0

0
0

文字

分享

0
0
0

超越抗污:主動擺脫的新織物塗佈

only-perception
・2012/05/04 ・557字 ・閱讀時間約 1 分鐘 ・SR值 567 ・九年級

-----廣告,請繼續往下閱讀-----

科學家報告他們研發並成功測試一種織品塗佈,那將賦予「抗污(stain-resistant)」這個片語新意 — 這種塗佈在擺脫油脂、污垢、強酸與其它污穢黏滑的東西上將扮演一種主動的角色。證明這種塗佈甚至比汽車臘或鐵弗龍更具疏水性(water-repellent)的報告,出現在 ACS 的 Langmuir 期刊中。
Tong Lin 等人解釋,有種稱為「逐層自我組裝(layer-by-layer (LbL) self-assembly)」的方法能為感應器、藥物遞送裝置以及其他眾多產品製造薄膜與塗佈。LbL 交替放下層層帶正電與帶負電的材料,因電荷而黏附在一起。利用這種方法,藉由選擇每一層的組成,為特定應用客製塗佈。缺點:這些多層薄膜並不是很穩定,最終會分離。Lin 與同僚想要開發一種方法,利用紫外光使這些層次穩定,形成「超疏水(superhydrophobic)」塗佈,利用天然的表面力(surface forces)強力排斥水與其它材料。

實驗室測試證明這種新塗佈(施用到棉花織物上),能排斥水、酸、鹼與有機溶劑。此塗佈易經久耐用,經家用洗衣機清洗 50 次以後依然牢附在織物上。當研究者在織物上施用數層這樣的塗佈後,其接觸角(contact angle,疏水性的度量)約 154 度,使其比汽車臘(接觸角 90 度)、鐵弗龍(接觸角 95 度)以及汽車擋風玻璃驅水劑(接觸角 110 度)更能疏水。

原始文獻:Yan Zhao, Zhiguang Xu, Xungai Wang, and Tong Lin
Langmuir, 2012, 28 (15), pp 6328–6335.
doi: 10.1021/la300281q

資料來源:PHYSORG:Beyond stain-resistant: New fabric coating actively shrugs off gunk[April 25, 2012]

-----廣告,請繼續往下閱讀-----

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
讓水能「逆流而上」的黑科技--「拓撲流體二極管」是怎麼辦到的?
果殼網_96
・2018/01/17 ・4031字 ・閱讀時間約 8 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

文/陸遙|英國倫敦大學學院(UCL)化學系博士,現為 UCL 機械工程系博士後。研究超疏水多功能材料、固體潤濕性、流變學等。

如果能隨心所欲的控制液體的流動方向又不花費額外能量,將能帶來多大的益處呢?圖/Pixabay

 

電路中的二極管想必大家並不陌生,大名鼎鼎的 LED 就是其中的一種。在二極管中,電流只能朝單方向流動,反向則會被阻斷。但如果我告訴你,流體也有二極管,即液體在一根管子裡只能沿著一個方向定向流動、潤濕,反向則會被阻斷,你或許就要疑惑了,這是怎麼做到的呢?

近日,香港城市大學博士研究生李加乾和中國科學院上海微系統所周曉峰博士在香港城市大學王鑽開教授和美國理海大學(Lehigh University)Manoj K. Chaudhury 教授的指導下,聯合為大家展示了一種通過調整表面微觀形貌,控制液體流向的「拓撲流體二極管」(Topological liquid diode),並在《科學》雜誌的子刊《科學進展》(Science Advances)上發表了他們的研究成果[1]。

-----廣告,請繼續往下閱讀-----

讓液體定向流動有什麼用?

「拓撲」一詞由英文 Topology 音譯而來,有研究特定地方地形、地貌的意思 [2]。王鑽開和同事們用拓撲一詞,意在表達通過對材料表面「地形地貌」(即材料表面微觀形貌)的控制,來實現流體的定向移動。

你可能會問,液體定向移動有什麼用?我可以告訴你,如果沒有液體定向移動,地球上很多動植物就都要滅絕。比如沙漠甲蟲,利用背後親水的區域收集水,再利用親水和疏水區域形成的流體通道將收集的水自發定向地運輸到嘴裡[3]。再比如仙人掌,在沙漠中通過刺來收集水氣,收集的水沿著刺的外端自發定向地傳送到仙人掌的身上 [4]。當然,這種例子並不只在沙漠中才有。像豬籠草的「嘴唇」[5] 和蜥蜴的皮膚[6] 也具有類似功能。

自然界中這些自發、定向運輸液體的例子很多都是依靠其精妙的微觀形貌實現的,本文的主角「拓撲流體二極管」也不例外。接下來我就帶大家來揭開拓撲流體二極管這項黑科技神秘的面紗。

沙漠甲殼蟲和仙人掌。圖片來源:參考文獻 [3]

-----廣告,請繼續往下閱讀-----

揭開拓樸流體二極管的作用機制

在拓撲流體二極管的製造中,研究團隊用一種特殊的凹槽構建了一個複雜的表面結構(旁白 : 誰能告訴我這麼複雜的結構是怎麼想到的?!)。這個表面的總體結構是一個U型島狀陣列(U-shaped island arrays)。構成陣列的每個U型島內都有一個U型槽,槽的頂端設計了一個凹角結構(re-entrant structures)。這凹角結構可不是為了好看,而是為了改變表面的潤濕性。

掃描電子顯微鏡下流體二極管表面的微觀形貌。總體結構是一個U型島狀陣列,用一個個長方形“柵欄” 圍著這些U型島狀結構(圖A)。構成陣列的U型島狀結構開口處較寬,向內寬度依次遞減,在每個U型島內都有一個U型槽(圖B)。U型槽的頂端還設計了一個凹角結構(圖C)。這凹角結構可不是為了好看​​,而是為了改變表面的潤濕性。圖片來源:參考文獻[1]
 

根據密西根大學 Anish Tuteja 教授早期的研究[7],這種凹角結構可以不借助任何化學修飾,讓一個親水表面變成疏水表面。那麼,以這種凹角結構可以不借助任何化學修飾,讓一個親水表面變成疏水表面。那麼,以這種凹角結構為基礎的這一系列設計,會達到什麼效果呢?當水滴滴在該表面上時,這滴水並不會像生活中常見的那樣向四處無序地舖展,而是會沿著單一方向鋪展開來。儘管在相反的方向上也會有較小程度的潤濕,但這種潤濕很快就被流體二極管截斷了。

不止是水,作者還嘗試了乙醇、甘醇(乙二醇)等其他表面張力、密度、潤濕性各不相同的液體,發現這些液體在流體二極管上也有類似現象。這證明,流體二極管具有普遍適用性。

-----廣告,請繼續往下閱讀-----

水滴在流體二極管結構上的單向潤濕現象。圖片來源:參考文獻[1]
水滴在流體二極管結構上的單向潤濕現象。動圖來源:參考文獻[1]

不但是科技的躍進,也解開物理學十多年的謎題

可別小看流體二極管的設計,它解決了一個物理學中十多年來都很難解釋的現象。早在2005年,Manoj K. Chaudhury和 Ankur Chaudhury 教授發現,在一個有水滴線性排列的疏水表面上,油在初始狀態時擴展的很慢。但當油逐漸積累、連在一起並覆蓋水滴的時候,油就擴展的很快[8]。這就好比在一個僅一人能通過的胡同(疏水表面)裡,橫著幾座矮牆(水滴),想要過胡同必須要翻牆。最先爬牆的人(油)比較費力,但是當爬過去的人多了,有一部分人就會留在牆根底下幫助其他人,這樣後來的人爬牆就比較容易了。

儘管此後有一些研究試圖解釋這個現象,但對於油如何突破、克服初始階段緩慢擴展的屏障,並沒有人能給出答案,因此這也成了一個懸而未決的謎,直到最近這份研究的問世。

油在水滴線性陣列中的慢跑與快跑現象。圖片來源:參考文獻[8]
 

-----廣告,請繼續往下閱讀-----

在研究流體二極管中液體的定向流動時,作者發現一個前驅的液體膜起著關鍵性的作用——後續的液體更願意沿著「前人」的足跡前進,先鋒部隊拉動大部隊前進。那麼這個前驅液體膜又是怎麼來的呢?這要歸結於一種叫角流動的現象(corner flow)[9]。用太空人喝咖啡——準確來說是吸咖啡——舉個例子。在太空中失重的條件下,液體的流動是自由無序的。但由於角流動效應的存在,液體更加傾向於沿著杯壁走。

太空人在失重條件下吸咖啡,由於角流動效應,水沿著杯壁流動而非無序飄散。圖片來源:NASA

在拓撲流體二極管中,會有一部分液體優先沿著柵欄的側壁流動,這部分液體抄小路鋪展,因此跑的較快,成為「先鋒部隊」。

拓撲流體二極管的潤濕過程。首先,先鋒部隊超兩邊小路進發,然後,大部隊趕到,與先鋒部隊匯合。緊接著,先鋒部隊再優先潤濕下一個U型島狀結構。動圖來源:參考文獻[1]
 

-----廣告,請繼續往下閱讀-----

這些「先鋒部隊」會優先「抄小路」從兩邊進入到流體二極管的 U 型槽中,形成前驅液體膜,但並不會超過凹角結構的高度。隨後而來的「大部隊」會被凹角結構所阻隔,堆積在 U 型槽裡。當被阻隔的「大部隊」液體積累到一定量時,會突破凹角結構的束縛,並與前驅液匯合,然後,就會發生「水躍現象」(hydraulic jump),「跳過」U 型島障礙,向前流動。所以從整體來看,液體在拓撲流體二極管裡的流動過程並不是連續的,而是像跨欄一樣「一跳一跳」地前進。

高速攝像機下的水躍現象。拓撲流體二極管的正向潤濕依次經過阻隔、合併和水躍過程。動圖來源:參考文獻[1]
流體二極管的側面剖視圖。前驅液膜在流體二極管中對後續液體的正向引導機理。前驅液體(淺藍色)會優先進入到U型槽裡,在前驅液膜的引導下,水的流動依次經過阻隔(pinning),合併(coalescence)和水躍的過程,使水得以快速地向前流動。圖片來源:參考文獻[1]
 

流體二極管的正向始終處於「導通」狀態,那麼它反向的「阻斷」狀態又是怎麼來的呢?原因還要從表面結構上找。當液體嘗試在流體二極管中反向流動的時候,被凹角結構攔住的液體「大部隊」會從上方潤濕凹角結構,凹角結構擋住了下方的「前驅液膜」,形成凹角阻隔(re-entrant pinning),這樣,後續的液體「大部隊」沒法跟前驅液膜合併,也就不能順利前進了。

流體二極管中微觀結構對後續液體的反向阻斷機理。凹角結構擋住了液體“大部隊”與前驅液膜的合併,阻止了液體的流動。圖片來源:參考文獻[1]

-----廣告,請繼續往下閱讀-----

控制液體的單向流動,甚至能克服重力!

儘管壓力大到一定程度的時候,液體仍然會突破凹角結構,但由於流體二極管正向「導通」狀態非常好,使得液體都願意往正向跑,因此反向的壓力很難增加到突破凹角結構的程度,就這樣,反向的「生意」就都被正向搶跑了,這就促成了液體在流體二極管上的單向流動。

研究人員還將流體二極管擺成圓形和螺旋形向大家展示宏觀上,液體自發的、長距離的定向流動現象。更逆天的一點就是,這個傳輸甚至可以克服重力!

液體在圓形和螺旋形流體二極管上的定向流動。動圖來源:參考文獻[1]
 

那麼流體二極管在實際中會有什麼樣的應用呢?

首先,談到二極管,第一個想到的應該就是邏輯電路了吧。流體二極管可以構建一個個流體的邏輯門,乃至邏輯門陣列——一個流體的「邏輯電路」。這樣的「流體邏輯電路」應用在微流體控制領域,會大大加快製藥、電子冷卻等行業的發展。其次,流體控製或許也可用於散熱。設想一下,如果能讓冷卻液自發地返回到蒸發端,那可以節省多少成本和能量?

-----廣告,請繼續往下閱讀-----

再者,這種液體自發運輸或許還可用於航空航天領域。在微重力的條件下,控制流體運動的方嚮往往需要更多的能量輸入,連喝杯咖啡都要“吸”著喝。拓撲流體二極管可以讓太空人在太空中喝到不用「吸」的咖啡!最後,我們來大膽設想一下,由於流體二極管對多種液體/流體的普遍適用性,不妨假設引進其他形式的流體,如磁流體–流體二極管/邏輯門,控制磁流體定向移動,說不定未來又會玩出什麼樣的黑科技!讓我們共同期待這項前沿技術的發展吧!

參考文獻

  • Jiaqian Li, Xiaofeng Zhou, Jing Li, Lufeng Che, Jun Yao, Glen McHale, Manoj K. Chaudhury, Zuankai Wang, Topological liquid diode, Science Advances 2017, DOI: 10.1126/sciadv.aao3530.
  • Topology, Merriam-Webster Dictionary, origin: International Scientific Vocabulary
  • Andrew R. Parker, Chris R. Lawrence, Water capture by a desert beetle,  Nature 2001, 414, 33.
  • Jie Ju, Hao Bai, Yongmei Zheng, Tianyi Zhao, Ruochen Fang, Lei Jiang, Nature Communications 2012, 3, Article number: 1247.
  • Huawei Chen, Pengfei Zhang, Liwen Zhang, Hongliang Liu, Ying Jiang, Deyuan Zhang, Zhiwu Han, Lei Jiang, Continuous directional water transport on the peristome surface of Nepenthes alata, Nature 2016, 532, 85.
  • Philipp Comanns, Gerda Buchberger, Andreas Buchsbaum, Richard Baumgartner, Alexander Kogler, Siegfried Bauer, Werner Baumgartner, Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic ‘liquid diode’, Journal of The Royal Society Interface 2015, 12, 20150415.
  • Anish Tuteja, Wonjae Choi, Minglin Ma, Joseph M. Mabry, Sarah A. Mazzella, Gregory C. Rutledge, Gareth H. McKinley, Robert E. Cohen, Designing Superoleophobic Surfaces, Science 2007, 318, 1618.
  • Manoj K. Chaudhury, Ankur Chaudhury, Super spreading of oil by condensed water drops, Soft Matter 2005, 1, 431.
  • Mark M. Weislogel, Seth Lichter, Capillary flow in an interior corner, Journal of Fluid Mechanics 1998, 373, 349.

本文版權屬於果殼網(微信公眾號:Guokr42),原文為〈这个黑科技,终于解决了物理学10多年来悬而未解的迷〉,禁止轉載。如有需要,請聯繫 sns@guokr.com

果殼網_96
108 篇文章 ・ 9 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

0
0

文字

分享

0
0
0
一抹奈米防汙塗料,不用清潔劑,玻璃也能亮晶晶
創新科技專案 X 解密科技寶藏_96
・2015/03/09 ・1426字 ・閱讀時間約 2 分鐘 ・SR值 543 ・八年級

文/廖英凱

有用過汽車美容用品店的撥水劑,或是幫愛車做過貴鬆鬆的美容鍍膜嗎?經過處理的表面,不僅看起來更亮晶晶,撥水性也更好,雨水滴到汽車表面時,彷彿流動性變得更好而無法留在表面上,這個現象,似乎也在大自然的蓮葉上有類似的效果。蓮葉上的水珠,總是流動的特別快,而且看起來特別的渾圓,科學家們把這個現象稱之為「蓮花效應」或「蓮葉效應」。

這些具有「蓮花效應」的材質表面,往往有疏水性與自潔性的特性。以蓮花來說,蓮葉的表面上滿布一顆顆5~15微米凸起的表皮細胞,而表皮細胞上又覆蓋一層一顆顆直徑約100nm的蠟質結晶。致使水接觸到葉子上時,因表面張力的原因讓水與葉面的接觸角大於150度而形成水珠,而當葉子有任何傾斜時,水珠就會很快地滾動流掉,並把灰塵髒污帶走,達到「出污泥而不染」的自潔效果。

了解這個大自然的奧秘之後,工研院材化所應用化學研究組黃元昌博士的團隊,正利用這個奧秘,開發出能讓物體表面也能有蓮花效應的神奇塗料。要達到這樣的神奇效果,可以分成奈米結構、微米結構、疏油材質、底膠這四個步驟來解釋。

-----廣告,請繼續往下閱讀-----

如同蓮葉表面100奈米大小的蠟質結晶,黃博士是利用矽氧烷類的化合物,這種化合物的結構中含有有矽和氧原子所構成的主鏈結構。將這種化合物以溶凝膠(so-gel)的方式處理,將矽氧烷材料水解再縮合,而製造出直徑100nm以下的奈米顆粒。進一步再將這些奈米尺度的顆粒,聚集改質成直徑2-10微米的微米顆粒,如同蓮葉表面突起的表面細胞一般。

防汙塗料在微米(左)和奈米(右)尺度的SEM圖
防汙塗料在微米(左)和奈米(右)尺度的SEM圖

材料改質畫面
材料改質畫面

經過一系列的改質後,二氧化矽所形成的奈米微米結構,已可達到如蓮葉般的疏水與自潔效果。類似的技術也開始被應用在歐洲的一些產業上。然而,這樣的成效卻還不足以應付台灣的環境。這是由於我國空氣中的油性髒污較多,而油性粒子對表面的附著力更好。因此,黃博士的團隊,又再合成製造出長度約1-2nm的含氟的分子,並利用自行開發的技術將這些分子整齊排列在微米奈米顆粒的表面。這些經過特殊設計的含氟分子,擁有更低的表面能,可使油滴在塗佈防汙材料的表面後,可達到150的接觸角。

-----廣告,請繼續往下閱讀-----

水在塗佈奈米防汙塗料材質的表面,呈現一個渾圓的水滴狀。
水在塗佈奈米防汙塗料材質的表面,呈現一個渾圓的水滴狀。

最後一步,要再將這些微米奈米顆粒給想辦法附著於玻璃或建材等地表面,而這需要仰賴底膠的選擇與微米結構的搭配。目前黃博士團隊所製造出的二氧化矽顆粒,由於同時具有微米奈米的結構,因而擁有較高的表面粗糙度。且二氧化矽顆粒也跟所選定的底膠能有結合力較強的化學鍵結。因此,能添加較多的底膠,而與塗佈材質表面結合更緊密且不易脫落。針對不同的塗佈材質,也可以選用不同的底膠與二氧化矽顆粒配方,而有應用於玻璃的透明塗料,或是應用於建材或金屬的半透明樹脂配方。覺得要洗大樓玻璃或屋頂屋簷很麻煩嗎?也許可以考慮看看這個神奇塗料,以後就讓老天爺的雨水幫你洗刷刷囉。

工研院材化所 應用化學研究組 黃元昌博士
工研院材化所 應用化學研究組 黃元昌博士

團隊照

更多資訊請參考解密科技寶藏

-----廣告,請繼續往下閱讀-----
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!