Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

像憤怒鳥一樣彈射的種子:豆科種子可以「炸」多遠呢?

活躍星系核_96
・2019/07/13 ・1973字 ・閱讀時間約 4 分鐘 ・SR值 520 ・七年級

作者:何郁庭│國立中興大學森林系碩士畢業,現職計畫專任助理。

一個尋常午後,窗台邊突然傳來巨響。

原先以為是鳥撞上玻璃,走近一看,才發現是前幾天隨手採下木豆 (Cajanus cajan) 的莢果,因乾燥後開裂,發出巨大的爆裂聲。兩片木質果皮分別捲曲成螺旋狀,數顆木豆種子則彈射到各處,窗台前一片狼藉。

木豆 (Cajanus cajan)。成熟開裂的莢果,圖為當事莢果。圖/作者

開裂的兩片果皮很堅韌,怎樣也沒辦法回復成打開前的樣子,這引起了我的好奇。我猜想,部分的豆科植物是不是利用莢果開裂,使種子「彈射」到更遠的地方,以利於種子在更遠的地方發芽呢?

-----廣告,請繼續往下閱讀-----

為此,我開始搜尋一些跟「豆科」以及「種子傳播」有關的報告,發現一篇來自雨林生態期刊 (Journal of Tropical Ecology)的文獻,這個研究位於西非的加彭 (Gabon),講述 Tetraberlinia moreliana 這種雨林中的喬木,如何讓光滑扁平的種子,從樹冠「彈射」到 50 公尺以外的沙地上。

T. moreliana 是豆科下甘豆亞科的大喬木,根據描述,樹高可以生長至 51 公尺,同時,它也是加彭地區雨林的「突出樹」,比週遭大多樹木來得更高,半圓形的樹冠遮住了週圍其他樹的樹冠。T. moreliana 的木質莢果生長於樹冠層並突出於樹冠,像一枝枝三角旗豎立。每個莢果內含 0-4 顆扁平盤狀的種子,而平均是 2 顆。

Tetraberlinia moreliana 莢果圖。A. 在樹上未開裂的莢果,長軸水平於地面,宛如一枝旗子豎在樹冠外層。B. 扁平盤狀的種子。C. 開裂的莢果。D. 完全乾燥後的莢果果皮。圖/Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae —
Caesalpinioideae) in Gabon.

種子可以彈射多遠呢?

研究人員嘗試觀測 T. moreliana 的種子究竟能彈射多遠,因此設計了試驗:

首先,他們定義了「水平傳播距離」,也就是彈射落底的種子,到樹冠邊緣的最近水平距離。

-----廣告,請繼續往下閱讀-----

然後,在莢果成熟的 12月至 2月期間,每日計算有多少種子彈射到預設的區域,以 50 公尺為界,由於密集的植被和起伏的地形,水平距離小於 50公尺的區域並沒有計算種子落下的數量。又因為觀測的地點是沙地地形,所以也毋須擔心種子落地後滾去很遠的地方。實驗之所以不計算所有彈射的種子,而僅僅計算 50 公尺之外的種子,其實是因為觀測地點的限制,使得研究人員無法計算所有的彈射種子數量。T. moreliana 是雨林中特別高聳的獨立樹,距離林緣 50 公尺,除了落在雨林外沙地的種子,剩下的皆會落進雨林中,而雨林有複雜的垂直結構,包含樹冠層、第二樹冠層、灌叢、地被、腐植質…等,除此之外,還有各種附生植物及藤蔓,要從雨林中找到觀測樹所有的種子,是非常困難的!

這個觀察共調查了 4 棵樹,經過 3個月的計算,研究人員記錄到最遠的彈射距離可達 61 公尺,而彈射距離取決於樹的高度。他們對其中一棵樹進行較詳細的觀察,根據莢果估算了總種子數,大約有 15,000- 20,000 顆種子,其中 1.5- 2% 的種子彈射距離超過 50 公尺。

此外,研究中也爬上樹將莢果採下,將果序插在沙地上,觀察開裂時種子彈射的角度和距離。18 顆種子中,距離最遠的可達 23.2 公尺,仰角則平均 17.3°。

Tetraberlinia moreliana彈道假設剖面圖。實線為最佳路線。圖/Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae —Caesalpinioideae) in Gabon

研究人員試圖重建種子彈射的彈道,並繪製剖面圖。而這個預測的彈道有一些前提:

-----廣告,請繼續往下閱讀-----

1. 起始點為樹冠外層
2. 沒有受到風及其他外力作用
3. 受到的空氣阻力與速度平方成正比
4. 接觸地面後便不再移動

依照以上前提而重建的軌跡,其起始點仰角為 21.2°,初始速度為 37.1公尺/秒,比前人研究沙盒樹 ( Hura crepitans) 彈射的起始速度 70 公尺/秒還要低得多。沙盒樹是大戟科的植物,彈射距離最遠紀錄是 41 公尺。

 

與沙盒樹同屬 Hura polyandra 果實爆開的畫面。(這邊是用暴力砸開)

生活中其他靠彈力傳播的種子與問題發想

毛毛蟲以會即將爆開的果實為食,會發生什麼事呢?

-----廣告,請繼續往下閱讀-----

回想我們生活中常見的彈力傳播種子,不外乎兒時共同回憶的非洲鳳仙花、紫花酢漿草,除此之外,還有蕨類的孢子囊,彈射距離不外乎數十公分,然而 T. moreliana 卻能將種子傳遞到數十公尺之外,飛越其他樹木直至雨林的邊緣。

不過,有趣的是,若這是一個有效的傳播方式,又為什麼彈射距離超過 50 公尺的比例僅僅 2%呢?這個問題,並沒有在報告中得到明確解答。

再看看木豆,儘管原先的疑惑得到解答,卻隨之而來出現更多問題。木豆並非雨林中的突出樹,而是高 1- 2公尺的灌木,彈射的種子傳播策略,在原生育地有怎樣的優勢?此外,木豆的種子又能彈射多遠、速度多快?是否有方向性?這些問題,也許得自己設計實驗才能獲得解答了。

參考資料:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
豆科植物如何保持不多不少的根瘤?
葉綠舒
・2014/10/29 ・1031字 ・閱讀時間約 2 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

豆科(legume)植物能在缺乏氮素的土壤中生長,完全是依靠著他們能與根瘤菌(rhizobia)共生的本事;而人們也很早就發現,把豆科植物納入輪作系統,可以使土地保持肥沃。

中國在漢朝時已發展出精緻的三年輪作系統,由夏季種黍開始,接著是小麥,第二年春天收穫小麥後種下大豆,然後到第三年夏天種小米。如此循環三年,同時將土地分成三份,第一年夏天第一塊地種黍、第二塊地種小米、第三塊地種大豆….這樣田地的養分會因為有大豆加入輪作而不至於缺氮,而每年都可以有小米、黍、大豆、小麥可吃。 歐洲直到一千年後才發展出輪作,但是複雜的程度則遠遠不及漢朝。

對於豆科植物來說,雖然根瘤菌可以使他們得以在缺氮的土地上繁衍,但如果根瘤長太多,對植物本身也會造成負擔。所以,植物一定要有個方法來調節根瘤生長的量。

NitrogenFixingNodulesOnClover
根瘤。圖片來源:wiki

-----廣告,請繼續往下閱讀-----

過去透過研究長太多根瘤的植物發現,在百脈根(Lotus japonicus,為豆科的模式植物)裡面有個類受體激酶(receptor-like kinase)HAR1,它負責接收來自根的信息。當根與根瘤菌建立共生關係之後,由根部分泌出CLE-RS1與CLE-RS2(RS是「根的信號」Root Signal的意思)兩個多肽並經由導管傳送到植物的莖與葉(shoot);在莖與葉,由HAR1負責接收這兩個信號之後,然後莖與葉的細胞分泌一個化學物質來抑制更多的根瘤形成。

最近的研究發現,原來這個由莖與葉負責分泌的化學物質,應該就是細胞分裂素(cytokinin)。研究團隊發現,缺少HAR1的植物,只有細胞分裂素的分泌量顯著下降,而在過度表現CLE-RS1與CLE-RS2的植物中,細胞分裂素反而上昇;接下來更有意思的是,當植物被根瘤菌感染時,細胞分裂素也呈現上昇的趨勢。

於是研究團隊把缺少HAR1的植物用細胞分裂素處理,結果發現,原本缺少HAR1的植物會有非常多的根瘤,但是在使用細胞分裂素處理後,它的根瘤的數目甚至可以回到野生種的水平。

所以,豆科植物透過分泌細胞分裂素來抑制根瘤的產生;而細胞分裂素的分泌則有賴於HAR1的活化,而CLE-RS1與CLE-RS2(由根部分泌)可以活化HAR1。可以看到,植物透過層層嚴密的負回饋控制(negative feedback control)來調節根瘤產生的數目,使自己取得平衡,不至於因為產生太少根瘤造成氮不足,但也不會因為產生過多根瘤,使得養分分配錯置,影響生長。

-----廣告,請繼續往下閱讀-----

參考文獻:

  • T.R. Sinclair,C.J. Sinclair. (2010) Bread, Beer and the Seeds of Change:Agriculture’s Imprint on World History. ISBN:9781845937058
  • Takema Sasaki, Takuya Suzaki, Takashi Soyano, Mikiko Kojima, Hitoshi Sakakibara & Masayoshi Kawaguchi. (2014) Shoot-derived cytokinins systemically regulate root nodulation. Nature Communications 5, Article number: 4983 doi:10.1038/ncomms5983

原刊載於作者部落格老葉的植物王國

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
像憤怒鳥一樣彈射的種子:豆科種子可以「炸」多遠呢?
活躍星系核_96
・2019/07/13 ・1973字 ・閱讀時間約 4 分鐘 ・SR值 520 ・七年級

-----廣告,請繼續往下閱讀-----

作者:何郁庭│國立中興大學森林系碩士畢業,現職計畫專任助理。

一個尋常午後,窗台邊突然傳來巨響。

原先以為是鳥撞上玻璃,走近一看,才發現是前幾天隨手採下木豆 (Cajanus cajan) 的莢果,因乾燥後開裂,發出巨大的爆裂聲。兩片木質果皮分別捲曲成螺旋狀,數顆木豆種子則彈射到各處,窗台前一片狼藉。

木豆 (Cajanus cajan)。成熟開裂的莢果,圖為當事莢果。圖/作者

-----廣告,請繼續往下閱讀-----

開裂的兩片果皮很堅韌,怎樣也沒辦法回復成打開前的樣子,這引起了我的好奇。我猜想,部分的豆科植物是不是利用莢果開裂,使種子「彈射」到更遠的地方,以利於種子在更遠的地方發芽呢?

為此,我開始搜尋一些跟「豆科」以及「種子傳播」有關的報告,發現一篇來自雨林生態期刊 (Journal of Tropical Ecology)的文獻,這個研究位於西非的加彭 (Gabon),講述 Tetraberlinia moreliana 這種雨林中的喬木,如何讓光滑扁平的種子,從樹冠「彈射」到 50 公尺以外的沙地上。

T. moreliana 是豆科下甘豆亞科的大喬木,根據描述,樹高可以生長至 51 公尺,同時,它也是加彭地區雨林的「突出樹」,比週遭大多樹木來得更高,半圓形的樹冠遮住了週圍其他樹的樹冠。T. moreliana 的木質莢果生長於樹冠層並突出於樹冠,像一枝枝三角旗豎立。每個莢果內含 0-4 顆扁平盤狀的種子,而平均是 2 顆。

Tetraberlinia moreliana 莢果圖。A. 在樹上未開裂的莢果,長軸水平於地面,宛如一枝旗子豎在樹冠外層。B. 扁平盤狀的種子。C. 開裂的莢果。D. 完全乾燥後的莢果果皮。圖/Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae —
Caesalpinioideae) in Gabon.

-----廣告,請繼續往下閱讀-----

種子可以彈射多遠呢?

研究人員嘗試觀測 T. moreliana 的種子究竟能彈射多遠,因此設計了試驗:

首先,他們定義了「水平傳播距離」,也就是彈射落底的種子,到樹冠邊緣的最近水平距離。

然後,在莢果成熟的 12月至 2月期間,每日計算有多少種子彈射到預設的區域,以 50 公尺為界,由於密集的植被和起伏的地形,水平距離小於 50公尺的區域並沒有計算種子落下的數量。又因為觀測的地點是沙地地形,所以也毋須擔心種子落地後滾去很遠的地方。實驗之所以不計算所有彈射的種子,而僅僅計算 50 公尺之外的種子,其實是因為觀測地點的限制,使得研究人員無法計算所有的彈射種子數量。T. moreliana 是雨林中特別高聳的獨立樹,距離林緣 50 公尺,除了落在雨林外沙地的種子,剩下的皆會落進雨林中,而雨林有複雜的垂直結構,包含樹冠層、第二樹冠層、灌叢、地被、腐植質…等,除此之外,還有各種附生植物及藤蔓,要從雨林中找到觀測樹所有的種子,是非常困難的!

這個觀察共調查了 4 棵樹,經過 3個月的計算,研究人員記錄到最遠的彈射距離可達 61 公尺,而彈射距離取決於樹的高度。他們對其中一棵樹進行較詳細的觀察,根據莢果估算了總種子數,大約有 15,000- 20,000 顆種子,其中 1.5- 2% 的種子彈射距離超過 50 公尺。

-----廣告,請繼續往下閱讀-----

此外,研究中也爬上樹將莢果採下,將果序插在沙地上,觀察開裂時種子彈射的角度和距離。18 顆種子中,距離最遠的可達 23.2 公尺,仰角則平均 17.3°。

Tetraberlinia moreliana彈道假設剖面圖。實線為最佳路線。圖/Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae —Caesalpinioideae) in Gabon

研究人員試圖重建種子彈射的彈道,並繪製剖面圖。而這個預測的彈道有一些前提:

1. 起始點為樹冠外層
2. 沒有受到風及其他外力作用
3. 受到的空氣阻力與速度平方成正比
4. 接觸地面後便不再移動

-----廣告,請繼續往下閱讀-----

依照以上前提而重建的軌跡,其起始點仰角為 21.2°,初始速度為 37.1公尺/秒,比前人研究沙盒樹 ( Hura crepitans) 彈射的起始速度 70 公尺/秒還要低得多。沙盒樹是大戟科的植物,彈射距離最遠紀錄是 41 公尺。

 

與沙盒樹同屬 Hura polyandra 果實爆開的畫面。(這邊是用暴力砸開)

生活中其他靠彈力傳播的種子與問題發想

毛毛蟲以會即將爆開的果實為食,會發生什麼事呢?

回想我們生活中常見的彈力傳播種子,不外乎兒時共同回憶的非洲鳳仙花、紫花酢漿草,除此之外,還有蕨類的孢子囊,彈射距離不外乎數十公分,然而 T. moreliana 卻能將種子傳遞到數十公尺之外,飛越其他樹木直至雨林的邊緣。

-----廣告,請繼續往下閱讀-----

不過,有趣的是,若這是一個有效的傳播方式,又為什麼彈射距離超過 50 公尺的比例僅僅 2%呢?這個問題,並沒有在報告中得到明確解答。

再看看木豆,儘管原先的疑惑得到解答,卻隨之而來出現更多問題。木豆並非雨林中的突出樹,而是高 1- 2公尺的灌木,彈射的種子傳播策略,在原生育地有怎樣的優勢?此外,木豆的種子又能彈射多遠、速度多快?是否有方向性?這些問題,也許得自己設計實驗才能獲得解答了。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

4

0
0

文字

分享

4
0
0
吃果子的魚孕育了遙遠的叢林
陸子鈞
・2011/03/24 ・745字 ・閱讀時間約 1 分鐘 ・SR值 483 ・五年級

新的研究指出,亞馬遜的大蓋巨脂鯉(Colossoma macropomum)能帶著植物的種子,橫越超過五公里外的氾濫平原。

大蓋巨脂鯉(Colossoma macropomum)可能是亞馬遜地區植物種子主要的傳播媒介。

過去以來,雖然科學家預期魚在植物種子的傳播上扮演重要的角色,但對於種子的發芽率及傳播距離,卻缺少實際證據。

杜克大學的演化生態學家Jill Anderson,和她的團隊在祕魯的國家保護區裡發現,大蓋巨脂鯉腸道內有數以百計的種子。然而,這種魚能帶著種子多遠的距離,以及種子是否能在新地點發芽都是未知。

-----廣告,請繼續往下閱讀-----

為了要找到答案,Anderson和她的團隊利用無線電,在河水會氾濫的季節,追蹤24隻大蓋巨脂鯉的位置,結果發現魚移動5.9公里遠。配合在實驗室中,種子能在魚腸道內存活多久的資料,推測大蓋巨脂鯉平均移動337~55英尺,而且種子能被帶到5.5公里之外。

這是食果動物傳播種子最遠的紀錄,與非洲犀鳥及亞洲象不相上下。

更重要的關鍵是,這些分布在氾濫平原的種子,偏好在這樣的環境發芽,而非在像是湖泊這樣不流動的水域中。

美國加州的生態學家Michael Horn認為,過去我們都低估了魚對種子傳播的貢獻,即使科學家們都認為魚在生態系中扮演潛在的重要角色;熱帶非洲、北美及歐洲,都有魚攜帶種子傳播的例子。然而,我們對於細節卻都不清楚,其中一個原因是,和魚相比,鳥類及陸上哺乳類傳播種子的行為較容易研究。

-----廣告,請繼續往下閱讀-----

即使Anderson的研究指出大蓋巨脂鯉在種子傳播扮演重要的角色,但她認為大蓋巨脂鯉對生態的貢獻仍被低估了。因為她預期,更大的魚能將種子帶到更遠的地方,但這項研究所追蹤的個體,體型並不是最大的。在過去的紀錄中,大蓋巨脂鯉能長到30公斤重。

此外,這項研究也指出另一項隱憂,亞馬遜地區的過度漁撈,對生態的衝擊可能遠超過我們的想像。

資料來源:Fruit-feasting fish fertilize faraway forests

-----廣告,請繼續往下閱讀-----
所有討論 4
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

0
0

文字

分享

0
0
0
像憤怒鳥一樣彈射的種子:豆科種子可以「炸」多遠呢?
活躍星系核_96
・2019/07/13 ・1973字 ・閱讀時間約 4 分鐘 ・SR值 520 ・七年級

作者:何郁庭│國立中興大學森林系碩士畢業,現職計畫專任助理。

一個尋常午後,窗台邊突然傳來巨響。

原先以為是鳥撞上玻璃,走近一看,才發現是前幾天隨手採下木豆 (Cajanus cajan) 的莢果,因乾燥後開裂,發出巨大的爆裂聲。兩片木質果皮分別捲曲成螺旋狀,數顆木豆種子則彈射到各處,窗台前一片狼藉。

木豆 (Cajanus cajan)。成熟開裂的莢果,圖為當事莢果。圖/作者

-----廣告,請繼續往下閱讀-----

開裂的兩片果皮很堅韌,怎樣也沒辦法回復成打開前的樣子,這引起了我的好奇。我猜想,部分的豆科植物是不是利用莢果開裂,使種子「彈射」到更遠的地方,以利於種子在更遠的地方發芽呢?

為此,我開始搜尋一些跟「豆科」以及「種子傳播」有關的報告,發現一篇來自雨林生態期刊 (Journal of Tropical Ecology)的文獻,這個研究位於西非的加彭 (Gabon),講述 Tetraberlinia moreliana 這種雨林中的喬木,如何讓光滑扁平的種子,從樹冠「彈射」到 50 公尺以外的沙地上。

T. moreliana 是豆科下甘豆亞科的大喬木,根據描述,樹高可以生長至 51 公尺,同時,它也是加彭地區雨林的「突出樹」,比週遭大多樹木來得更高,半圓形的樹冠遮住了週圍其他樹的樹冠。T. moreliana 的木質莢果生長於樹冠層並突出於樹冠,像一枝枝三角旗豎立。每個莢果內含 0-4 顆扁平盤狀的種子,而平均是 2 顆。

Tetraberlinia moreliana 莢果圖。A. 在樹上未開裂的莢果,長軸水平於地面,宛如一枝旗子豎在樹冠外層。B. 扁平盤狀的種子。C. 開裂的莢果。D. 完全乾燥後的莢果果皮。圖/Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae —
Caesalpinioideae) in Gabon.

-----廣告,請繼續往下閱讀-----

種子可以彈射多遠呢?

研究人員嘗試觀測 T. moreliana 的種子究竟能彈射多遠,因此設計了試驗:

首先,他們定義了「水平傳播距離」,也就是彈射落底的種子,到樹冠邊緣的最近水平距離。

然後,在莢果成熟的 12月至 2月期間,每日計算有多少種子彈射到預設的區域,以 50 公尺為界,由於密集的植被和起伏的地形,水平距離小於 50公尺的區域並沒有計算種子落下的數量。又因為觀測的地點是沙地地形,所以也毋須擔心種子落地後滾去很遠的地方。實驗之所以不計算所有彈射的種子,而僅僅計算 50 公尺之外的種子,其實是因為觀測地點的限制,使得研究人員無法計算所有的彈射種子數量。T. moreliana 是雨林中特別高聳的獨立樹,距離林緣 50 公尺,除了落在雨林外沙地的種子,剩下的皆會落進雨林中,而雨林有複雜的垂直結構,包含樹冠層、第二樹冠層、灌叢、地被、腐植質…等,除此之外,還有各種附生植物及藤蔓,要從雨林中找到觀測樹所有的種子,是非常困難的!

這個觀察共調查了 4 棵樹,經過 3個月的計算,研究人員記錄到最遠的彈射距離可達 61 公尺,而彈射距離取決於樹的高度。他們對其中一棵樹進行較詳細的觀察,根據莢果估算了總種子數,大約有 15,000- 20,000 顆種子,其中 1.5- 2% 的種子彈射距離超過 50 公尺。

-----廣告,請繼續往下閱讀-----

此外,研究中也爬上樹將莢果採下,將果序插在沙地上,觀察開裂時種子彈射的角度和距離。18 顆種子中,距離最遠的可達 23.2 公尺,仰角則平均 17.3°。

Tetraberlinia moreliana彈道假設剖面圖。實線為最佳路線。圖/Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae —Caesalpinioideae) in Gabon

研究人員試圖重建種子彈射的彈道,並繪製剖面圖。而這個預測的彈道有一些前提:

1. 起始點為樹冠外層
2. 沒有受到風及其他外力作用
3. 受到的空氣阻力與速度平方成正比
4. 接觸地面後便不再移動

-----廣告,請繼續往下閱讀-----

依照以上前提而重建的軌跡,其起始點仰角為 21.2°,初始速度為 37.1公尺/秒,比前人研究沙盒樹 ( Hura crepitans) 彈射的起始速度 70 公尺/秒還要低得多。沙盒樹是大戟科的植物,彈射距離最遠紀錄是 41 公尺。

 

與沙盒樹同屬 Hura polyandra 果實爆開的畫面。(這邊是用暴力砸開)

生活中其他靠彈力傳播的種子與問題發想

毛毛蟲以會即將爆開的果實為食,會發生什麼事呢?

回想我們生活中常見的彈力傳播種子,不外乎兒時共同回憶的非洲鳳仙花、紫花酢漿草,除此之外,還有蕨類的孢子囊,彈射距離不外乎數十公分,然而 T. moreliana 卻能將種子傳遞到數十公尺之外,飛越其他樹木直至雨林的邊緣。

-----廣告,請繼續往下閱讀-----

不過,有趣的是,若這是一個有效的傳播方式,又為什麼彈射距離超過 50 公尺的比例僅僅 2%呢?這個問題,並沒有在報告中得到明確解答。

再看看木豆,儘管原先的疑惑得到解答,卻隨之而來出現更多問題。木豆並非雨林中的突出樹,而是高 1- 2公尺的灌木,彈射的種子傳播策略,在原生育地有怎樣的優勢?此外,木豆的種子又能彈射多遠、速度多快?是否有方向性?這些問題,也許得自己設計實驗才能獲得解答了。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia