Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

尼莫的房事-從出生搖籃到生命的搖籃

大海子
・2012/05/11 ・891字 ・閱讀時間約 1 分鐘 ・SR值 473 ・五年級

-----廣告,請繼續往下閱讀-----

小丑魚與海葵有著密不可分的共生關係
小丑魚與海葵有著密不可分的共生關係

小丑魚與海葵共生是眾所週知的事實,然而那是小丑魚的父母而不是小丑魚寶寶,在海底總動員電影中,尼莫的產房並不在海葵當中,卻是在大海葵下的一個岩洞之內,難道說小丑魚寶寶就不需要海葵的保護嗎?

關鍵問題在於是海葵的觸手是有毒的,而且毒性對魚特別有效,遇到侵犯者會射出毒針,將其麻醉之後,再用觸手將牠拖入口中,大唁美食一番。成體的小丑魚身體有保護的黏液,因而不會受到海葵的攻擊,反而遇到天敵可以躲入海葵觸手林當中獲得保護;而小丑魚也會驅逐攻擊海葵的其他魚類,清除小海葵身上的異物,讓海葵屋保持健康,稱得上是一位好管家。但是小丑魚並非一出生就可以大喇喇地住進海葵屋,因為剛孵化的小丑魚寶寶是光溜溜的,全身上下都沒有任何保護魚鱗,要等到魚鱗長出來之後,才有機會搬進海葵屋之中;若是在此之前還要強硬進駐海葵屋的話,那就會受到海葵無情的毒針攻擊,嚴重的話,甚至會死於非命,反而成為海葵的美味大餐。

即將孵化的小丑魚身體潔淨透明沒有魚鱗(圖片取自http://www.ird.fr/peches-et-pecheurs-du-sud)
即將孵化的小丑魚身體潔淨透明沒有魚鱗(圖片取自http://www.ird.fr/peches-et-pecheurs-du-sud)

因此當尼莫剛出生的時候,就算不被人類抓走,也是有「屋」歸不得,也不能與父母同住一房,只能在外隨水波四處漂流直到全身魚鱗都長完全了(除了體型較小之外),其體色體態都與成體相差無幾,才能開始找尋自己喜好的海葵屋。但並不是和海葵房東初次見面一見鍾情,就可以搬進去住,在此之前還要接受海葵無情毒針的鞭打;開始之初小丑魚先是慢慢地接近海葵,一旦受到攻擊之後趕快閃得遠遠的。如此來來回回幾次之後,直到小丑魚身體適應了,開始有了保護身體的黏液,房東海葵漸漸地習慣了小丑魚的存在,釋出善意不再攻擊小丑魚了,此時小丑魚才會大大方方地搬進海葵屋,與海葵一起過著幸福快樂的日子。

如何讓小丑魚接近海葵

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
大海子
53 篇文章 ・ 3 位粉絲
希望以人文關懷的觀點,將海洋生物世界中的驚奇與奧妙, 透過多媒體的設計與展現,分享個人心得給社會大眾, 期望能引起更多人關心海洋的公共議題, 為保護海洋略盡一份心力。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

0
4

文字

分享

1
0
4
成體幼體大不同:為什麼哺乳類的幼崽這麼「萌」?——《生物轉大人的種種不可思議》
商周出版_96
・2023/11/20 ・1765字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

無法分辨成體和幼體的生物

小孩與大人不一樣。但是有些生物的幼體形態與成體型態相同。

舉例來說,鱷魚的幼體與成體幾乎長得一模一樣,剛破蛋而出的鱷魚寶寶已經具有完整的鱷魚外形,出生後逐年長大,巨大的鱷魚可以長達好幾公尺。不過鱷魚的成長速度在不同環境和溫度下不盡相同,光從大小無法判斷年紀,只看外形也無法分辨是成體或幼體。有些生物的成體和幼體的形態則相差甚遠,好比蝴蝶和蛙類;也有些生物的成體和幼體沒有太大區別,如同鱷魚。

這兩類生物的差別是什麼?

海葵就是幼體和成體相差很多的生物。海葵幼體是一種很像水母的生物,叫做「浮浪幼蟲」 。浮浪幼蟲在海中自由自在漂游,找到喜歡的岩石區時就會落腳,落腳後就不再移動,附著在岩石上長成海葵。移動是海葵幼體的重要任務,長大後的海葵則是肩負產卵留下子代的使命。

-----廣告,請繼續往下閱讀-----

蛙類和蝴蝶的成體與幼體形態也各不相同,不過任務分配上與海葵不同,負責移動的是成體不是幼體。
由此可見,如果一個生物的幼體與成體各有不同任務,彼此的形態就不會相同,而沒有區分任務的生物就具有相同形態。

人類的大人與小孩 

我們人類又是什麼情況呢? 

人類不會因為長大而生出翅膀或尾巴消失。人類的大人和小孩的外型非常相似,但並非完全相同的個體。舉例來說,嬰兒在我們眼中看起來就很可愛。

小孩子可愛的祕密在於他們的寬額頭。嬰兒的眼睛和鼻子集中在臉的下半部,額頭顯得很寬闊,寬額頭會使得整張臉看起來就惹人憐愛。而且嬰兒頭大、四肢短,整體感覺圓滾滾的,帶有人類大人不具備的「可愛感」。假如出現了一個比成年人更巨大的嬰孩,所有人應該還是能夠辨識出他是個嬰兒。人類不像鱷魚,我們不會分辨不出來誰是大人、誰是小孩。 

-----廣告,請繼續往下閱讀-----

人類的大人和小孩具有不同的外型。除了人類,貓狗的寶寶也長得很可愛,即便是凶猛的獅子與灰狼,牠們的幼崽看起來還是很討喜。哺乳類動物的一大特徵,就是「幼體很可愛」。

哺乳類動物的一大特徵,就是「幼體很可愛」。圖/pexels

嬰兒為什麼可愛?

哺乳類動物的嬰兒擁有可愛的外型。

人類出生後先是嬰兒,嬰兒長大是兒童,童年時期的人類依然保有他們的可愛,但是在長大的過程中卻會漸漸失去這種特質。

蛙類的成體和幼體雖然具有不同形態,但是蝌蚪並不是很可愛;蝴蝶小時候是毛毛蟲,反而比較多人覺得毛毛蟲噁心,只有少數人認為牠們可愛。 

-----廣告,請繼續往下閱讀-----

既然如此,哺乳類動物的嬰兒為什麼會可愛?

原因就在於,嬰孩需要大人的保護。哺乳類動物具有育幼行為,牠們的子代需要親代的養育。小孩的可愛外形是為了獲得大人的保護。烏龜以堅硬的龜殼防身,毛毛蟲透過毒毛保護自己,而哺乳類動物的嬰兒則是把「可愛」當護身符。 

嬰兒的寬額頭惹人憐愛。圖/pexels

嬰兒的額頭很寬。為什麼額頭寬看起來就比較討人喜歡呢?因為大人的腦袋裡內建了寬額頭等於可愛的程式。 證據就是只要額頭寬,不管是不是嬰兒看起來都很萌。不過額頭寬並不是為了可愛。

如果說紅燈是「停止」的信號,寬額頭就代表「不可以攻擊」與「要保護他」的信號。

-----廣告,請繼續往下閱讀-----

對於哺乳類動物來說,大人要保護小孩,小孩要被大人保護。大人與小孩的外型相似卻又不盡相同,因為他們肩負不一樣的任務。這樣說來,小孩的任務是什麼呢?小孩的任務很明確,就是「長大」。一個人要有健全的童年,才能成為健全的大人,這就是小孩的任務。

不過近年來人類的大人和小孩越來越難區別了。 總覺得不像小孩的小大人一直在增加,長不大的巨嬰也很多。

——本文摘自《生物轉大人的種種不可思議:每一種生命的成長都有理由,都值得我們學習》,2023 年 8 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

2

8
2

文字

分享

2
8
2
海神草堪稱「藍碳製造機」!——海草與細菌的共生,如何幫地球固碳?
陳宜龍_96
・2021/12/03 ・2703字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

聯合國氣候峰會 COP26 剛剛落幕,過程中各國代表持續協商,冀望能達成共識,為降低溫室氣體排放、降低全球氣候變遷風險而努力。除了減少二氧化碳等溫室氣體排放的「減排」措施外,如何增加碳封存的「增匯」機制,也為人所關注。尤其是保護及利用各類天然生態系良好運作,更是諸多方案的首選,因為這些區域不但是野生生物棲息地、生物多樣性的熱點,更是天然碳匯所在。

光合自營作用,能將二氧化碳轉化並固定於生物體中,達到固碳效應,並有機會長期封存。在海洋生態系中,這就是所謂的「藍碳」。沿岸環境裏,藍碳主要供獻來自於紅樹林、珊瑚礁及海草床三大生態系。然而單純提供二氧化碳不足以趨動光合作用,植物生長還需要其它營養物質,例如磷酸鹽及硝酸鹽氮。

近期《自然》(Nature)期刊的研究報告指出,單位面積儲碳量高於陸地森林的海草床,其植株根部的內共生固氮細菌對於海草儲碳的效果功不可沒[1]

被譽為「地中海之肺」的海神草。具備固碳能力強大且長壽的特質。圖/維基百科

海草的固氮能力在「根系」

許多海草生長旺盛的區域,幾乎量測不到含氮營養鹽。過往研究學者都以為海草是從周圍海水及沉積物中吸收其它微生物固氮後的產物。沒想到,來自地中海的海神草(Posidonia oceanica,又譯為大洋海神草)獲取氮源的策略,居然相仿於陸地上豆科植物與根瘤菌間互利共生的夥伴關係。一樣都具備固氮能力,且來自根系內部特定的共生細菌。

-----廣告,請繼續往下閱讀-----

這篇研究[1]從巨觀到微觀,進行多維空間尺度分析;利用不同時間尺度的資訊來闡述過程機制;並採取次世代及三代定序的優勢解晰細菌群落消長,並從總體基因體、比較基因體及轉錄體分析指徵功能基因的變化。多樣化研究手段的結果都支持作者的觀點。

從單一植株根系添加穩定氮同位素的實驗發現,海神草固氮能力在根系,且在 24 小時內,就有高達 20% 的氮從根系轉移到葉片;再者,該植物最高的固氮速率來自夏季植株,此時環境中的無機氮濃度較其它季節低,甚至低於偵測極限。

與細菌的共生,讓海神草可旺盛固氮!

菌相分析的結果顯示,植株部位與周圍沉積物的細菌群落組成不同;有明顯固氮能力時的根系又異於沒固氮時期者,且迥異於與沒此功能的葉部組織。屬於伽瑪變型菌的 Celerinatantimonas 是造成差異最主要分類群。

從 16S 核醣核酸序列相似程度來區分,與此分類群最近似的物種是分離自鹽澤植物根部、具固氮能力的細菌 Celerinatantimonas diazotrophica。因此,作者命名該新種細菌為 Candidatus Celerinatantimonas neptuna (Ca. C. neptuna)。

-----廣告,請繼續往下閱讀-----

作者進一步利用螢光原位雜交法(fluorescence in situ hybridization)這項顯微技術,發現夏季時,海神草根部內的細菌細胞數量,高達 80% 都是 Ca. C. neptuna,並且分布於根部細胞間隙及細胞內部。再搭配 nanoSIMS 這種影像質譜儀對每個樣本的氮同位素比值進行奈米尺度解析。

結果發現,先前穩定氮同位素添加實驗時的同位素訊號,就出現在這新種細菌的細胞內,強烈暗示在夏季時分,海神草旺盛的固氮作用,就是靠這種細菌幫的忙。

Ca. C. neptuna的基因體圖譜。海神草旺盛的固碳作用,得利於共生的固氮細菌Ca. C. neptuna 。圖/Nature

海神草提供「糖」,讓根部細菌頭好壯壯!

除了前面提到生理測試支持「固氮作用由海神草根部共生細菌完成」的論點外,該研究進一步提供基因體及轉錄體的證據。

作者從海神草根部總體基因體序列組裝出 Ca. C. neptuna 的基因體(metagenomic-assembled genome),並在基因註解後發現,該細菌具備固氮作用必要的基因,而且這些基因在海神草顯著固氮時期也有較高的轉錄作用。

-----廣告,請繼續往下閱讀-----

與此同時, 海神草可能提供蔗糖給這類細菌作為碳源及能量所需,因為較高的轉錄作用也反應在細菌的胞外蔗糖分解、糖類運輸蛋白及涉及糖解作用等特定的功能基因。

除了以上直接涉及氮、碳循環外,作者在該細菌基因體及轉錄體中也發現許多與兼性內共生(facultative endophytic symbiont)有關的指標基因。

這些參考指標是基於前人研究陸生植物與內共生細菌的夥伴關係而來。例如:涉及運動及固著的基因(flaAflp)、群體感知(quorum-sensing)調節有關的基因(luxR)、去除過氧化物毒害作用的基因(dps,ahpC/F)。這些基因是跨物種間建立互利關係的指標因子。

Ca. C. neptuna 的共生關係中,海神草可能提供蔗糖作為其碳源及能量所需。圖/Nature

海神草的共生固氮菌是如何獲得?這篇文章並沒有進行相關實驗。從演化觀點來看,海草約在一億年前由陸域開花植物遷移到海洋環境。長期適應、演化的結果,其陸域型根部菌相被海洋微生物所取代。

-----廣告,請繼續往下閱讀-----

從細菌的親緣樹推測,Ca. C. neptuna 的祖先可能來自海岸環境,在缺乏含氮營養鹽下獲得固氮的能力,並與海洋開花植物形成緊密的共生關係。

近期還有一篇文章同樣探討海洋缺氧區域的固氮作用。研究人員的數學模式指出:固氮作用也可發生在海洋的無光區(aphotic ocean),在浮游生物活體和死亡殘體所聚合的顆粒之中,也就是所謂的海洋雪(marine snow particles),其內部的缺氧區2。透過這兩項研究,顯示海洋氮元素循環還有很多值得探究的秘密。

  1. Mohr, W., Lehnen, N., Ahmerkamp, S. et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature (2021). https://doi.org/10.1038/s41586-021-04063-4
  2. Chakraborty, S., Andersen, K.H., Visser, A.W. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat Commun 12, 4085 (2021). https://doi.org/10.1038/s41467-021-23875-6

與此研究題材相關或具特定技術的部分台灣團隊:

  1. 海草床研究:中興大學生命科學系林幸助老師
  2. 運用螢光原位雜交法技術於微生物樣本:
    成功大學環境工程系:吳哲宏老師
    中央研究院生物多樣性研究中心:湯森林老師
  3. nanoSIMS 平台:中央研院院「奈米級二次離子質譜儀實驗室
  4. 總體基因體序列組裝及分析:台北醫學大學醫學資訊研究所吳育瑋老師

-----廣告,請繼續往下閱讀-----
所有討論 2