0

2
0

文字

分享

0
2
0

加速變奏曲—探索基本粒子的大強子對撞機

科學月刊_96
・2012/06/05 ・6887字 ・閱讀時間約 14 分鐘 ・SR值 590 ・九年級

-----廣告,請繼續往下閱讀-----

夸克組成質子與中子,質子、中子和電子組成原子,原子組成分子,分子組成你我所知的世界。一句話道盡了50 年來粒子物理學家探尋的答案。

余欣珊

對於現在的年輕人而言,網路已經成為生活中不可或缺的一部分:交友、蒐集資訊、玩遊戲……;虛擬世界中的一切,似乎比日常生活中的人事物還要更真實。在這樣環境下長大的妳或你,是否曾經問過:自然世界是由什麼組成的?

探索自然世界的組成

在西元前600 年的古希臘時代,「自然世界是由什麼組成」是一個熱門的議題。古希臘哲學家們企圖在神話之外,用理性的思維去了解肉眼所觀察到的自然界中的循環和變化,譬如:水為何會變成冰,空氣凝結為何會變成水等等。在米力特斯(Miletus,古希臘城市,位於今土耳其的西半部)有三位哲學家:泰利斯(Thales, 624~546 BC)、 安奈克西曼德(Anaximander,610~546 BC)、安那西梅斯(Anaximenes, 585~528 BC),認為自然界的一切事物雖然看似變化萬千,但必定是由一種基本物質所組成。三人持有不同觀點,分別認為這個單一的基本物質是水、無界限者或空氣。

-----廣告,請繼續往下閱讀-----

100 年後,德模克里特(Democritus,460~370 BC)提出了唯物論:每一種事物都是由一種微小且不可分割的積木所組成;他稱這些積木為原子(atom)。因為沒有一件事物會來自虛無,所以大自然的積木必須是永恆的。所有的原子都是堅硬結實的,但卻非完全一樣,而大自然是由無數形狀各異的原子所組成。德模克里特不相信有任何力量或靈魂介入大自然的變化過程,大自然每件事情的發生都是相當機械化的,萬事萬物都遵守必要的法則。

雖然這些希臘哲學家的想法非常簡潔漂亮,但是他們並沒有實驗的根據。兩千多年後,俄國科學家門德列夫(Mendeleev,1834~1907)首創化學元素週期表〔註一〕,把當時所發現到的原子依其原子量大小做了排列,而且觀察到這些原子的化學特性都可以被簡化和分組,暗示了原子是由更小的基本粒子所組成。經過了五十多年實驗和理論的相互激盪,物理學家建立了今天的粒子物理標準模型(standard model)。

粒子物理標準模型

在標準模型裡,基本粒子包含夸克(quarks)、輕子(leptons)、和作用子(forcecarriers),如圖一。有六種夸克和六種輕子以及它們的反粒子:上夸克(up,u)、下夸克(down,d)、魅夸克(charm,c)、奇夸克(strange,s)、頂夸克(top,t)、底夸克(bottom,b)、電子(electron,e)、渺子(muon,μ)、濤子(tau,τ)、電子微中子(electron neutrino,ve)、渺子微中子(muonneutrino,vμ)、濤子微中子(tau neutrino,vτ)。四種作用子負責傳遞基本交互作用力:光子(photon,γ)負責電磁力、膠子(gluon,g)負責強作用力、而Z玻色子和W玻色子負責弱作用力。

圖一: 現今粒子物理標準模型裡的基本粒子: 夸克 (quarks)、輕子(leptons)、和作用子(force carriers)。

夸克之間或輕子之間並不直接交流,而是透過像郵差一樣的作用子來傳遞訊息而產生交互作用,所傳遞的訊息強度大小決定於粒子所帶的「電荷」大小以及作用力常數。夸克因為帶有電磁電荷、色電荷和弱電荷,可以「接收」到這四種作用子的訊息。輕子不帶色電荷,所以接收不到膠子的訊息(不參與強作用力)。特別一提的是:微中子只帶有弱電荷,只能感受到弱作用力,被暱稱為「鬼粒子」(ghost particle)。

-----廣告,請繼續往下閱讀-----

在電磁力、強作用力和弱作用力之中,無疑地,大家最容易感受到也最熟悉的是電磁力。帶正電的原子核和帶負電的電子,藉由光子而相吸引並鍵結成原子,雖然原子呈電中性,兩個非常靠近的原子,就像兩個電偶極一樣相互吸引,這吸引力便是所謂的凡得瓦力,原子群藉由凡得瓦力鍵結而組合成了分子。電磁力決定了原子和分子的化學性質。同理地,帶有色電荷的夸克(或反夸克)藉著膠子而鍵結成色中性的介子或重子〔註二〕;你所熟悉的質子和中子,便是眾多上夸克和下夸克的排列組合中最輕和最穩定的重子。而質子和中子就像「色偶極」一樣,相互吸引而組成了原子核。弱作用力雖然強度比強作用力和電磁力小了4~6個數量級,但它其實是地球生命的起源:弱作用力讓太陽中的氫在一連串的反應後轉換為氦,並釋放出光和熱,而放射性衰變的產物,更被拿來應用在癌症治療等醫學用途上。

注意!當一個粒子被稱為基本粒子時,代表我們認為這個粒子無法再被分割,沒有內部構造。但是,有別於大家對於「基本粒子是永遠不變」的直覺,雖然它們無法被分割,卻可以透過電磁力或弱作用力,衰變到其它較輕的基本粒子。在標準模型裡,只有第一代粒子組成了穩定的物質,其他粒子所組成的物質(重子或介子)生命期較短,最終都會衰變到第一代粒子或是作用子。

粒子物理學界當前課題

對於「自然世界是由什麼組成」這個問題,粒子物理標準模型雖然給了我們一個最接近真實世界的答案,但並不是一個最理想和最完整的答案。還有許多問題尚未找到解答,以下提出幾個例子。

現今的物理學家和希臘哲學家有同樣的信念,相信自然界可以由少量的法則來決定;但標準模型的基本粒子數目,似乎還是多了些。是否代表夸克和輕子並不是基本粒子,兩者只是一個更基本的粒子在低能量時所展現的一體兩面?又或者基本粒子數目不少,而我們尚未找到所有的夸克和輕子?細心的讀者應該也發現標準模型尚未把重力納入,是否還有一個重力作用子?另外,這些基本粒子的質量範圍甚廣:有比電子輕的微中子,也有重達184倍質子質量的頂夸克,兩者質量差了11個數量級,為什麼這些基本粒子會擁有質量?在作用子中,光子和膠子沒有質量,但是為什麼W 和Z 玻色子卻是質子質量的86和97倍?是因為它們和希格斯粒子的交互作用?那為什麼我們還沒有找到希格斯粒子?在宇宙大爆炸時,估計有相等數量的正粒子和反粒子,為什麼現在自然界中的穩定物質是由正粒子所組成的,而我們只能在實驗室的產物中看到反粒子?

-----廣告,請繼續往下閱讀-----

為了找到這些問題的解答,物理學家設計了各種實驗來了解這些基本粒子的性質。在標準模型中,大部分的粒子無法穩定存在,但是物理學家可以在較單純的實驗室環境裡製造,然後用像照相機一樣的偵測器,把這些粒子或是它們衰變之後產物的軌跡記錄下來,再用電腦分析這些數據。

若要製造質量較輕的粒子或是它們的反粒子,可以拿高速的電子或質子去撞一個金屬靶,然後再過濾掉不想要的產物,這就是所謂的定靶實驗;魅夸克和底夸克便是在美國布魯克海文實驗室(Brookhaven National Laboratory)、史丹佛直線加速器中心(SLAC National Accelerator Laboratory)以及費米高能實驗室(Fermi National Accelerator Laboratory, FNAL)裡的定靶實驗發現的。但是粒子物理學家除了想了解基本粒子的性質,更想找到希格斯粒子和發現標準模型以外的新粒子;尚未發現到的新粒子質量多半極高,可能是質子質量的數百倍甚至千倍。而定靶實驗有個缺點——無法將整個系統的能量百分之百地都轉換成質量以產生粒子。既然所有的撞擊都必須維持動量守恆,定靶實驗裡的發射物撞擊金屬靶之後,系統能量有一部分必須貢獻到產物的動能上,使得撞擊後產物的總動量等於撞擊前發射物的動量。定靶實驗的質心系能量為√2mtargetEbeam。

相反地,對撞機實驗對撞兩個有相同能量但相反動量的質子或電子,高質量的新粒子可在靜止狀態下被產生,也就是說,所有對撞物的能量都被拿來轉換成質量;其質心系能量為2Ebeam。而具有高質量的W玻色子、Z玻色子以及頂夸克,便是在歐洲核子物理研究中心及美國費米高能實驗室裡的質子–反質子對撞機實驗裡發現的。

現今能量最高的對撞機,位於瑞士日內瓦近郊的歐洲核子物理研究中心(European Organization for Nuclear Research,CERN),也就是大家之前常在新聞報導裡看到的大強子對撞機(Large Hadron Collider, LHC)。

-----廣告,請繼續往下閱讀-----

大強子對撞機

大強子對撞機(LHC)是一個圓形加速器,位於地下約100 公尺,周長有26.7 公里,主要由一連串的共振腔(提供以無線電頻率變換極性的電場)、1232個偶極超導磁鐵、392個四極磁鐵所構成(一共有9593個磁鐵!)電場的功用是加速帶電粒子,而磁場的功用是彎曲和聚焦這些帶電粒子,並讓它們在四個對撞點對撞。在四個對撞點各自設有一個偵測器,量測因對撞而產生的粒子的性質。整個加速器橫跨瑞士和法國兩個國家,是世界上最貴(建造花費為5億瑞士法郎)、最大也是能量最高的強子加速器。所使用的強子大部分時間是質子,每一年有一個月的時間會進行鉛離子的對撞。以下文章將針對質子對撞做介紹。

圖二:位於瑞士日內瓦近郊的大強子對撞機。

大強子對撞機整個實驗配置包含LHC加速器、前級加速器、以及4個對撞點上的偵測器:ATLAS、LHCb、CMS 、ALICE 。首先,氫原子裡的質子和電子被解離,質子在直線加速器裡(Linac2)被加速到5000萬電子伏特(50 MeV)。接下來,質子被送到半徑越來越大的圓形前級加速器——質子同步加速器的推進器(Proton Synchrotron Booster,PS Booster)、質子同步加速器(Proton Synchrontron,PS)、超質子同步加速器(Super Proton Synchrontron, SPS),而達到4500億電子伏特(450 GeV)的動能。為了增加物理反應和產生有趣粒子的機率,有超過1011個質子被壓縮在一個半徑約30~45 微米(μm)、長度約10 公分的圓柱空間。至於每一階段的加速器,除了加速質子群以外,也不斷地在冷卻、聚焦質子群,以達到高密度的質子束(proton bunch)。最後,兩個質子束各自沿著順時鐘和逆時鐘的方向,在LHC 軌道裡運行約20 分鐘後,達到最高動能(設計最大值是7 兆電子伏特, 7 TeV)。

質子在加速器裡的能量與速度

讓我們再回顧一下帶電粒子在垂直其運動平面的磁場中如何運行:其軌跡的曲率半徑和磁場大小成反比,和粒子的動量成正比;也就是說,如果要讓粒子維持在同一個圓形加速器軌道(固定的曲率半徑),磁場大小必須隨著動量而改變。LHC 磁場強度的最高值8.33 特斯拉(Tesla)和軌道的半徑26.7 公里,決定了質子可以擁有的最高能量——7兆電子伏特,也就是說,質子–質子對撞時質心系能量最高可達到14 兆電子伏特。在2010和2011年,LHC先以7 兆電子伏特的質心系能量來運行(每個質子能量為3.5 兆電子伏特),也就是最高能量的一半。2012 年的運行,則把質心系能量提升到8 兆電子伏特。1 兆電子伏特的能量,相當於1.6 爾格(1.6 × 10-7 焦耳),其實也不過是一隻蚊子做全速飛行所需要的能量,甚至遠小於一個100 公克蘋果落下1 公尺所獲得的動能(1 焦耳)。

圖三:大強子對撞機(LHC)整個實驗配置:前級加速器(PS Booster 、PS 、SPS 、Linac 2)、和四個 對撞點上的偵測器(ATLAS 、LHCb 、CMS 、ALICE)。

「加速器」這個名稱以及牛頓力學裡的動能K =1/2mv²,可能讓你認為「粒子在加速器裡運行時,其速度和動能不斷地在增加」。但事實上,任何一個有質量的粒子,其速度都無法超過光速。經過狹義相對論的修正後,粒子的動能應該是K =(γ-1 )mc²,其中γ和粒子的速度有關:γ=1/(√(1-v²/c²))

-----廣告,請繼續往下閱讀-----
圖四:經過狹義相對論修正後粒子的能量和速度之 間的關係。虛線代表的是當粒子在靜止狀態時的總 能量mc 2,其中m是粒子的靜止質量而c 是光速。 粗的實線代表的是粒子在速度不等於零時所帶有的 總能量;粗實線和虛線之間的差異便是粒子的動 能:K =(γ- 1)mc 2 。細實線代表的是靜止能量 (mc 2)和牛頓力學動能K =1/ 2 mv 2 的總和。

當粒子速度遠小於光速時(v<<c),γ近似於1 + 1/2(v²/c²),又回到了牛頓力學裡的動能。當粒子速度接近光速時,粒子速度增加的比率卻遠比粒子動能增加的比率緩慢,見圖四;而表一所列的是質子在每一階段的加速器所達到的最大動能和速度。

大強子對撞機研究團隊

在LHC 對撞點上的每一個偵測器都有一個實驗團隊負責,分別是ATLAS(A Toroidal LHC ApparatuS ,超導環場探測器)、CMS(The Compact Muon SolenoidExperiment ,緊湊渺子線圈)、ALICE(A Large Ion Collider Experiment,大型離子對撞機)、和LHCb(LHC Beauty,LHC底夸克偵測器)。其中,ALTAS和CMS的實驗團隊多達3000 人,偵測器有多功能並且包含的角度區域遠大於ALICE 和LHCb ,主要是為了尋找希格斯粒子,並且探測標準模型以外的新物質。在這兩個大型實驗團隊裡,中央研究院物理所隸屬於ATLAS 實驗,而台灣大學和中央大學物理系則隸屬於CMS 實驗。

相對於ATLAS 和CMS ,ALICE 和LHCb 團隊較為嬌小,但是也有600~1000 人。ALICE,顧名思義,專攻於研究鉛離子對撞而產生的夸克–膠子電漿(quark-gluon plasma)狀態,以了解宇宙的形成。LHCb則專攻於研究底夸克的性質,以幫助了解正粒子和反粒子的不對稱緣由。

在這4 個偵測器中, ATLAS 偵測器體積最為龐大:長46公尺,寬25公尺,高25公尺,相當於10 層樓高和3 個籃球場地大小。而CMS偵測器則最重,有1 萬2500 公噸,相當於65 隻藍鯨的體重(現今地球上最重的動物)。除了在4個對撞點上的偵測器, 還有2 個小型偵測器, LHCf和TOTEM,分別位於ATLAS和CMS偵測器的前端和後端。這2 個小型實驗探測在ATLAS和CMS對撞點所產生的粒子,可以補足2個大型偵測器無法包含的區域,也可以量測質子束的亮度。

-----廣告,請繼續往下閱讀-----

對撞點上的偵測器通常包含著一層又一層的子偵測器,見圖五。在最內層、最靠近對撞點的是帶電粒子軌跡偵測器(tracker),再外面一層有電磁和強子量能器(electromagnetic calorimeter andhadron calorimeter),而最外面一層有渺子偵測器(muon detector)。各個實驗在不同區域有大小不一的磁場。為什麼要這樣安排子偵測器的位置?

圖五:粒子在CMS 偵測器裡以及在磁場影響下的行進軌跡。所顯示的是CMS 偵測器垂直於質子束方向的30 °截角剖面圖。 粒子包含有:渺子、電子、帶電強子(如:π介子)、中性強子(如:中子),以及光子。

偵測粒子的軌跡

想要徹底了解粒子的性質,我們必須要知道粒子被產生時的動量大小、方向、和能量大小,也就是所謂的四維動量(four-momentum)。帶電荷粒子的動量大小和方向,可以從它們在tracker裡所留下的訊號而算出——動量大小正比於粒子在磁場中運動軌跡的曲率半徑;而質子–質子對撞點,也就是粒子產生點,和tracker有訊號的位置,兩點的連線方向便是動量方向。

常見的tracker 具備有矽晶軌跡追跡系統和氣體漂移室。不管tracker的材料為何,其物質密度都不能過高,如此一來,當帶電粒子經過tracker時,只會損失非常微小的能量(KeV),而所量測到的動量便不會偏離帶電粒子進入tracker之前原有的動量。如果粒子本身是不帶電荷的,但是會衰變到帶正電和帶負電的粒子,我們可以從這些衰變產物來推導出原來粒子的動量。

粒子的能量,可以由電磁和強子量能器裡的訊號來得到。量能器是一種「破壞性」偵測器,本身可以誘發簇射,所以必須放在tracker外圍,才不會干擾動量的量測。簇射產物中,起初只有少數高能量的次級粒子,這些次級粒子進一步被引發二次簇射、三次簇射……,使得次級粒子的數目逐漸增加,而能量逐漸降低。一旦所產生的次級粒子能量夠低並且帶有電荷,這些次級粒子便會被量能器記錄下來。起始粒子的能量越高,可以產生的次級粒子數目越多,量能器裡的信號也越強。

-----廣告,請繼續往下閱讀-----

那麼,既然渺子帶有電荷,我們可以用tracker量測到它的動量,為何在量能器外圍,還需要裝一個渺子偵測器?原因是,在標準模型裡帶電荷的粒子中(輕子、W玻色子、或是帶電荷的強子),只有渺子可以在損失極小能量的情況下,穿越量能器,而在渺子偵測器被偵測到。其他粒子不是早就衰變,便是已經損失所有的能量在量能器裡,例如電子或正子在電磁量能器中損失所有能量。雖然渺子最終還是會衰變,不過它的生命期是2.2微秒,平均來說,對於一般對撞機所產生的渺子,至少要行進6000公尺才會衰變,這距離顯然遠大於一般偵測器的大小。渺子偵測器的基本作用原理,事實上和靠近對撞點的tracker一樣,所使用的種類大多是氣體漂移室。

如同前面所提到的,微中子不會和對撞機偵測器產生電磁交互作用或強交互作用,所以無法被直接偵測到。判別微中子的方法,只有看每個對撞事件裡,是否有「迷失動量」(missing momentum)?

在同一個質子–質子對撞事件裡,所有的粒子的總動量必須等於零,如果有粒子沒有被偵測到,其他被偵測到的粒子的總動量便會不等於零,也就是說,這個對撞事件有迷失動量。迷失動量是所有偵測到的物理量裡,最難校正的一項,偵測器要是有一個區域無法正常運行,或是被偵測到的粒子能量有誤差,對撞事件便會產生一個「偽迷失動量」。雖然困難,但是許多粒子物理學家還是努力研究「迷失動量」,因為除了微中子之外,尚未發現到的重力作用子、超對稱粒子、或其他新粒子,都有可能逃離偵測器而留下迷失動量。

粒子物理學的戰國時代

西元2011年無疑是粒子物理界裡的戰國時代。有造成不少騷動但後來證實是曇花一現的:微中子超越光速、在W玻色子事件中的未知粒子(雙噴射流激態, di-jetresonance)、以及疑似希格斯粒子衰變到雙光子的事件。也有超越前人的:縮小希格斯粒子的質量範圍和超對稱理論的參數值空間、在重離子對撞中看到反氦原子核、噴射流在夸克–膠子電漿裡的能量衰減、和許多檢驗標準模型的測量。以上對於粒子物理實驗,作了一個很基本的介紹,期待吸引有興趣的學生加入我們的行列,一起向未知的世界挑戰。

註一:直到西元2012年為止,元素週期表已經有118種原子。
註二:一旦夸克被產生,便無法單獨存在。一個夸克必須和一個反夸克鍵結成一個介子,或是和兩個夸克鍵結成一個重子,以達到色中性的狀態。

余欣珊:任教中央大學物理系
原文發表於《科學月刊》第四十三卷第五期

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3726 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
1

文字

分享

0
2
1
上網也要有「技術」!從言論、隱私到國安,你我都該懂的界線
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/18 ・2366字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

以為鍵盤俠天下無敵?小心一個不留神就觸法!人們常忽略「網路並非法外之地」這個重要事實。不只現實生活中的法律同樣適用於網路空間,隨著科技發展,更多應網路特性而生的法律規範也相繼出現。從基本的言論自由到隱私權保護,從智慧財產權到國家安全,法律體系正全面性地回應數位時代的種種挑戰。

在臺灣,網路上的言論自由權利源自《憲法》第 11 條的明確規定:「人民有言論、講學、著作及出版之自由。」釋字第 509 號則指出,「國家應給予最大限度之維護,俾其實現自我、溝通意見、追求真理及監督各種政治或社會活動之功能得以發揮。」網路快速傳播的特性放大了言論的影響力,而大法官的解釋將言論自由的邊際刻畫得更明確,這在數位時代裡顯得格外重要。

網路與社群媒體的快速傳播,放大了言論的影響力。圖/unsplash

網路上的性、暴力與未成年保護

顯然言論自由並非是毫無限制,2023 年 11 月的一起案件就展現其中一種界線的樣貌。當時,一名 36 歲男子將他和網友在網咖的性愛影片上傳至推特,還寫下「《網咖包廂實戰計 1》我跟某公司 OL 戰鬥」等文字。這段影片一經發布,當事女子立即採取法律行動。最終,法院依其以網際網路「供人觀覽猥褻影像」的罪名,判處該名男子拘役 30 日,得易科罰金。這個判決清楚說明了,即便在虛擬空間,散布猥褻影像仍須承擔實質的法律責任。

-----廣告,請繼續往下閱讀-----

特別是在保護未成年人方面,法律的規範更加嚴格。《刑法》第 235 條明文禁止散布、播送或販賣猥褻物品,無論形式是圖文、聲音還是影像。而《兒童及少年性剝削防制條例》第 36 條更進一步禁止任何形式的兒童色情製品被製造、散布和持有。2019年彰化縣曾層發生過這樣一起案件:一名陳姓中年男子將9歲女童帶往居所,不僅強迫她觀看色情影片,還對她進行猥褻行為,甚至將過程上傳至 Google 雲端。儘管他後來試圖以資助女童就學表達悔意,法院仍以加重強制猥褻等罪,判處他 4 年 4 個月有期徒刑。

不實言論的散布同樣可能觸犯法律。2021 年 9 月爆發的「台大狼師案」就是一個警示。一名女大生在網路上指控教師誘騙她發生關係並傳染性病,幾個月後又指控對方對她進行強制性行為。當她提出告訴時,檢方卻查無性侵事實,加上她反覆的說詞,不僅性侵告訴失敗,還因誹謗罪反被加重判刑。

當駭客、間諜都轉戰網路戰場

2013 年,一名退役空軍上校赴陸經商時被情治單位吸收,返台後透過人脈網絡發展組織、刺探軍事機密,並以空殼公司掩護非法報酬,這個情報網持續運作了 8 年之久。

在涉及國家安全的議題上,法律的態度更是嚴厲。根據《國家安全法》第 2 條的規定,任何人都不得為境外敵對勢力及其控制的組織、機構進行資助、主持、操縱、指揮或發展組織,更不能洩漏、交付或傳遞公務機密,違反者將面臨嚴厲的刑事處罰。《刑法》規定,意圖破壞國體、竊據國土,或以非法方法變更國憲、顛覆政府者,處7年以上有期徒刑,首謀更要判處無期徒刑。

-----廣告,請繼續往下閱讀-----

抄襲與轉貼的邊界在哪裡?

在智慧財產權的保護上,臺灣也經歷了數位時代的轉變。台灣第一個網路著作權相關判決,就發生在傳統出版與數位平台的碰撞之中。南方社區文化網路負責人陳豐偉等三人在中山大學 BBS 上發表的文章,未經同意就被《光碟月刊》收錄在隨刊光碟中發行。三人向台北地檢署提告後,《光碟月刊》發行人兼總經理黃俊義被判處七個月有期徒刑,緩刑三年。這個判決為數位時代的著作權保護樹立了重要典範。

臺灣首例網路著作權案判決,為數位時代智慧財產權保護樹立典範。圖/envato

近年來,影音平台的著作權爭議更趨複雜。2022 年,知名 YouTube 頻道「觸電網」就因為片商車庫娛樂檢舉七十多支未經授權的影片,導致經營 12 年的頻道被迫下架。車庫娛樂透過律師聲明,這是針對「未經合法授權影音內容」的標準處理,並表明將追究民事與刑事責任。

受害了怎麼辦?申訴管道報你知

當我們在網路上的權利受到侵害時,可以根據侵害類型尋求不同的救濟管道。最基本的言論自由權利受到侵犯時,可以先向社群平台提出檢舉。若遇到更嚴重的情況,如散布猥褻影像、非法性私密影片等,除了平台檢舉外,還可以向警方提告,或是尋求衛福部「性影像處理中心」的協助。

在面對網路霸凌、不實言論時,可以向台灣事實查核中心、MyGoPen 等組織求助,協助澄清真相。若發現有害兒少身心健康的不當內容,則可以向 iWIN 網路內容防護機構提出申訴。這個由國家通訊傳播委員會支持的組織,會在受理後進行查核、轉介業者改善或依法處理。

-----廣告,請繼續往下閱讀-----

智慧財產權的侵害在網路時代極為常見,就像「觸電網」遭片商檢舉下架的案例。這類情況可以透過平台既有的著作權保護機制處理,情節嚴重者也可以提起民事訴訟要求賠償。若發現可疑的廣告或不公平交易行為,則可以向公平交易委員會檢舉;若是特定領域的違規內容,則應該向各該主管機關反映,例如藥品廣告歸衛福部管轄、證券期貨廣告則由金管會負責。

網路時代的法律規範正不斷演進,從個人隱私到國家安全,從言論自由到智慧財產權,每個面向都在尋求數位環境下的最佳平衡點。作為網路使用者,我們必須理解並遵守這些法律界線,同時也要懂得運用各種救濟管道保護自身權益。唯有每個人都清楚了解並遵守這些規範,才能共同營造一個更安全、更有序的網路環境。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
當心網路陷阱!從媒體識讀、防詐騙到個資保護的安全守則
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/17 ・3006字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國家通訊傳播委員會 委託,泛科學企劃執行。 

網路已成為現代人生活中不可或缺的一部分,可伴隨著便利而來的,還有層出不窮的風險與威脅。從充斥網路的惡假害訊息,到日益精進的詐騙手法,再到個人隱私的安全隱憂,這些都是我們每天必須面對的潛在危機。2023 年網路購物詐欺案件達 4,600 起,較前一年多出 41%。這樣的數據背後,正反映出我們對網路安全意識的迫切需求⋯⋯

「第一手快訊」背後的騙局真相

在深入探討網路世界的風險之前,我們必須先理解「錯誤訊息」和「假訊息」的本質差異。錯誤訊息通常源於時效性考量下的查證不足或作業疏漏,屬於非刻意造假的不實資訊。相較之下,假訊息則帶有「惡、假、害」的特性,是出於惡意、虛偽假造且意圖造成危害的資訊。

2018 年的關西機場事件就是一個鮮明的例子。當時,燕子颱風重創日本關西機場,數千旅客受困其中。中國媒體隨即大肆宣傳他們的大使館如何派車前往營救中國旅客,這則未經證實的消息從微博開始蔓延,很快就擴散到各個內容農場。更令人遺憾的是,這則假訊息最終導致當時的外交部駐大阪辦事處處長蘇啟誠,因不堪輿論壓力而選擇結束生命。

-----廣告,請繼續往下閱讀-----

同年,另一則「5G 會抑制人體免疫系統」的不實訊息在網路上廣為流傳。這則訊息聲稱 5G 技術會影響人體免疫力、導致更容易感染疾病。儘管科學家多次出面澄清這完全是毫無根據的說法,但仍有許多人選擇相信並持續轉發。類似的例子還有 2018 年 2 月底 3 月初,因量販業者不當行銷與造謠漲價,加上媒體跟進報導,而導致民眾瘋狂搶購衛生紙的「安屎之亂」。這些案例都說明了假訊息對社會秩序的巨大衝擊。

提升媒體識讀能力,對抗錯假訊息

面對如此猖獗的假訊息,我們首要之務就是提升媒體識讀能力。每當接觸到訊息時,都應先評估發布該消息的媒體背景,包括其成立時間、背後所有者以及過往的報導記錄。知名度高、歷史悠久的主流媒體通常較為可靠,但仍然不能完全放下戒心。如果某則消息只出現在不知名的網站或社群媒體帳號上,而主流媒體卻未有相關報導,就更要多加留意了。

提升媒體識讀能力,檢視媒體背景,警惕來源不明的訊息。圖/envato

在實際的資訊查證過程中,我們還需要特別關注作者的身分背景。一篇可信的報導通常會具名,而且作者往往是該領域的資深記者或專家。我們可以搜索作者的其他作品,了解他們的專業背景和過往信譽。相對地,匿名或難以查證作者背景的文章,就需要更謹慎對待。同時,也要追溯消息的原始來源,確認報導是否明確指出消息從何而來,是一手資料還是二手轉述。留意發布日期也很重要,以免落入被重新包裝的舊聞陷阱。

這優惠好得太誇張?談網路詐騙與個資安全

除了假訊息的威脅,網路詐騙同樣令人憂心。從最基本的網路釣魚到複雜的身分盜用,詐騙手法不斷推陳出新。就拿網路釣魚來說,犯罪者通常會偽裝成合法機構的人員,透過電子郵件、電話或簡訊聯繫目標,企圖誘使當事人提供個人身分、銀行和信用卡詳細資料以及密碼等敏感資訊。這些資訊一旦落入歹徒手中,很可能被用來進行身分盜用和造成經濟損失。

-----廣告,請繼續往下閱讀-----
網路詐騙手法不斷進化,釣魚詐騙便常以偽裝合法機構誘取敏感資訊。圖/envato

資安業者趨勢科技的調查就發現,中國駭客組織「Earth Lusca」在 2023 年 12 月至隔年 1 月期間,利用談論兩岸地緣政治議題的文件,發起了一連串的網路釣魚攻擊。這些看似專業的政治分析文件,實際上是在臺灣總統大選投票日的兩天前才建立的誘餌,目的就是為了竊取資訊,企圖影響國家的政治情勢。

網路詐騙還有一些更常見的特徵。首先是那些好到令人難以置信的優惠,像是「中獎得到 iPhone 或其他奢侈品」的訊息。其次是製造緊迫感,這是詐騙集團最常用的策略之一,他們會要求受害者必須在極短時間內作出回應。此外,不尋常的寄件者與可疑的附件也都是警訊,一不小心可能就會點到含有勒索軟體或其他惡意程式的連結。

在個人隱私保護方面,社群媒體的普及更是帶來了新的挑戰。2020 年,一個發生在澳洲的案例就很具有警示意義。當時的澳洲前總理艾伯特在 Instagram 上分享了自己的登機證照片,結果一位網路安全服務公司主管僅憑這張圖片,就成功取得了艾伯特的電話與護照號碼等個人資料。雖然這位駭客最終選擇善意提醒而非惡意使用這些資訊,但這個事件仍然引發了對於在社群媒體上分享個人資訊安全性的廣泛討論。

安全防護一把罩!更新裝置、慎用 Wi-Fi、強化密碼管理

為了確保網路使用的安全,我們必須建立完整的防護網。首先是確保裝置和軟體都及時更新到最新版本,包括作業系統、瀏覽器、外掛程式和各類應用程式等。許多網路攻擊都是利用系統或軟體的既有弱點入侵,而這些更新往往包含了對已知安全漏洞的修補。

-----廣告,請繼續往下閱讀-----

在使用公共 Wi-Fi 時也要特別當心。許多公共 Wi-Fi 缺乏適當的加密和身分驗證機制,讓不法分子有機可乘,能夠輕易地攔截使用者的網路流量,竊取帳號密碼、信用卡資訊等敏感數據。因此,在咖啡廳、機場、車站等公共場所,都應該避免使用不明的免費 Wi-Fi 處理重要事務或進行線上購物。如果必須連上公用 Wi-Fi,也要記得停用裝置的檔案共享功能。

使用公共 Wi-Fi 時,避免處理敏感事務,因可能存在數據被攔截與盜取的風險。圖/envato

密碼管理同樣至關重要。我們應該為不同的帳戶設置獨特且具有高強度的密碼,結合大小寫字母、數字和符號,創造出難以被猜測的組合。密碼長度通常建議在 8~12 個字元之間,且要避免使用個人資訊相關的詞彙,如姓名、生日或電話號碼。定期更換密碼也是必要的,建議每 3~6 個月更換一次。研究顯示,在網路犯罪的受害者中,高達八成的案例都與密碼強度不足有關。

最後,我們還要特別注意社群媒體上的隱私設定。許多人在初次設定後就不再關心,但實際上我們都必須定期檢查並調整這些設定,確保自己清楚瞭解「誰可以查看你的貼文」。同時,也要謹慎管理好友名單,適時移除一些不再聯繫或根本不認識的人。在安裝新的應用程式時,也要仔細審視其要求的權限,只給予必要的存取權限。

提升網路安全基於習慣培養。辨識假訊息的特徵、防範詐騙的警覺心、保護個人隱私的方法⋯⋯每一個環節都不容忽視。唯有這樣,我們才能在享受網路帶來便利的同時,也確保自身的安全!

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
探索自然知識的先行者:古希臘哲學家如何看待萬物的基本組成?——《世界史是由化學寫成的》
圓神出版‧書是活的_96
・2023/05/15 ・1970字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

古希臘哲學家中,不乏能精準測量天體位置的人,還有能運用幾何學知識來丈量土地的人。儘管他們尚未發展出「實驗」這項科學方法,但相對的,他們非常仔細觀察自然界發生的變化,並思考形形色色的問題,成為自然界和社會的知識探索者。

萬物皆由水組成

古希臘最早深入探索「萬物根源」的人是泰利斯(Thales)。他是個生意做很大的貿易商,曾搭船經由地中海,到埃及推銷橄欖油,是個見多識廣的人。

某天,泰利斯開始萌生疑惑:

世界上有數之不盡的萬象事物,都是由物質所構成的,而且物質的變化方式多得令人驚奇。雖說物質會不斷變化,卻並非無中生有,存在的東西也不可能完全消失;由此可知,物質是不生不滅的。無數物質不斷變化,但為什麼大家都是不生不滅的?

古希臘哲學家泰利斯(Thales of Miletus)。圖/wikipedia

泰利斯認為,所有物質必然是由唯一的「本原」所組成的,而他得到的答案就是水:

-----廣告,請繼續往下閱讀-----

水遇冷後凝結成冰,加溫之後就會恢復原狀;溫度繼續升高的水會成為水蒸氣,再冷卻後又會形成水滴。河川、海洋和地表的水,都會變成水蒸氣上升到空中、形成雲朵,雲又會降水成為雨和雪。水能如此千變萬化,不論怎麼變也不會消失殆盡。話說回來,金屬的變化、生物形體的變化,不也都和水一樣嗎?

泰利斯推論,這些物質的型態和外形不論再怎麼變化,也不會完全消失,應該是因為所有物質都是由某個「本原」所組成的——不論構成的是金屬或生物。

後來泰利斯便把構成所有物質的「本原」命名為「水」。

值得注意的是,泰利斯所說的「水」,並不是指現代科學做為研究對象、做為物質的水,而是將變化不歇、變換型態後生成其他物質,並能再度回歸原初型態的萬物本原稱為「水」而已。這種思考的背景,可能來自於他曾到東方旅行,聽聞流傳在美索不達米亞的世界起源傳說、得知其故事中心就是「水」,才深受影響。

泰利斯的「水」,促使眾多學者開始思考萬物的「本原」(元素)為何。有人認為本原是「空氣」,經過壓縮和稀釋,分別形成水、土和火,進一步創造了自然界;也有人認為本原就是「火」,並將自然界比喻為「燃起、消失,無時無刻都在活動的火」。

-----廣告,請繼續往下閱讀-----

微粒組成萬物

對於「萬物根源」是什麼的問題,德謨克利特(Democritus)提出了名為「原子論」的主張。

和泰利斯一樣,德謨克利特曾周遊地中海沿岸,徒步觀察風土、歷史和文化迥異的各個國家裡,有什麼樣的自然環境與人民,並學習各國的學問和技術。他認為,創造萬物的「本原」存在於無數微粒中,而且這一顆顆粒子永遠不會毀滅。他將這些無法再分解得更小的微粒,以希臘語中意指「不可分割之物」「atomos」(原子)來命名。

德謨克利特還思考了另一項觀點,也就是「虛空」(什麼都沒有的空間),若改用現代科學的用語來說,就是「真空」。因為原子會占據空間、四處活動,所以必須要有提供給原子活動的「虛空」。

簡單來說,德謨克利特的原子論就是「萬物是由原子和真空所構成的,除此之外別無其他」。

-----廣告,請繼續往下閱讀-----
古希臘哲學家德謨克利特(Democritus)。圖/wikipedia

德謨克利特認為,無數原子在除了原子以外什麼都沒有的空間裡,激烈且毫不停歇地四處活動,互相撞擊、形成漩渦。有的原子雖然會和其他原子相連成一團,但這團東西總有一天會分解,恢復成原本四散的原子。只要改變原子的排列方式和組合,就能製造出不同種類的物質。萬物是藉由原子的組合而形成,就連火、氣、水、土也不例外。

據說德謨克利特寫了一系列共七十多部鉅著,但沒有一本流傳下來。由於他大膽主張,人類的靈魂也是由輕盈、活潑好動的原子組成,不會遵從神的指示,而是跟隨控制原子運動的自然定律;只要構成人類肉體的原子瓦解分散,人類的靈魂就會消失。也就是說,神並不存在。他因此遭到統治階層指控「試圖抹滅神的存在」,並飽受攻擊,與他有關的書籍全數遭到銷毀。我們之所以能認識德謨克利特的事蹟,主要是由於反對原子論的哲學家們,將他的思想記錄在自己的著作之故。

——本文摘自《世界史是化學寫成的:從玻璃到手機,從肥料到炸藥,保證有趣的化學入門》,2022 年 2 月,究竟出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
圓神出版‧書是活的_96
13 篇文章 ・ 3 位粉絲
書是活的,他走來溫柔地貼近你,他不在意你在背後談論他,也不在意你劈腿好幾本。 這是一種愛吧。 圓神書活網 www.booklife.com.tw