) ‘Husband sentenced to life for killing wife with lethal dose of nicotine’. Aju Korea Daily (아주경제).
  3. Aoki Y, Ikeda T, Tani N, et al. (2020) ‘Evaluation of the distribution of nicotine intravenous injection: an adult autopsy case report with a review of literature’. International Journal of Legal Medicine, 134, 243–249.
  4. Chaudhry R, Bordoni B. (25 JUL 2022) ‘Anatomy, Thorax, Lungs’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  5. Chung C. (28 MAR 2018) ‘Man investigated for killing newlywed wife with nicotine’. The Korea Herald (코리아헤럴드).
所有討論 1
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。