Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

《你的孩子不是你的孩子》但你的爸媽也不是你的爸媽:透視我們與家的距離

雞湯來了
・2019/10/06 ・2229字 ・閱讀時間約 4 分鐘 ・SR值 519 ・六年級

-----廣告,請繼續往下閱讀-----

截自公視官網
  • 文/雞湯來了蕭子喬
  • 校稿/雞湯來了張芷晴、陳世芃
  • 製圖/雞湯來了黃珮甄
  • 編輯/雞湯來了蕭子喬

你的深愛卻成了阻礙,如何才能找到溝通契機?

「為什麼我一定要跟姐姐一樣?」「我不能就只做我自己嗎?」「如果我沒有考上好大學,你還要我嗎?」「你想過我的感覺嗎?」

奪得多座金鐘的台劇《你的孩子不是你的孩子》播出後,引起了許多親子關係的討論,也讓更多人直視親子間的傷痛,很多人都呼籲爸媽不要再把孩子當作「自己的」孩子。然而,孩子對「爸媽」這個角色懷抱敵意,其實難以真正解決問題。如果我們願意嘗試聽聽看父母的心聲,或許才是親子和解的真正契機。

「我這個人這輩子沒什麼成就,就是希望我的孩子可以有點成就」「媽媽吃過的苦絕對不會讓你再承受第二遍」「我一直都在幫你啊!」

一位位為了孩子腰酸背痛、傷透腦筋的母親,或許對於孩子而言,媽媽已經做得太多、關照已經太沉重,但是我們不可否認,這些家長的初衷的確是「希望孩子好」。

家庭關係的緊繃,並不只出現在戲劇之中。為什麼明明是愛、是好意,最後卻變成了彼此痛苦的根源?如果我們真的希望改變這些「雖是戲劇但再真實不過」的親子枷鎖,或許需要試著從我們對親子關係的觀念著手,接下來,讓我們從台大社會學系教授藍佩嘉的研究,來探討這個議題。

給爸媽:整理自己的過去、反思想要怎樣的家庭

希望孩子不再受苦,提醒爸媽「你的孩子不是你的孩子」就夠了嗎?答案是:不夠!因為爸媽之所以這樣當爸媽,是受到許多社會結構、過往經驗、接受到的訊息等等因素影響後的結果,並不是這樣簡單一句話、一個觀念的輸入就能改變的。

藍佩嘉深入田野訪談與觀察近 60 個家庭,剖析不同階級、情境的家庭的爸媽如何在有限的財力與資源中,盡己所能地「拚教養」。她發現:市面上有許多給予家長的教養書、雜誌、網路訊息,都是較為單一地傳達家長該為孩子做的事情,使得「當爸媽」這件事情變得越來越困難、令人焦慮,也讓容易覺得自己做得不夠多。

此外,在藍佩嘉的研究中,父母如何理解自己的過去(童年經驗、原生家庭)、如何走到現在,形塑了他們對孩子未來的想像與期待,也就影響了他們的教養方式。深根在爸媽腦海中的遺憾、心中深處的害怕、融入骨子裡的過往習慣,都遠遠比表象的教養行為更能解釋爸媽的行徑。

-----廣告,請繼續往下閱讀-----
父母對於過去經歷的解讀,也會形塑出自己對於孩子的期望。圖/pixabay

因此,家長要改變作法,比起「你的孩子不是你的孩子」,或許更需要家長深入思考、嘗試釐清自身之所以這樣做的原因,找出具體希望改變的方法,會是更有效的方式。

給孩子:理解爸媽的身不由己、互相溝通

許多的傷痛,都是源於缺乏一個溝通的契機;而有效的溝通,通常需要理解對方的好奇心。在家庭關係中,孩子可以嘗試理解爸媽的焦慮與掙扎的來源。藍佩嘉指出,某種程度而言,爸媽也是結構下的受害者,難以看穿市場販賣給他們的恐懼,不易擺脫成長過程中內化的社會期待,不知不覺讓愛成了焦慮與控制。

藍佩嘉引用當紅名句「你的孩子不是你的孩子」,她說其實「你的爸媽也不是你的爸媽」,也就是說,孩子和爸媽其實需要在親子關係都保有自我,並互相照顧。孩子們別忘了,照護的邏輯不僅限於爸媽照顧孩子,而應該是「彼此照顧的協力團隊」!

孩子可以嘗試理解爸媽也是脆弱的,有屬於他們自己的遺憾與未完期待,如果能互相摸索彼此照應、找出給予對方支持的正確方式,或許更能說出彼此的真心話,親子關係也會減少傷痛。

-----廣告,請繼續往下閱讀-----
孩子和爸媽其實需要在親子關係都保有自我,並互相照顧。圖/pixabay

做彼此最佳的隊友,改變或許便由此開始

除了「你的孩子不是你的孩子」,別忘了「父母有時也不是父母自己的」,讓我們重新定義親子關係:親子,理應做彼此的支持。

讓親子關係成為協力團隊,互相了解彼此的心聲、成長經歷、未來期待等等。如能在關係中開啟真實的理解,或許就是有效溝通、創造改變的契機。

延伸閱讀:

參考資料

  • 藍佩嘉(2014)。做父母、做階級:親職敘事、教養實作與階級不平等。台灣社會學,27, 97-140。
  • 藍佩嘉(2019)。拚教養:全球化、親職焦慮與不平等童年。台北:春山出版。
  • Lan, P. C. (2014). Compressed modernity and glocal entanglement: The contested transformation of parenting discourses in postwar Taiwan. Current Sociology, 62(4), 531-549.

本文與雞湯來了《你的孩子不是你的孩子》其實,你的爸媽也不是你的爸媽 同步刊登

-----廣告,請繼續往下閱讀-----
文章難易度
雞湯來了
51 篇文章 ・ 463 位粉絲
幸福,如何選擇?雞湯來了相信我們值得擁有更優質的家人關係。致力提供科學研究證實的家庭知識,讓您在家庭生活的日常、人生選擇的關卡,找到適合的方向。雞湯來了官網、雞湯來了FB

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
孟德爾與他的豌豆,開創「遺傳學」先河!——《生命之鑰:一場對生命奧祕的美麗探索》
三采文化集團_96
・2021/12/02 ・2104字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 保羅.納斯爵士(Sir Paul Nurse)
  • 譯者 / 邱佳皇

編按:筆者是知名遺傳學家和細胞生物學家,致力於控制細胞複製的研究工作,也就是所有生物生長和發展的基礎。於 2001 年獲頒諾貝爾生理學/醫學獎(Nobel Prize in Physiology or Medicine),同時也是阿爾伯特.愛因斯坦世界科學獎、拉斯克獎與皇家學會科普利獎章的獲獎者。

在本書中,保羅.納斯用優美、詼諧的語調幫讀者上了一堂生物學簡史,引領我們思考科學家長久以來追尋的生命之謎,讓讀者彷彿身歷其境、穿梭在各個時代的實驗室裡,感受那些科學發現過程的挫敗和欣喜。並除了學術理解,更希望帶給讀者哲學性的思考能力。

我有兩個女兒和四個孫子,他們所有人都極為與眾不同。比方說,我其中一個女兒莎拉是一名電視製作人,另一個女兒艾蜜莉是物理學教授。但她們有些特徵還是會和彼此、和她們的孩子或我與妻子相同。家人之間的相似度可能很高或只有部分相似,相似的地方包括身高、眼珠顏色、嘴巴或鼻子曲線,甚至一些特別的習性或臉部表情等。家人之間也會有很多差異,但無法否認的是,每代之間都有延續性。

所有生物的父母和子女間,一定會有某種程度的相似,那是亞里斯多德和其他古典時期思想家很久之前就認證的理論,但生物遺傳的基礎一直是個難解之謎。多年來出現過各種解釋,但有些解釋在今日看來有些古怪。比方說亞里斯多德就認為母親對孩子的影響只有在腹中的成長,就像某種土壤品質對植物的影響,只有從種子到發芽的階段而已。有些思想家則是認為遺傳基礎是來自「血液的混合」,也就是說孩子是從雙親那邊獲得平均的特徵。

直到發現基因後,我們才更加了解遺傳的運作方式。基因不只幫助我們理解家人間複雜的相似性和獨特性,也是生命用來建造、維持和繁殖細胞的關鍵訊息來源。更進一步說,基因也是細胞製造的有機體的關鍵訊息來源。來自現位於捷克布爾諾修道院的孟德爾(Gregor Mendel),是第一位解開遺傳學神祕面紗的人。但他的研究標的並不是人類費解的遺傳型態,而是用豌豆這種植物進行謹慎的實驗,而他所研究出來的概念,最終引導我們發現目前稱之為基因的遺傳單位。

豌豆, 荚, 绿色, 蔬菜, 植物, 棕色蔬菜, 棕色的植物
豌豆的各個構造,包括莖、葉、花、果莢、種子。圖/Pixabay

孟德爾不是第一個用科學實驗來探究遺傳學的人,甚至不是第一個用植物來尋找答案的人,有些更早期的植物育種家描述了植物的某些特徵如何以不如我們預期的方式代代相傳。兩種不同的親株植物混種後的下一代,有時候看起來會像兩種的混合。比方說,將紫色花和白色花混合後可能會產生粉紅色的花;但有些特徵則會在某個世代中扮演主宰角色,比方說紫色花和白色花的下一代是開出紫色的花。早期的研究先驅集合了許多有趣線索,但當中沒有人能完全解釋基因如何在植物中發揮遺傳效用,更別說如何在所有生物,包括人類上,發揮效用了,而那正是孟德爾在豌豆實驗中所開始揭露的事情。

-----廣告,請繼續往下閱讀-----

在 1981 年冷戰中期,我進行了一場自己的朝聖之旅,前往位於布爾諾的奧古斯丁教派修道院,看看孟德爾曾經工作的地方,那是當地成為如今的觀光勝地前很久的事。當時野草叢生的花園大得驚人,我能輕易想像孟德爾曾經在那裡種植著一排排豌豆的情景。他曾經在維也納大學攻讀自然科學,雖沒有成為合格教師,但他並沒有遺忘自己在物理學方面所受的訓練。他明白自己需要很多資料,因為龐大的樣本更有可能發現重要的模式。他有些實驗包含了一萬多種不同的豌豆植物,在他之前未曾有植物育種家採行過如此縝密和大量的方式來進行研究。

為了降低實驗的複雜度,孟德爾只專注在有顯示明確差異的特徵上。他多年來小心記錄他所設計的混種結果,並發現了其他人沒注意到的模式。更重要的是,他觀察到在這些豌豆中會有特定比例出現某些特徵,特定比例缺少某些特徵,像是特定花色或種子形狀等。關鍵之一就是孟德爾用了數學級數的方式來描述這些比例,這讓他可以主張豌豆花內的雄性花粉和雌性胚珠含有他稱為「元素」的事物,這些元素就和親株的不同特徵有關聯。當這些元素透過受精結合,就會影響下一代植物的特徵。但孟德爾當時並不知道這些元素是什麼,或者會怎麼運作。

當時有個有趣的巧合,另一位知名的生物學家達爾文(Charles Darwin)大約在同一時間也在研究金魚草這種植物的混種,他觀察到類似的比例,但並沒有試著解釋那些數值可能代表的意義。總之,孟德爾的研究幾乎被當代完全忽視,直到一整個世代後,才有人認真看待他的研究。

接著,在約莫 1900 年時,有一些獨立研究的生物學家重複了孟德爾的研究,將這些研究進一步發展,並開始對於遺傳如何運作這件事做出更明確的預測,進而促進為了紀念孟德爾而命名的「孟德爾定律」和遺傳學的誕生,世界開始注意到這個議題。

-----廣告,請繼續往下閱讀-----

──本文摘自三采文化《生命之鑰:諾貝爾獎得主親撰 一場對生命奧祕的美麗探索》/ 保羅.納斯爵士,2021 年 12 月,三采

-----廣告,請繼續往下閱讀-----
三采文化集團_96
25 篇文章 ・ 8 位粉絲
閱讀在生活中不曾改變, 它讓我們看見一句話的力量,足以撼動你我的人生。而產生一本書的力量,更足以改變全世界

0

0
0

文字

分享

0
0
0
子女永遠是爸媽聽話的「乖孩子」?成年了,你可能需要來點親子權力反轉!
雞湯來了
・2020/11/09 ・2237字 ・閱讀時間約 4 分鐘 ・SR值 544 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/雞湯來了 蕭子喬、校稿/雞湯來了 陳世芃、張芷晴、製圖/雞湯來了 黃珮甄、編輯/雞湯來了 蕭子喬

「什麼時候開始,爸媽也開始需要我照顧?!」

從小,我們時常在家中被期待為「要聽話」、「被照顧」的角色,這讓親子關係的權力地位一直處在「『親』大『子』小」的狀態。有一天,我們長大成年了,有能力出外工作、照顧自己、甚至照料家人,但和爸媽之間的角色定位、互動方式,卻仍然有童年的影子。被過去自己身為「小孩」的模樣綁住,被過去和爸媽的慣性互動方式困住……

圖/PEXELS

身體成年,但童年經驗並未長大——在「做自己」與「聽話」間拉扯的我們

長大成為「成年子女」之後,和爸媽的關係,深深受到童年經驗的影響,也受到性別與婚姻狀態的影響。

童年經驗

學者的研究訪談一位 28 歲女生,她說到:「我小時候就被認定不只是長女而已,還需要分擔我媽的工作……現在我心裡面已經在預備,趕快先減緩未來可能會發生的經濟壓力,然後自己要趕快工作穩定。」

從小分擔家庭責任失去做自己的機會。圖/PEXELS

俗話說,「長女如母、姊代母職」,台灣心理學者訪談多位 20 多歲的女性,發現兒時承擔過多家庭責任,太早負責照顧家人、處理家庭大小事的「小大人」們,可能因而失去「做自己」的機會。即使長大了,也持續「照顧者上身」,圍繞者家人、伴侶而活,忘記好好照顧自己的需要,空有身體長大,心靈卻沒時間「長出自我」,依舊不斷在滿足他人和自我內疚中掙扎。

延伸閱讀:家庭如何影響一個人?

-----廣告,請繼續往下閱讀-----

性別與婚姻

學者的研究訪談一位「未婚女子」,她說到:「我爸,他認為就是妳,妳應該要去煮飯,時間到怎麼還不去煮飯?」
又訪了另一位「未婚男子」,他則說到:「我們最大感覺是什麼?是覺得說講句比較粗俗的就是努力賺錢!老人家隨時隨地他就是需要一種費用」

另一篇研究,台灣心理學者訪談多位 30-55 歲的成年子女(性別男女各半,已婚與未婚者各半),發現未婚女兒較容易被視為理所當然的照顧者,而未婚兒子身上則背負著的家族與經濟期望。

圖/PEXELS

如果邁向婚姻,女性也會擔心伴隨結婚而須承擔「媳婦」照顧公婆的角色,因而失去自我,甚至失去照顧自己父母的時間與心力。

在上述這些男女的心中,那些與「做自己」相左的「聽話」,不僅僅是爸媽的「指令」,而是長久以來的童年習慣、性別文化、角色期待。

拋開舊有包袱,反轉親子相處角色定位

值得留意的是,上述訪談 30-55 歲成年子女的研究發現:其實,爸媽可能沒那麼早需要我們「照顧」。

-----廣告,請繼續往下閱讀-----

在這個年齡段之中,成年子女似乎是「陪伴」勝過「照顧」父母,甚至是父母提供他們資金、育兒上的協助。即使父母已需要「身體」的照顧,但更期盼的是擁有子女「心靈」層面的陪伴。

從兒時備受父母照顧,到長大照顧父母之間,無法一夕之間轉換。讓我們在親子力量反轉之際,拋開「被照顧/照顧」的包袱,先找回彼此真心真意的情感與陪伴吧!

在這難得「誰也不用照顧誰,親子雙方都有自我生存能力」時,上演著「家人關係的世代轉變」,也伴隨著「親子權力反轉」的現象。這是一個成年子女、年長父母都特別需要心理調適的階段,也是一個梳理過往關係經驗的契機。回顧家庭經驗,打破過去的惡、延續過去的善,重新定位成年子女與父母的「親子角色」。

延伸閱讀:百善孝為先?「孝順」可能跟你想的不一樣

-----廣告,請繼續往下閱讀-----

為了幸福生活,成年子女有時需要「不太乖」

在親子關係之中,先理解自己要跳脫過往與文化的不容易,拍拍自己,跟自己說聲辛苦了!然而,為了更舒適的生活,如果你願意,那不妨正視自己的力量,嘗試相信自己能為關係帶來改變。

看見自己在親子權力反轉後握有的力量,從過去那個被要求聽話、順應氛圍的孩子轉換為能自主做選擇的「真大人」。在傳承家庭之時,保有自我;在照顧父母之前,先找到陪伴的意義。

過往文化常告訴我們要聽話,但或許「不太乖」才能讓我們在家庭中長出完好的自我。當我們好好愛自己了,也就更有能量回頭愛家人。

延伸閱讀:成年後離家 vs 回家的「轉大人」練習

-----廣告,請繼續往下閱讀-----
  • 利翠珊、張妤玥(2010)。代間照顧關係:台灣都會地區成年子女的質性訪談研究。中華心理衛生學刊,23(1),99-124。
  • 黃宗堅、李佳儒、張勻銘(2010)。代間關係中親職化經驗之發展與自我轉化:以成年初期女性為例。本土心理學研究,33,59-106。

本文同步刊登於《雞湯來了》,原文連結:親子權力反轉:成年子女可能需要「不太乖」

-----廣告,請繼續往下閱讀-----
雞湯來了
51 篇文章 ・ 463 位粉絲
幸福,如何選擇?雞湯來了相信我們值得擁有更優質的家人關係。致力提供科學研究證實的家庭知識,讓您在家庭生活的日常、人生選擇的關卡,找到適合的方向。雞湯來了官網、雞湯來了FB