0

1
0

文字

分享

0
1
0

全球資訊網 World Wide Web 由此誕生! │ 科學史上的今天:3/12

張瑞棋_96
・2019/03/12 ・1275字 ・閱讀時間約 2 分鐘 ・SR值 547 ・八年級

編按:全球資訊網(World Wide Web)的誕生源自於英國電腦科學家柏納-李(Tim Berners-Lee, 1955-)在歐洲核子研究組織 ( European Organization for Nuclear Research, CERN )發展的資訊分散式傳輸協定,當時這套系統只是為了要供應高能物理研究室之間使用。
然後,他便逐步改變了世界。讓在全球資訊網發明30週年的現在,一起來看看他是怎麼誕生的吧!

1968 年,英格巴特(Douglas C. Engelbart)在如今稱為「所有演示之母」的會場上演示了滑鼠、視窗、網路與超文本(Hypertext),但那畢竟只是描繪未來的「概念機」。必須再等二十年,英國電腦科學家柏納-李(Tim Berners-Lee, 1955-)才真正實現了這個「未來」。

Photo Credits: Pixel y Dixel license

柏納-李於 1980 年承接了歐洲核子研究組織 ( European Organization for Nuclear Research, CERN )的軟體外包專案。此時學者們已經可以透過網路互相傳遞郵件與檔案,不過要在電腦內的大量資料中找到關聯性的資料仍是件苦差事。他在半年內開發了一套以超文本技術為基礎的搜尋程式,讓科學家可以輕易地從文件中的一個章節跳到另一個章節,或是跳到同一個資料庫內的另一個檔案。

不過隨著 CERN 的規模日益擴大,研究員、電腦與檔案的數量也愈來愈多,當初柏納-李開發的程式只能在同一個資料庫內搜尋,如今來自世界各國的科學家要尋找置於它處的資料,或彼此交換實驗數據都非常麻煩又曠日廢時。柏納-李於 1984 年以正式員工的身分重返 CERN 之後,就一直思索解決之道,後來他注意到逐漸興起的網路或許就是答案!

1989 年 3 月12日,他終於提出初步構想:以他開發的搜尋程式為基礎,結合傳輸控制協定(TCP)、網域名稱系統(DNS)等現成的網路標準,就可以在所有連上網路的電腦間快速搜尋並傳遞資料。這就是全球資訊網WWW(World Wide Web)的藍圖。

-----廣告,請繼續往下閱讀-----

在得到主管的支持後,柏納-李開始著手製作所需的要件。隔年他寫出傳輸網頁的語言 HTTP 與描述網頁內容的語言 HTML、定義 URI 網址結構(日後他承認雙斜線實無必要),並且示範製作了世上第一個網頁瀏覽器與第一台網頁伺服器。

1992年 CERN 同意柏納-李的請求,將 WWW 相關的智慧財產權當成一般公共財對外公布,讓世人都可免費使用,無須支付任何權利金;而這正是 internet 可以迅速普及、蓬勃發展的關鍵。當網路上的資訊從純文字擴充為圖文並茂的豐富內容,當這一切都免費垂手可得,internet 才真正開始加速成長,深入滲透到社會各個層面,成為現代人生活不可或缺的一部份。而這都要歸功於柏納-李的發明與慷慨。

對照後來多少人因為網路成為鉅富,更顯得柏納-李放棄專利的難能可貴。他獲得無數表彰,但始終拒絕各種商業利益的誘惑。目前柏納-李仍在許多非營利組織但任要職,為 internet 的獨立性與普及化而努力。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,原文為「全球資訊網從此誕生──柏納-李生日 │ 科學史上的今天:06/08」,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1078 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
昂貴的粒子物理基礎研究值得嗎?你一定用過CERN發明的這個東西!──《到世界頂尖實驗室 CERN 上粒子物理課》
臉譜出版_96
・2018/02/26 ・3811字 ・閱讀時間約 7 分鐘 ・SR值 535 ・七年級

昂貴的粒子物理基礎研究值得嗎?

基礎研究如大強子對撞機的建造成本很高,每個人都有權利詢問是不是值得。圖/Image Editor@flickr

粒子物理學的基礎研究當然是非常有趣的,但它也是很昂貴的。舉例來說,歐洲核子研究組織(European Organization for Nuclear Research,簡稱為CERN )大強子對撞機的建造成本(包括人員、儀器研發和建造材料)約為 30 億歐元(約 33 億美元)。超導環場探測器本身的建造費用為 4.55 億歐元(5 億美元)。儘管這個數字看起來很大,但歐洲核子研究組織 8.25 億歐元的年度預算(約 9 億美元)只相當於每個年紀大到可以喝咖啡的歐洲公民喝一杯咖啡加總起來的費用。

但是這筆金額還是很龐大,所以每個人都有權利詢問這筆錢是不是花得值得。

在此,我將解釋投資於研究的經費不僅在經濟上帶來百倍以上的回報,而且可以造福整個社會。由於基礎研究帶來了科技上的突破,醫療技術和通信技術因而有所進步。物理學基礎研究徹底改變了我們的生活方式,而且改變還在持續當中。

-----廣告,請繼續往下閱讀-----

以歐洲核子研究組織為例

在本文中,我主要以歐洲核子研究組織作為例子,因為它是目前最大且仍在運轉當中的國際性粒子物理學研究實驗室。

日本的 J-PARC(Japan Proton Accelerator Research Complex) 是一個多用途研究中心,他們也使用質子加速器。其他實驗室,如美國的 SLAC 國家加速器實驗室(SLAC National Accelerator Laboratory) 和費米實驗室(Fermi National Accelerator Laboratory, FNAL)以及德國的 DESY 一直到不久以前都還是非常活躍的粒子物理學研究中心,但他們的加速器目前已經停止運作。費米實驗室的主注入器(Main Injector)則仍在運轉中,為 MINOS、Minerva 和 NOVA實驗供應微中子束。其他實驗則正在等待批准或仍在前置興建階段。還有其他幾個較小的研究中心,例如加拿大薩德伯里的微中子觀測站實驗室(Sudbury Neutrino Observatory Laboratory, SNOLAB),日本的高能加速器研究機構(KEK)和義大利的 Gran Sasso,這些研究中心都是專門研究微中子物理和暗物質搜尋。最近,有參與粒子物理學研究的所有國家決定在大型國際實驗合作計畫中共享資源(例如歐洲核子研究組織正在進行中的實驗合作計畫)。

每年有來自約五十個不同國家的二百五十名學生參與歐洲核子研究組織的暑期課程。這些學生不僅各種研究中都有貢獻,還與來自世界各地的年輕人交流。資料來源:歐洲核子研究組織

粒子物理學基礎研究的回報並不必然都是直接的。舉例來說,目前沒有人知道希格斯玻色子將來會不會有實際的用處,很可能不會!我們並不是因為期待希格斯玻色子能夠解決人類的大問題而做這個研究的。相反的,該研究的目的,是為了能更了解我們周遭的物質世界,並將提高我們的知識層次。

-----廣告,請繼續往下閱讀-----

所以說,基礎研究實驗室的首要任務是滿足人類對知識的深度渴求。自從人類存在以來,人們一直都想知道自己的起源和命運。但這些實驗室其實還有其他三個主要目標:為科技發展作出貢獻培養高度專業的人力以及(就國際實驗室而言)透過科學研究促進和平與國際合作

基礎研究帶來燈光,而不止步於漂亮的蠟燭

不過,我們不該低估任何新發現的潛力。誰能預言一百年前物理學家在電子和電磁波上的研究,會對我們今日的生活產生如此驚人的影響呢?一件軼事(即便它有點爭議)可以用來說明這一點。據說英國財政大臣(即財政部長)曾質問法拉第(Michael Faraday)他的電學研究是否有任何潛在用途時,法拉第顯然回答說他不知道可以做什麼用,但法拉第補充說:「先生,將來有一天你可能可以課它的稅」。

正是對電學的基礎研究,徹底改變了我們的生活,讓我們的閱讀不再使用蠟燭。圖/MSphotos@pixabay

電子和電磁學的研究帶來了電子用品、電信和電腦的發展。過去幾個世紀中,物理學家的研究成果和技術人員和工程師的專業知識相結合,並將發現應用在現實中,進而重塑了我們的日常生活。如果沒有物理學的基礎研究,我們今天就會靠燭光閱讀。正如一位同事向我指出的,我們肯定會有非常漂亮的蠟燭,但就只是蠟燭。基礎研究不僅對我們的生活產生重大影響,而且也啟蒙了我們的精神,使人類擺脫了無知的沉重負荷。

-----廣告,請繼續往下閱讀-----

不管在理論還是在實驗,好奇心都引導了基礎研究。基礎研究必須不受到限制,使想像力和創造力得以自由流動。縱使無法保證一定能夠發現什麼,但物理學家必須檢視所有的可能。另一方面,應用研究的目的,在於為具體的問題找出實際的答案,它以基礎研究為本,帶來了科技突破,並有更進一步的發展。物理科學應用於其他學科之中,也在各個工業領域當中扮演了重要的角色。從經濟的角度來看,物理學影響著整個社會,我們在本章中將看到,物理學在各領域、各方面的成績,已在日常生活當中影響我們每一個人。

對各國的經濟回報

已有幾份研究試著評估基礎研究對經濟所帶來的影響。經濟與商業研究中心(the Centre for Economics and Business Research, CEBR)為歐洲物理學會(European Physical Society)所做的研究很具啟發性。這份研究是從科技和科學的角度評估基礎研究對歐洲物理學的產業所造成的影響。因此,它涵蓋了所有仰賴電機工程、機械和土木工程、能源、計算、通信、設計製造、運輸、醫學和航空的經濟活動。

仰賴物理學的產業對於歐洲個過總收入之貢獻的百分比,這些國家以其雙字母代碼表示:DE為德國、FR為法國、GB為英國、IT為義大利、ES為西班牙、NO為挪威、NL為荷蘭、CH為瑞士等。 資料來源:歐洲物理學會

2010 年的統計指出,仰賴物理學的產業共為歐盟的 27 個國家、瑞士和挪威創造了 3 兆 8000 億歐元的收入(上圖),相當於這些國家總收入的 15% 左右,超越了零售業的總額。總共有 1 千 5 百 40 萬人在這個產業工作,也就是歐洲總勞動人口的 13%。

-----廣告,請繼續往下閱讀-----

促成跨時代的科技發展

在大強子對撞機中,4-緲子候選事件示意圖。圖/ ATLAS, Collaboration @wiki

正如我們在整本書中所看到的,當今粒子物理學的研究需要高度精密複雜的工具才得以進行。通常在設計階段,大型實驗所需的技術並不存在,這些技術必須在過程當中被開發出來,特別是像大強子對撞機這樣二十年前就開始籌備規畫的超大型計畫。大強子對撞機的建造工程,使得若干技術超越當時的疆界,過去從不曾有任何儀器會用到如此強大的超導磁鐵,更不用提這整個計畫的規模,超導、極度真空和極度低溫相關的技術都因此而有很大的進展。

大型實驗合作計畫的所有測量設備也是如此,大強子對撞機所使用的偵測器都需要更高的抗輻射能力以及更高性能的電子模組,在承受極端輻射水平的同時,還要能夠高速與大量採集數據。這個需求提供了建造網格(Grid)的動力,網格是一個龐大的計算機網絡,串聯了成千上萬台遍布在世界各地的電腦,提供了大強子對撞機實驗所需的計算能力。

技術方面的進步已化為現實,並應用在各式各樣的產業中。簡單舉幾個例子,這些應用包括了配有光纖的濕度感測器、使用永久磁鐵之引擎的隔膜系統、設計印刷電路板的開放原始碼軟體,以及 3D列印的附加處理技術。

-----廣告,請繼續往下閱讀-----

全球資訊網──來自歐洲核子研究組織的最好的禮物

某些發現也對大部分地球居民的日常生活有直接影響。例如歐洲核子研究組織最成功的結果:全球資訊網(World Wide Web)。全球資訊網深遠地改變了我們取得訊息和知識的方式(包括新興國家),從而影響到地球上數十億人的日常生活。

提姆‧伯納斯-李在歐洲核子研究組織工作時發明了全球資訊網。這張照片攝於1994年,當時他正坐在一個電腦螢幕前面,而螢幕上顯示的正是世界上第一個網頁。根據資料,全球資訊網每年刺激了市值 1.5 兆元的商業交易量。資料來源:歐洲核子研究組織

到目前為止,歐洲核子研究組織對人類最大的影響並不是發現了希格斯玻色子,而是發明了全球資訊網(World Wide Web,簡稱WWW)。全球資訊網是由提姆.伯納斯─李(Tim Berners-Lee)和他的團隊於 1989 年開發出來,當時他在歐洲核子研究組織工作,而當初開發的目的是為了要解決一個影響到歐洲核子研究組織成千上萬名研究人員的問題。科學家們需要一個能有效交換訊息的通訊方式,大多數這些物理學家經常在他們自己的研究機構和實驗室之間穿梭,以參與各種研究活動。為了讓這些物理學家可以彼此交換訊息而不需在行李箱中拖著幾公斤列印出來的文件,全球資訊網於焉而生。

如果說伯納斯─李是一位有遠見的人,那麼我們也可以說歐洲核子研究組織具有非常前瞻的想法,決定將全球資訊網開放給全人類使用,而不要求任何版權收入。由於歐洲核子研究組織的研究是受到公共資金資助,因此我們也希望全球資訊網能使每一個人都受益。網路使得資訊可以在世界上任何地方流通和取得,誰能忽視這個溝通工具對我們的生活所產生的影響呢?

-----廣告,請繼續往下閱讀-----

粒子物理學界有愈來愈多人認同「開源」(open-source)的觀念,例如像是知識可以自由、免費地共享,並且透過網路傳播開來。歐洲核子研究組織的實驗結果已經不再只發表在昂貴的專業期刊上,現今所有的資訊都可以在「開源」社群媒體中取得。不僅在科學出版方面是如此,有些軟體也是以合作和共享的精神和其他的機構、業界或社會共享。這樣可以確保來自新興國家的大學和機構不至於處於劣勢。

 

 

本文摘自泛科學2018年2月選書《到世界頂尖實驗室 CERN 上粒子物理課》,臉譜出版

 

 

 

-----廣告,請繼續往下閱讀-----
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

1
0

文字

分享

0
1
0
全球資訊網 World Wide Web 由此誕生! │ 科學史上的今天:3/12
張瑞棋_96
・2019/03/12 ・1275字 ・閱讀時間約 2 分鐘 ・SR值 547 ・八年級

編按:全球資訊網(World Wide Web)的誕生源自於英國電腦科學家柏納-李(Tim Berners-Lee, 1955-)在歐洲核子研究組織 ( European Organization for Nuclear Research, CERN )發展的資訊分散式傳輸協定,當時這套系統只是為了要供應高能物理研究室之間使用。
然後,他便逐步改變了世界。讓在全球資訊網發明30週年的現在,一起來看看他是怎麼誕生的吧!

1968 年,英格巴特(Douglas C. Engelbart)在如今稱為「所有演示之母」的會場上演示了滑鼠、視窗、網路與超文本(Hypertext),但那畢竟只是描繪未來的「概念機」。必須再等二十年,英國電腦科學家柏納-李(Tim Berners-Lee, 1955-)才真正實現了這個「未來」。

Photo Credits: Pixel y Dixel license

柏納-李於 1980 年承接了歐洲核子研究組織 ( European Organization for Nuclear Research, CERN )的軟體外包專案。此時學者們已經可以透過網路互相傳遞郵件與檔案,不過要在電腦內的大量資料中找到關聯性的資料仍是件苦差事。他在半年內開發了一套以超文本技術為基礎的搜尋程式,讓科學家可以輕易地從文件中的一個章節跳到另一個章節,或是跳到同一個資料庫內的另一個檔案。

不過隨著 CERN 的規模日益擴大,研究員、電腦與檔案的數量也愈來愈多,當初柏納-李開發的程式只能在同一個資料庫內搜尋,如今來自世界各國的科學家要尋找置於它處的資料,或彼此交換實驗數據都非常麻煩又曠日廢時。柏納-李於 1984 年以正式員工的身分重返 CERN 之後,就一直思索解決之道,後來他注意到逐漸興起的網路或許就是答案!

-----廣告,請繼續往下閱讀-----

1989 年 3 月12日,他終於提出初步構想:以他開發的搜尋程式為基礎,結合傳輸控制協定(TCP)、網域名稱系統(DNS)等現成的網路標準,就可以在所有連上網路的電腦間快速搜尋並傳遞資料。這就是全球資訊網WWW(World Wide Web)的藍圖。

在得到主管的支持後,柏納-李開始著手製作所需的要件。隔年他寫出傳輸網頁的語言 HTTP 與描述網頁內容的語言 HTML、定義 URI 網址結構(日後他承認雙斜線實無必要),並且示範製作了世上第一個網頁瀏覽器與第一台網頁伺服器。

1992年 CERN 同意柏納-李的請求,將 WWW 相關的智慧財產權當成一般公共財對外公布,讓世人都可免費使用,無須支付任何權利金;而這正是 internet 可以迅速普及、蓬勃發展的關鍵。當網路上的資訊從純文字擴充為圖文並茂的豐富內容,當這一切都免費垂手可得,internet 才真正開始加速成長,深入滲透到社會各個層面,成為現代人生活不可或缺的一部份。而這都要歸功於柏納-李的發明與慷慨。

對照後來多少人因為網路成為鉅富,更顯得柏納-李放棄專利的難能可貴。他獲得無數表彰,但始終拒絕各種商業利益的誘惑。目前柏納-李仍在許多非營利組織但任要職,為 internet 的獨立性與普及化而努力。

-----廣告,請繼續往下閱讀-----

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,原文為「全球資訊網從此誕生──柏納-李生日 │ 科學史上的今天:06/08」,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1078 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。