Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

鬼月談鬼火(下):鬼火等於磷火?分析鬼火的真正成因

臺北地方異聞工作室_96
・2019/08/15 ・3564字 ・閱讀時間約 7 分鐘 ・SR值 524 ・七年級

文/楊海彥(小波)

上一集,我們回顧了臺灣的鬼火傳說,並歸納出鬼火的幾個特點,分別是:(1)通常在夜裡出沒,(2)在墓地、河畔或是海濱都可能見到,(3)顏色以淡藍色為主,但也有橘紅色的伯公火,(4)火焰的數量可能是一至多個,且(5)有會跟著人跑的紀錄。

可是這樣一來,「屍體骨頭中的磷因高溫自燃產生鬼火」這個說法,似乎就有些站不住腳了。

磷火的幾個疑點

磷質佔人體體重的 1%,一個大約 70 公斤的成年男子,體內大約會有 700 公克左右的磷。其中又以無機鹽類狀態與鈣結合者最多,佔 85%,形成骨骼,牙齒中不溶性的磷灰石。1

骨骼中的磷的確不少,但鬼火=磷這個解釋這樣就可靠了嗎?Image by Eliane Meyer from Pixabay

一個人能提供 700 公克左右的磷作為鬼火的燃料,這樣的量看來並不少。而磷源自屍體中的骨頭和牙齒,也足以解釋鬼火為何通常在墓地出現,河畔與海濱也可以視為富含水生動物的骸骨。再加上磷的自燃溫度大約攝氏 34 度,越潮濕自燃溫度越低,只要夏天氣溫夠高就可能引發自燃。

磷似乎完美解釋了鬼火如何產生,只是有個問題:磷燃燒的火焰不是淡藍色。

這是國外 Youtuber 拍攝的白磷燃燒的影片。影片中可以看見,白磷燃燒的反應相當激烈,焰色是橘黃色,並伴隨產生大量的濃煙(這也是為什麼白磷是煙霧彈的主要成分),這與目擊描述中幽幽飄盪的淡藍色鬼火一點也不相像。更重要的是,磷並不以純物質的狀態存在於自然界中,因此形成鬼火的不可能是純磷。

另一個自燃的可能人選是磷化氫(PH3)。這是一種無色、可燃、劇毒的氣體,是屍體分解後的產物之一。一般來說磷化氫沒有味道,但伴隨產生的聯膦(P2H2)具有魚腥或大蒜的臭味,兩者混合時,在空氣中極度容易自燃。

即便如此,磷化氫與聯膦的燃燒一樣既快速又猛烈,與鬼火相去甚遠:

這樣一來,鬼火到底是如何形成的?

鬼火到底是什麼?從古至今都有人在研究

中國早在南宋時期,就有人提出磷與鬼火之間的關係。陸遊《老學庵筆記˙卷四》中提到:「予年十餘歲時,見郊野間鬼火至多,麥苗稻穗之杪往往出火,色正青,俄復不見。蓋是時去兵亂未久,所謂人血為磷者,信不妄也。今則絕不復見,見者輒以為怪矣。」到了清代,紀曉嵐的《閱微草堂筆記˙第九卷》更直接寫道:「磷為鬼火。」

日治時期的臺灣,正處於日本明治維新後,破除迷信、科學至上的氛圍中,當時漢文臺灣日日新報上也出現了一篇〈捉燐辯惑〉,故事大概是這樣:作者在學校看見鬼火,日人校長便讓眾人一起抓鬼火,沒多久校長抓到了,眾人一看卻只是一片枯葉。正疑惑這怎麼會是鬼火,校長便要大家進到屋內,不一會,枯葉刷地一聲燃燒起來,就像有人摩擦燐石一樣,眾人非常詫異。校長於是趁機教育眾人,鬼火就是燐火,是磷素和水素和合而成。2

看到鬼火也要趁機教化學,這校長也不太容易。(誤)Image by HG-Fotografie from Pixabay

值得一提的是,即使早自宋朝,乃至清朝、日治時期,就已經有人知道鬼火與磷之間的關係,那也是少數知識分子的事,民間對於鬼火的忌諱並沒有減少多少,否則也不會有那麼多鬼火傳說了。

東方是如此,那西方又是如何呢?

西方解釋鬼火的思路:天然氣?

與東方認為鬼火與磷有關的思路不同,西方人最開始認為鬼火與天然氣有關。

西元 1596 年,一名叫 Ludwig Lavater 的神學家,在其著作《Of Ghostes and Spirites, Walking by Night: And of Straunge Noyses, Crackes, and Sundrie forewarnings, which commonly happen before the death of men: Great Slaughters, and alterations of Kingdomes》(對,書名就是這麼長),書中〈That many naturall things are taken to be ghoasts〉的章節中,便認為鬼火是由富含硫磺的礦脈燃燒導致。3, 4

到了 1776 年,亞歷山德羅˙伏打在讀完一篇由班傑明‧富蘭克林所著,關於「可燃空氣」的論文後研究並發現甲烷。在研究甲烷期間,他提出可能由於自然界中的電,比如閃電,與沼氣中的甲烷反應,才導致鬼火的產生。這個論點被當時的學界廣泛接受。(值得一提的是,亞歷山德羅‧伏打後來發明了世界第一個電池,並且成為今天電勢的單位,伏特。)

世界各地的鬼火焰色跟溫度都有所不同。Image by Waldkunst from Pixabay

目前為止都只是紙上談兵,要一直到1832年,Louis Blesson才算真正開始對自然界產生的鬼火進行研究。

他到世界各地發生鬼火的地方進行實驗,發覺不同地區的鬼火,焰色與溫度也會不同。此外當他第一次接觸鬼火,便意外發現鬼火會在他接近時後退,並且非常容易被他的呼吸吹動;他必須撇過頭、站定一會,鬼火才回到原位。不只如此,沼氣引發的鬼火在夜晚離地面比較高,越接近黎明就越低,最後消失無蹤3。這兩者很好地解釋了鬼火為何會移動,以及為何只有在夜晚才看得到鬼火。

與鬼火性質最接近的答案:冷焰

1980 年,英國的地理學家 Alan A. Mills,第一次嘗試在實驗室裡複製鬼火。

他混合了油狀的磷化氫與天然氣,成功產生了綠色的火光,然而大量刺鼻煙霧也伴隨產生,與自然界中看到的鬼火實在相差甚遠。但他持續進行研究,直到 2000 年時,重新提出鬼火可能是一種「冷焰」。4

所謂的冷焰是一種最高溫度低於攝氏 400 度的火焰,通常必須以特定的比例混合燃料與空氣才會產生。與一般火焰不同之處在於,冷焰的燃燒反應並不激烈,且只會釋放些許的光、熱和二氧化碳,這是因為一般的燃燒會將化合物完全分解與氧氣結合,但冷焰的燃燒互相反應的幾乎都是部份分解的化合物自身。冷焰在日常生活中不常見,但卻是引擎發生爆震的主要原因。5

冷焰不僅溫度低、燃燒不劇烈,導致必須在非常暗的地方才可看見,焰色光譜大多落在藍色與紫色之間,更重要的是,天然氣也符合產生冷焰的條件!屍體分解後不僅會產生磷化氫,更會產生大量甲烷,雖然沼氣與天然氣不盡相同,但成分接近的沼氣產生冷焰,是有可能的。

有興趣的話,上面影片就是在實驗室中製造了冷焰。

世界上的鬼火目擊事件眾多,我們無法確認每一起鬼火事件引發的真正原因。不過若是以臺灣來看,根據上一集蒐集的傳說,冷焰已經很好地解釋大部分鬼火的特性。

總結來說,整個鬼火產生的故事應該是這樣的:墳場或河畔、海濱的屍體腐壞,產生磷化氫聯膦甲烷,因為種種原因,這些氣體逸散出來,甲烷與空氣恰好混合成能夠形成冷焰的比例,磷化氫和聯膦再自燃形成火源,便能產生淡藍色的、幽幽飄盪的鬼火。若是混合的比例不對,單純燃燒甲烷,那便會成為橘紅色的伯公火。

除了冷焰之外,還有其它的解釋

除了冷焰之外,科學家也提出其它鬼火的可能成因。2008 年,義大利的化學家 Luigi Garlaschelli和Paolo Boschetti 提出了「化學發光」的假說;他們將磷化氫與空氣和氮氣混合,製造出一種黯淡的綠色冷光,雖然伴隨著煙霧和臭味,但根據他們的說法,只要調整環境中的溫度、溼度等條件,煙霧和異味都可以消除,而且人眼在黑暗中難以辨別顏色,把綠色看成淡藍色是有可能的。6

此外,還有地質學家提出因地殼變動的「壓電效應」產生的「地電」,以及森林中的生物──比如某些蜜環菌屬的菇類、微生物、昆蟲──所發出的「生物螢光」兩種假說,不過礙於篇幅便不多作介紹。

螢光蕈經過長時間曝光的攝影作品。圖/wiki commons

近代,鬼火的目擊事件越來越少,這不僅是在臺灣,全世界都是一樣。除了因為火葬逐漸取代了土葬,也是因為沼澤與森林被大肆開發,就像失去棲地的動物,鬼火也失去了生成的源頭。過往的神祕傳說,在文明與科技的發展中逐漸消失,彷彿是某種詩意又悲劇的比喻,卻是實在發生的過程。

過去我們常說的「鬼火即磷火」看似科學,實際上卻是過度簡化的解釋,偏偏我們大多數人對此深信不疑。部份的人認為傳統迷信又落後,擁有科學至上的想像,但若是對事物的成因不求甚解,科學和迷信又有什麼不同呢?

資料來源

  1. 維基百科-磷質
  2. 〈捉燐辯惑〉。1907年7月6日,漢文臺灣日日新報。
  3. 《Of Ghostes and Spirites, Walking by Night: And of Straunge Noyses, Crackes, and Sundrie forewarnings, which commonly happen before the death of men: Great Slaughters, and alterations of Kingdomes》,〈That many naturall things are taken to be ghoasts
  4. Wikipedia-Will-o’-the-wisp
  5. Wikipedia-Cool flame
  6. Wikipedia- Chemiluminescence


【作者簡介】楊海彥/
轉換多次跑道,最終決定與朋友們一起開妖怪工作室。目前專注於台灣怪談研究,擅長將台灣文史和民俗轉化為故事,也設計實境遊戲和桌遊。嗜讀奇幻文學,熱愛電影,喜歡咖啡也喜歡茶,養一隻以拿鐵為名的貓。

文章難易度
臺北地方異聞工作室_96
23 篇文章 ・ 256 位粉絲
妖怪就是文化!北地異工作室長期從事臺灣怪談、民俗、文史的考據和研究,並將之轉化成吸引人的故事和遊戲。成員來自政大與臺大奇幻社,從大學時期就開始一起玩實境遊戲和寫小說,熱愛書本、電影和實地考察。 歡迎來我們的臉書專頁追蹤我們的近況~https://www.facebook.com/TPE.Legend

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
223 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

3
4

文字

分享

1
3
4
改良天然氣發電技術不會產生二氧化碳?灰氫、藍氫、綠氫分別是什麼?
PanSci_96
・2024/02/11 ・5659字 ・閱讀時間約 11 分鐘

用天然氣發電可以完全沒有二氧化碳排放?這怎麼可能?

2023 年 11 月,台電和中研院共同發表去碳燃氫技術,說是經過處理的天然氣,燃燒後可以不產生二氧化碳。

誒,減碳方式百百種,就是這個聽起來最怪。但仔細研究後,好像還真有這麼一回事。這種能發電,又不產二氧化碳的巫術到底是什麼?大量使用天然氣後,又有哪些隱憂是我們可能沒注意到的?

去碳燃氫是什麼?

去碳燃氫,指的是改良現有的天然氣發電方式,將甲烷天然氣的碳去除,只留下乾淨的氫氣作為燃燒燃料。在介紹去碳燃氫之前,我們想先針對我們的主角天然氣問一個問題。

最近不論台灣、美國或是許多國家,都提升了天然氣發電的比例,但天然氣發電真的有比較好嗎?

好像還真的有。

根據聯合國底下的政府間氣候變化專門委員會 IPCC 的計算報告,若使用火力發電主要使用的煙煤與亞煙煤作為燃料,並以燃燒率百分之百來計算,燃料每釋放一兆焦耳的能量,就會分別產生 94600 公斤和 96100 公斤的二氧化碳排放。

如果將燃料換成天然氣,則大約會產生 56100 公斤的二氧化碳,大約只有燃燒煤炭的六成。這是因為天然氣在化學反應中,不只有碳元素會提供能量,氫元素也會氧化成水並放出能量。

圖/pexels

除了碳排較低以外,煤炭這類固體燃料往往含有更多雜質,燃燒時又容易產生更多的懸浮顆粒例如 PM 2.5 ,或是溫室效應的另一主力氧化亞氮(N2O)。具體來說,產生同等能量下,燃燒煤炭產生的氧化亞氮是天然氣的 150 倍。

當然,也別高興這麼早,天然氣本身也是個比二氧化碳更可怕的溫室氣體,一但洩漏問題也不小。關於這點,我們放到本集最後面再來討論。

燃燒天然氣還是會產生二氧化碳?

雖然比較少,但也有燃煤的六成。像是綠能一樣的零碳排發電方式,不才是我們的終極目標嗎?別擔心,為了讓產生的二氧化碳量減到最小,我們可以來改造一下甲烷。

圖/unsplash

在攝氏 700 至 1100 度的高溫下,甲烷就會和水蒸氣反應,變成一氧化碳和氫氣,稱為蒸汽甲烷重組技術。目前全球的氫氣有 9 成以上,都是用此方式製造的,也就是所謂的「灰氫」。

而產物中的一氧化碳,還可以在銅或鐵的催化下,與水蒸氣進一步進行水煤氣反應,變成二氧化碳與氫氣。最後的產物很純,只有氫氣與二氧化碳,因此此時單獨將二氧化碳分離、封存的效率也會提升不少,也就是我們在介紹碳捕捉時介紹的「燃燒前捕捉」技術。

去碳燃氫又是什麼?

圖/pexels

即便我們能將甲烷蒸氣重組,但只要原料中含有碳,那最終還是會產生二氧化碳。那麼,我們把碳去掉不就好了?去碳燃氫,就是要在第一步把甲烷分解為碳和氫氣。這樣氫氣在發電時只會產生水蒸氣,而留下來的碳黑,也就是固態的碳,可以做為其他工業原料使用,提升附加價值。

在氫氣產業鏈中,我們習慣將氫氣的來源做顏色分類。例如前面提到蒸氣重組後得到的氫氣被稱為灰氫,而搭配碳捕捉技術的氫,則稱為藍氫。完全使用綠能得到的氫,例如搭配太陽能或風力發電,將水電解後得到最潔淨的氫,則稱為綠氫。而介於這兩者之間,利用去碳燃氫技術分解不是水而是甲烷所得到的氫,則稱為藍綠氫。

但先不管它叫什麼氫,重點是如果真的不會產生二氧化碳,那我們就確實多了一種潔淨能源可以選擇。這個將甲烷一分為二的技術,聽起來應該也不會太難吧?畢竟連五◯悟都可以一分為二了,甲烷應該也行吧。

甲烷如何去碳?

甲烷要怎麼變成乾淨的氫氣呢?

很簡單,加溫就好了。

圖/giphy

只要加溫到高過攝氏 700 度,甲烷就會開始「熱裂解」,鍵結開始被打斷,變成碳與氫氣。

等等等等…為了發電還要耗費能源搞高溫熱裂解,划算嗎?

甲烷裂解確實是一個吸熱反應,也就是需要耗費能量來拆散原本的鍵結。根據反應式,一莫耳甲烷要吸收 74 千焦耳的熱量,才會裂解為一莫耳的碳和兩莫耳的氫氣。但是兩莫耳的氫氣燃燒後,會產生 482 千焦耳的熱量。淨能量產出是 408 焦耳。與此相對,直接燃燒甲烷產生的熱量是 891 千焦耳。

而根據現實環境與設備的情況,中研院與台電推估一公噸的天然氣直接燃燒發電,與先去碳再燃氫的方式相比,發電量分別為 7700 度和 4272 度。雖然因為不燃燒碳,發電量下降了,但也省下了燃燒後捕存的成本。

要怎麼幫甲烷去碳呢?

在近二十幾年內,科學家嘗試使用各種材料作為催化劑,來提升反應效率。最常見的方式,是將特定比例的合金,例如鎳鉍合金,加熱為熔融態。並讓甲烷通過液態的合金,與這些高溫的催化劑產生反應。實驗證實,鎳鉍合金可以在攝氏 1065 度的高溫下,轉化 95% 的甲烷。

中研院在 2021 年 3 月,啟動了「 Alpha 去碳計畫」,進行去碳燃氫的設備開發。但團隊發現,盡管在理論上行得通,但實際上裝置就像是個不受控的火山一樣,熔融金屬與蒸氣挾帶著碳粒形成黏稠流體,不斷從表面冒出,需要不斷暫停實驗來將岩漿撈出去。因此,即便理論上可行,但熔融合金的催化方式,還無法提供給發電機組使用。

去碳燃氫還能有突破嗎?

有趣的是,找了好一大圈,驀然回首,那人卻在燈火闌珊處。

最後大家把目光放到了就在你旁邊,你卻不知道它正在等你的那個催化劑,碳。其實過去就有研究表明碳是一種可行的催化劑。但直到 201 3年,才有韓國團隊,嘗試把碳真的拿來做為去碳燃氫的反應催化劑。

圖/pexels

他們在高溫管柱中,裝填了直徑 30 nm 的碳粒。結果發現,在 1,443 K 的高溫下,能達到幾乎 100 % 的甲烷轉化。而且碳本身就是反應的產物之一,因此整個裝置除了碳鋼容器以外,只有碳與氫參與反應,不僅成本低廉,要回收碳黑也變得容易許多。

目前這個裝置需要加緊改良的,就是當碳不斷的積蓄,碳粒顆粒變大,反應會跟著下降。如何有效清除或更換濾網與反應材料,會是能否將此設備放大至工業化規模的關鍵。

最後,我們回頭來談談,在去碳燃氫技術逐漸成熟之後,我們可能需要面對的根本問題。

天然氣是救世主,還是雙面刃?

去碳燃氫後的第一階段,還是會以天然氣為主,只混和 10 % 以下的氫氣作為發電燃料。

這是因為甲烷的燃燒速度是每秒 0.38 公尺,氫氣則為每秒 2.9 公尺,有著更劇烈的燃燒反應。因此,目前仍未有高比例氫氣的發電機組,氫氣的最高比例,通常就是 30 % 。

目前除了已成功串連,使用 10 % 氫氣的小型發電機組以外。台電預計明年完成在興達電廠,使用 5 % 氫氣的示範計畫,並逐步提升混和氫氣的比例。根據估計,光是 5 % 的氫氣,就能減少每年 7000 噸的二氧化碳排放。

但隨著天然氣的使用量逐步提高,我們也應該同時留意另一個問題。

天然氣洩漏導致的溫室效應,是不可忽視的!

根據 IPCC 2021 年的報告,若以 20 年為評估,甲烷產生的溫室效應效果是二氧化碳的 82.5 倍,以 100 年為評估,效果為 29.8 倍,是僅次於二氧化碳,對於溫室效應的貢獻者第二名。這,不可不慎啊。

圖/unsplash

從石油、天然氣井的大量甲烷洩漏,加上運輸時的洩漏,如果沒有嚴格控管,我們所做的努力,很有可能就白費了。

非營利組織「環境保衛基金」曾在 2018 年發表一篇研究,發現從 2012 到 2018 年,全球的甲烷排放量增加了 60 % ,從煤炭轉天然氣帶來的好處,可能因為甲烷洩漏而下修。當然,我們必須相信,當這處漏洞被補上,它還是能作為一個可期待的發電方式。

圖/giphy

另一篇發表在《 Nature Climate Change 》的分析研究就說明,以長期來看,由煤炭轉為天然氣,確實能有效減緩溫室氣體排放。但研究也特別提醒,天然氣應作為綠能發展健全前的過渡能源,千萬別因此放慢對於其他潔淨能源的研究腳步。

去碳燃氫技術看起來如此複雜,為什麼不直接發展綠氫就好了?

確實,綠氫很香。但是,綠氫的來源是電解水,而反應裝置也不可能直接使用雜質混雜的海水,因此若要大規模發展氫能,通常需要搭配水庫或海水淡化等供水設施。另外,綠氫本來就是屬於一種儲能的形式,在台灣自己的綠能還沒有多到有剩之前,當然直接送入電網,還輪不到拿來產綠氫。

圖/unsplash

相比於綠氫,去碳燃氫針對的是降低傳統火力發電的碳排,並且只需要在現有的發電廠旁架設熱裂解設備,就可以完成改造。可以想像成是在綠能、新世代核能發展成熟前的應急策略。

當然,除了今天提到的灰氫、藍氫、綠氫。我們還有用核能產生的粉紅氫、從地底開採出來的白氫等等,都還沒介紹呢!

除了可以回去複習我們這一集的氫能大盤點之外,也可以觀看這個介紹白氫的影片,一個連比爾蓋茲都在今年宣布加碼投資的新能源。它,會是下一個能源救世主嗎?

最後,也想問問大家,你認為未來 10 年內,哪種氫能會是最有潛力的發展方向呢?

  1. 當然是綠:要押當然還是壓最乾淨的綠氫啦,自產之前先進口也行啊。
  2. 肯定投藍:搭配碳捕捉的藍氫應該會是最快成熟的氫能吧。
  3. 絕對選白:連比爾蓋茲也投資的白氫感覺很不一樣。快介紹啊!

什麼?你覺得這幾個選項的顏色好像很熟悉?別太敏感了,下好離手啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
0

文字

分享

0
7
0
賣火柴小女孩販售的「火柴」其實有毒?你所不知道的「磷」——《原子有話要說》
azothbooks_96
・2023/05/22 ・957字 ・閱讀時間約 1 分鐘

被誤認的「賢者之石」

與人體細胞、骨骼、生命活動密切相關的腺苷二磷酸(adenosine diphosphate,ADP)中的磷,是很重要的元素。磷的發現過程其實有點讓人不忍想像,古時候鍊金術師待人類尿液久置後腐臭,再加熱蒸餾提煉出磷,一開始磷被認為是為提煉黃金時所需的「賢者之石」。

圖/原子有話要說!元素週期表

我們在日常生活中使用到磷的是火柴,可是現今看到的火柴頂端的火藥裡並沒有磷,而是把磷移到火柴盒的摩擦面了。原理是摩擦火柴棒,讓火柴盒產生火花,藉此點燃火柴棒頂端的火藥,進而產生火光。

磷有很多同伴,組成成分明明只有磷,但外觀和特性卻截然不同,有紫磷、白磷、黑磷、赤磷、紅磷,或是白磷表面覆蓋紅磷的黃磷等。火柴盒上使用的是紅磷,而在西部電影中等常出現,隨時隨地都可以點燃的火柴則是黃磷。

圖/原子有話要說!元素週期表

小女孩賣的火柴裡也有磷

安徒生童話「賣火柴的小女孩」誕生於十九世紀中葉,當時火柴剛問世不久,跟現代的火柴截然不同。小女孩賣的火柴是黃磷火柴,火柴棒較長,造價也高,通常是論根賣的。黃磷或白磷是一種具有劇毒的化學品,由於工廠屢屢傳出磷中毒的事件,現在已經禁止使用。

【常溫狀態】固體 【原子量】30.973762

【熔點】44.15˚C 【沸點】280.5˚C

【密度】1.82 g/cm3

【發現】1669 年,德國煉金術師布蘭德(Henning Brand )

【語源】希臘文 phosphoros,意思是帶來光明的。

——本文摘自《原子有話要說!元素週期表》,2023 年 4 月,漫遊者文化出版,未經同意請勿轉載。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。