0

0
0

文字

分享

0
0
0

超越抗污:主動擺脫的新織物塗佈

only-perception
・2012/05/04 ・557字 ・閱讀時間約 1 分鐘 ・SR值 567 ・九年級

科學家報告他們研發並成功測試一種織品塗佈,那將賦予「抗污(stain-resistant)」這個片語新意 — 這種塗佈在擺脫油脂、污垢、強酸與其它污穢黏滑的東西上將扮演一種主動的角色。證明這種塗佈甚至比汽車臘或鐵弗龍更具疏水性(water-repellent)的報告,出現在 ACS 的 Langmuir 期刊中。
Tong Lin 等人解釋,有種稱為「逐層自我組裝(layer-by-layer (LbL) self-assembly)」的方法能為感應器、藥物遞送裝置以及其他眾多產品製造薄膜與塗佈。LbL 交替放下層層帶正電與帶負電的材料,因電荷而黏附在一起。利用這種方法,藉由選擇每一層的組成,為特定應用客製塗佈。缺點:這些多層薄膜並不是很穩定,最終會分離。Lin 與同僚想要開發一種方法,利用紫外光使這些層次穩定,形成「超疏水(superhydrophobic)」塗佈,利用天然的表面力(surface forces)強力排斥水與其它材料。

實驗室測試證明這種新塗佈(施用到棉花織物上),能排斥水、酸、鹼與有機溶劑。此塗佈易經久耐用,經家用洗衣機清洗 50 次以後依然牢附在織物上。當研究者在織物上施用數層這樣的塗佈後,其接觸角(contact angle,疏水性的度量)約 154 度,使其比汽車臘(接觸角 90 度)、鐵弗龍(接觸角 95 度)以及汽車擋風玻璃驅水劑(接觸角 110 度)更能疏水。

原始文獻:Yan Zhao, Zhiguang Xu, Xungai Wang, and Tong Lin
Langmuir, 2012, 28 (15), pp 6328–6335.
doi: 10.1021/la300281q

資料來源:PHYSORG:Beyond stain-resistant: New fabric coating actively shrugs off gunk[April 25, 2012]

-----廣告,請繼續往下閱讀-----

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

5
1

文字

分享

0
5
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
讓水能「逆流而上」的黑科技--「拓撲流體二極管」是怎麼辦到的?
果殼網_96
・2018/01/17 ・4031字 ・閱讀時間約 8 分鐘 ・SR值 534 ・七年級

-----廣告,請繼續往下閱讀-----

文/陸遙|英國倫敦大學學院(UCL)化學系博士,現為 UCL 機械工程系博士後。研究超疏水多功能材料、固體潤濕性、流變學等。

如果能隨心所欲的控制液體的流動方向又不花費額外能量,將能帶來多大的益處呢?圖/Pixabay

 

電路中的二極管想必大家並不陌生,大名鼎鼎的 LED 就是其中的一種。在二極管中,電流只能朝單方向流動,反向則會被阻斷。但如果我告訴你,流體也有二極管,即液體在一根管子裡只能沿著一個方向定向流動、潤濕,反向則會被阻斷,你或許就要疑惑了,這是怎麼做到的呢?

近日,香港城市大學博士研究生李加乾和中國科學院上海微系統所周曉峰博士在香港城市大學王鑽開教授和美國理海大學(Lehigh University)Manoj K. Chaudhury 教授的指導下,聯合為大家展示了一種通過調整表面微觀形貌,控制液體流向的「拓撲流體二極管」(Topological liquid diode),並在《科學》雜誌的子刊《科學進展》(Science Advances)上發表了他們的研究成果[1]。

-----廣告,請繼續往下閱讀-----

讓液體定向流動有什麼用?

「拓撲」一詞由英文 Topology 音譯而來,有研究特定地方地形、地貌的意思 [2]。王鑽開和同事們用拓撲一詞,意在表達通過對材料表面「地形地貌」(即材料表面微觀形貌)的控制,來實現流體的定向移動。

你可能會問,液體定向移動有什麼用?我可以告訴你,如果沒有液體定向移動,地球上很多動植物就都要滅絕。比如沙漠甲蟲,利用背後親水的區域收集水,再利用親水和疏水區域形成的流體通道將收集的水自發定向地運輸到嘴裡[3]。再比如仙人掌,在沙漠中通過刺來收集水氣,收集的水沿著刺的外端自發定向地傳送到仙人掌的身上 [4]。當然,這種例子並不只在沙漠中才有。像豬籠草的「嘴唇」[5] 和蜥蜴的皮膚[6] 也具有類似功能。

自然界中這些自發、定向運輸液體的例子很多都是依靠其精妙的微觀形貌實現的,本文的主角「拓撲流體二極管」也不例外。接下來我就帶大家來揭開拓撲流體二極管這項黑科技神秘的面紗。

沙漠甲殼蟲和仙人掌。圖片來源:參考文獻 [3]

-----廣告,請繼續往下閱讀-----

揭開拓樸流體二極管的作用機制

在拓撲流體二極管的製造中,研究團隊用一種特殊的凹槽構建了一個複雜的表面結構(旁白 : 誰能告訴我這麼複雜的結構是怎麼想到的?!)。這個表面的總體結構是一個U型島狀陣列(U-shaped island arrays)。構成陣列的每個U型島內都有一個U型槽,槽的頂端設計了一個凹角結構(re-entrant structures)。這凹角結構可不是為了好看,而是為了改變表面的潤濕性。

掃描電子顯微鏡下流體二極管表面的微觀形貌。總體結構是一個U型島狀陣列,用一個個長方形“柵欄” 圍著這些U型島狀結構(圖A)。構成陣列的U型島狀結構開口處較寬,向內寬度依次遞減,在每個U型島內都有一個U型槽(圖B)。U型槽的頂端還設計了一個凹角結構(圖C)。這凹角結構可不是為了好看​​,而是為了改變表面的潤濕性。圖片來源:參考文獻[1]
 

根據密西根大學 Anish Tuteja 教授早期的研究[7],這種凹角結構可以不借助任何化學修飾,讓一個親水表面變成疏水表面。那麼,以這種凹角結構可以不借助任何化學修飾,讓一個親水表面變成疏水表面。那麼,以這種凹角結構為基礎的這一系列設計,會達到什麼效果呢?當水滴滴在該表面上時,這滴水並不會像生活中常見的那樣向四處無序地舖展,而是會沿著單一方向鋪展開來。儘管在相反的方向上也會有較小程度的潤濕,但這種潤濕很快就被流體二極管截斷了。

不止是水,作者還嘗試了乙醇、甘醇(乙二醇)等其他表面張力、密度、潤濕性各不相同的液體,發現這些液體在流體二極管上也有類似現象。這證明,流體二極管具有普遍適用性。

-----廣告,請繼續往下閱讀-----

水滴在流體二極管結構上的單向潤濕現象。圖片來源:參考文獻[1]
水滴在流體二極管結構上的單向潤濕現象。動圖來源:參考文獻[1]

不但是科技的躍進,也解開物理學十多年的謎題

可別小看流體二極管的設計,它解決了一個物理學中十多年來都很難解釋的現象。早在2005年,Manoj K. Chaudhury和 Ankur Chaudhury 教授發現,在一個有水滴線性排列的疏水表面上,油在初始狀態時擴展的很慢。但當油逐漸積累、連在一起並覆蓋水滴的時候,油就擴展的很快[8]。這就好比在一個僅一人能通過的胡同(疏水表面)裡,橫著幾座矮牆(水滴),想要過胡同必須要翻牆。最先爬牆的人(油)比較費力,但是當爬過去的人多了,有一部分人就會留在牆根底下幫助其他人,這樣後來的人爬牆就比較容易了。

儘管此後有一些研究試圖解釋這個現象,但對於油如何突破、克服初始階段緩慢擴展的屏障,並沒有人能給出答案,因此這也成了一個懸而未決的謎,直到最近這份研究的問世。

油在水滴線性陣列中的慢跑與快跑現象。圖片來源:參考文獻[8]
 

-----廣告,請繼續往下閱讀-----

在研究流體二極管中液體的定向流動時,作者發現一個前驅的液體膜起著關鍵性的作用——後續的液體更願意沿著「前人」的足跡前進,先鋒部隊拉動大部隊前進。那麼這個前驅液體膜又是怎麼來的呢?這要歸結於一種叫角流動的現象(corner flow)[9]。用太空人喝咖啡——準確來說是吸咖啡——舉個例子。在太空中失重的條件下,液體的流動是自由無序的。但由於角流動效應的存在,液體更加傾向於沿著杯壁走。

太空人在失重條件下吸咖啡,由於角流動效應,水沿著杯壁流動而非無序飄散。圖片來源:NASA

在拓撲流體二極管中,會有一部分液體優先沿著柵欄的側壁流動,這部分液體抄小路鋪展,因此跑的較快,成為「先鋒部隊」。

拓撲流體二極管的潤濕過程。首先,先鋒部隊超兩邊小路進發,然後,大部隊趕到,與先鋒部隊匯合。緊接著,先鋒部隊再優先潤濕下一個U型島狀結構。動圖來源:參考文獻[1]
 

-----廣告,請繼續往下閱讀-----

這些「先鋒部隊」會優先「抄小路」從兩邊進入到流體二極管的 U 型槽中,形成前驅液體膜,但並不會超過凹角結構的高度。隨後而來的「大部隊」會被凹角結構所阻隔,堆積在 U 型槽裡。當被阻隔的「大部隊」液體積累到一定量時,會突破凹角結構的束縛,並與前驅液匯合,然後,就會發生「水躍現象」(hydraulic jump),「跳過」U 型島障礙,向前流動。所以從整體來看,液體在拓撲流體二極管裡的流動過程並不是連續的,而是像跨欄一樣「一跳一跳」地前進。

高速攝像機下的水躍現象。拓撲流體二極管的正向潤濕依次經過阻隔、合併和水躍過程。動圖來源:參考文獻[1]
流體二極管的側面剖視圖。前驅液膜在流體二極管中對後續液體的正向引導機理。前驅液體(淺藍色)會優先進入到U型槽裡,在前驅液膜的引導下,水的流動依次經過阻隔(pinning),合併(coalescence)和水躍的過程,使水得以快速地向前流動。圖片來源:參考文獻[1]
 

流體二極管的正向始終處於「導通」狀態,那麼它反向的「阻斷」狀態又是怎麼來的呢?原因還要從表面結構上找。當液體嘗試在流體二極管中反向流動的時候,被凹角結構攔住的液體「大部隊」會從上方潤濕凹角結構,凹角結構擋住了下方的「前驅液膜」,形成凹角阻隔(re-entrant pinning),這樣,後續的液體「大部隊」沒法跟前驅液膜合併,也就不能順利前進了。

流體二極管中微觀結構對後續液體的反向阻斷機理。凹角結構擋住了液體“大部隊”與前驅液膜的合併,阻止了液體的流動。圖片來源:參考文獻[1]

-----廣告,請繼續往下閱讀-----

控制液體的單向流動,甚至能克服重力!

儘管壓力大到一定程度的時候,液體仍然會突破凹角結構,但由於流體二極管正向「導通」狀態非常好,使得液體都願意往正向跑,因此反向的壓力很難增加到突破凹角結構的程度,就這樣,反向的「生意」就都被正向搶跑了,這就促成了液體在流體二極管上的單向流動。

研究人員還將流體二極管擺成圓形和螺旋形向大家展示宏觀上,液體自發的、長距離的定向流動現象。更逆天的一點就是,這個傳輸甚至可以克服重力!

液體在圓形和螺旋形流體二極管上的定向流動。動圖來源:參考文獻[1]
 

那麼流體二極管在實際中會有什麼樣的應用呢?

首先,談到二極管,第一個想到的應該就是邏輯電路了吧。流體二極管可以構建一個個流體的邏輯門,乃至邏輯門陣列——一個流體的「邏輯電路」。這樣的「流體邏輯電路」應用在微流體控制領域,會大大加快製藥、電子冷卻等行業的發展。其次,流體控製或許也可用於散熱。設想一下,如果能讓冷卻液自發地返回到蒸發端,那可以節省多少成本和能量?

-----廣告,請繼續往下閱讀-----

再者,這種液體自發運輸或許還可用於航空航天領域。在微重力的條件下,控制流體運動的方嚮往往需要更多的能量輸入,連喝杯咖啡都要“吸”著喝。拓撲流體二極管可以讓太空人在太空中喝到不用「吸」的咖啡!最後,我們來大膽設想一下,由於流體二極管對多種液體/流體的普遍適用性,不妨假設引進其他形式的流體,如磁流體–流體二極管/邏輯門,控制磁流體定向移動,說不定未來又會玩出什麼樣的黑科技!讓我們共同期待這項前沿技術的發展吧!

參考文獻

  • Jiaqian Li, Xiaofeng Zhou, Jing Li, Lufeng Che, Jun Yao, Glen McHale, Manoj K. Chaudhury, Zuankai Wang, Topological liquid diode, Science Advances 2017, DOI: 10.1126/sciadv.aao3530.
  • Topology, Merriam-Webster Dictionary, origin: International Scientific Vocabulary
  • Andrew R. Parker, Chris R. Lawrence, Water capture by a desert beetle,  Nature 2001, 414, 33.
  • Jie Ju, Hao Bai, Yongmei Zheng, Tianyi Zhao, Ruochen Fang, Lei Jiang, Nature Communications 2012, 3, Article number: 1247.
  • Huawei Chen, Pengfei Zhang, Liwen Zhang, Hongliang Liu, Ying Jiang, Deyuan Zhang, Zhiwu Han, Lei Jiang, Continuous directional water transport on the peristome surface of Nepenthes alata, Nature 2016, 532, 85.
  • Philipp Comanns, Gerda Buchberger, Andreas Buchsbaum, Richard Baumgartner, Alexander Kogler, Siegfried Bauer, Werner Baumgartner, Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic ‘liquid diode’, Journal of The Royal Society Interface 2015, 12, 20150415.
  • Anish Tuteja, Wonjae Choi, Minglin Ma, Joseph M. Mabry, Sarah A. Mazzella, Gregory C. Rutledge, Gareth H. McKinley, Robert E. Cohen, Designing Superoleophobic Surfaces, Science 2007, 318, 1618.
  • Manoj K. Chaudhury, Ankur Chaudhury, Super spreading of oil by condensed water drops, Soft Matter 2005, 1, 431.
  • Mark M. Weislogel, Seth Lichter, Capillary flow in an interior corner, Journal of Fluid Mechanics 1998, 373, 349.

本文版權屬於果殼網(微信公眾號:Guokr42),原文為〈这个黑科技,终于解决了物理学10多年来悬而未解的迷〉,禁止轉載。如有需要,請聯繫 sns@guokr.com

果殼網_96
108 篇文章 ・ 7 位粉絲
果殼傳媒是一家致力於面向公眾倡導科技理念、傳播科技內容的企業。2010年11月,公司推出果殼網(Guokr.com) 。在創始人兼CEO姬十三帶領的專業團隊努力下,果殼傳媒已成為中國領先的科技傳媒機構,還致力於為企業量身打造面向公眾的科技品牌傳播方案。

0

0
0

文字

分享

0
0
0
一抹奈米防汙塗料,不用清潔劑,玻璃也能亮晶晶
創新科技專案 X 解密科技寶藏_96
・2015/03/09 ・1426字 ・閱讀時間約 2 分鐘 ・SR值 543 ・八年級

-----廣告,請繼續往下閱讀-----

文/廖英凱

有用過汽車美容用品店的撥水劑,或是幫愛車做過貴鬆鬆的美容鍍膜嗎?經過處理的表面,不僅看起來更亮晶晶,撥水性也更好,雨水滴到汽車表面時,彷彿流動性變得更好而無法留在表面上,這個現象,似乎也在大自然的蓮葉上有類似的效果。蓮葉上的水珠,總是流動的特別快,而且看起來特別的渾圓,科學家們把這個現象稱之為「蓮花效應」或「蓮葉效應」。

這些具有「蓮花效應」的材質表面,往往有疏水性與自潔性的特性。以蓮花來說,蓮葉的表面上滿布一顆顆5~15微米凸起的表皮細胞,而表皮細胞上又覆蓋一層一顆顆直徑約100nm的蠟質結晶。致使水接觸到葉子上時,因表面張力的原因讓水與葉面的接觸角大於150度而形成水珠,而當葉子有任何傾斜時,水珠就會很快地滾動流掉,並把灰塵髒污帶走,達到「出污泥而不染」的自潔效果。

了解這個大自然的奧秘之後,工研院材化所應用化學研究組黃元昌博士的團隊,正利用這個奧秘,開發出能讓物體表面也能有蓮花效應的神奇塗料。要達到這樣的神奇效果,可以分成奈米結構、微米結構、疏油材質、底膠這四個步驟來解釋。

-----廣告,請繼續往下閱讀-----

如同蓮葉表面100奈米大小的蠟質結晶,黃博士是利用矽氧烷類的化合物,這種化合物的結構中含有有矽和氧原子所構成的主鏈結構。將這種化合物以溶凝膠(so-gel)的方式處理,將矽氧烷材料水解再縮合,而製造出直徑100nm以下的奈米顆粒。進一步再將這些奈米尺度的顆粒,聚集改質成直徑2-10微米的微米顆粒,如同蓮葉表面突起的表面細胞一般。

防汙塗料在微米(左)和奈米(右)尺度的SEM圖
防汙塗料在微米(左)和奈米(右)尺度的SEM圖

材料改質畫面
材料改質畫面

經過一系列的改質後,二氧化矽所形成的奈米微米結構,已可達到如蓮葉般的疏水與自潔效果。類似的技術也開始被應用在歐洲的一些產業上。然而,這樣的成效卻還不足以應付台灣的環境。這是由於我國空氣中的油性髒污較多,而油性粒子對表面的附著力更好。因此,黃博士的團隊,又再合成製造出長度約1-2nm的含氟的分子,並利用自行開發的技術將這些分子整齊排列在微米奈米顆粒的表面。這些經過特殊設計的含氟分子,擁有更低的表面能,可使油滴在塗佈防汙材料的表面後,可達到150的接觸角。

-----廣告,請繼續往下閱讀-----

水在塗佈奈米防汙塗料材質的表面,呈現一個渾圓的水滴狀。
水在塗佈奈米防汙塗料材質的表面,呈現一個渾圓的水滴狀。

最後一步,要再將這些微米奈米顆粒給想辦法附著於玻璃或建材等地表面,而這需要仰賴底膠的選擇與微米結構的搭配。目前黃博士團隊所製造出的二氧化矽顆粒,由於同時具有微米奈米的結構,因而擁有較高的表面粗糙度。且二氧化矽顆粒也跟所選定的底膠能有結合力較強的化學鍵結。因此,能添加較多的底膠,而與塗佈材質表面結合更緊密且不易脫落。針對不同的塗佈材質,也可以選用不同的底膠與二氧化矽顆粒配方,而有應用於玻璃的透明塗料,或是應用於建材或金屬的半透明樹脂配方。覺得要洗大樓玻璃或屋頂屋簷很麻煩嗎?也許可以考慮看看這個神奇塗料,以後就讓老天爺的雨水幫你洗刷刷囉。

工研院材化所 應用化學研究組 黃元昌博士
工研院材化所 應用化學研究組 黃元昌博士

團隊照

更多資訊請參考解密科技寶藏

-----廣告,請繼續往下閱讀-----
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!