1

10
1

文字

分享

1
10
1

藍眼淚不流淚,守護地球的藍碳

MiTalk
・2019/01/25 ・5192字 ・閱讀時間約 10 分鐘 ・SR值 533 ・七年級

作者 / 劉少倫
東海大學生命科學系副教授

自從 17 世紀工業革命推動了全球化的工業發展,將原本封存在地底或深海地層中的石化燃料(例如煤、天然氣等),轉化成大量溫室氣體(主要是二氧化碳),釋放到大氣;這些溫室氣體,宛如掙脫地獄枷鎖的惡魔,在人類的貪婪中,以非常快的速度加熱全球氣溫,並加劇全球氣候的改變。

這幾年,我們對極端氣候的感觸似乎更為強烈,聽著以下這些新聞:南歐和東京夏季更久更高溫的熱浪、北極圈創紀錄的夏季高溫、南北極冰川大量的崩解、臺灣五月竟然創下比夏季更高的溫度、澳洲大堡礁珊瑚因高溫白化將在未來死去 60-80% 等。

每一年,新聞媒體都說這些極端氣候打破過去幾百年來的紀錄,非常「異常 (abnorm)」。

但是,隨著每一年這樣的新聞重複的發生,未來的一年又再次創下過去幾百年來的高溫紀錄,這些極端氣候的新聞已經可以說不再異常,甚至可以說這些極端氣候的新聞變成習以為常地「正常 (norm)」。因石化燃料使用及工業發展,在我們享受它們帶來的舒適便利和經濟發展的生活時,其暗黑破壞性猶如喪鐘般替人類末日開始倒數計時。

-----廣告,請繼續往下閱讀-----
各媒體有關極端氣候的報導標題(擷取自各媒體 2018 年網路報導)。圖/作者提供

藍碳是什麼,少年PI的藍眼淚?

在 1990 年,聯合國環境署 (United Nations Environment Programme)、聯合國糧食及農業組織 (Food and Agricultural Organization of the United Nations) 及聯合國教育、科學及文化組織下的政府間海洋學委員會 (Intergovernmental Oceanographic Commission, UNESCO) 共同發表聲明,指出全球海洋有 55% 的初級生產者應被視為「藍碳 (blue carbon)」。

其中,海草、紅樹林和鹽草等沿岸生態系封存大氣二氧化碳的量更遠高於熱帶雨林。但相較於熱帶雨林,這些藍碳生態系卻是以 5-10 倍的速度快速的消失,將對全球暖化狀況雪上加霜。在氣候變遷的威脅下,也因這樣的報告,激起全球政府跟海洋學界一股對這些沿岸藍碳生態系的保育重視跟研究,尤其著重在海草、紅樹林和鹽草等維管束植物為主的生態系。

由於全球暖化的影響,全球對藍碳生態系的保育跟研究更加重視。圖/pixabay

到底藍碳是什麼?海洋中怎樣的初級生產者才可以被視為藍碳?

要回答這個問題,我們首先得了解「碳吸存(carbon sequestration;抑或翻譯成碳匯及碳截存)」。當維管束植物或藻類進行產氧光合作用的同時,能夠將大氣中的二氧化碳固定,使用太陽光能,藉由光合作用化學反應產生葡萄醣(C6H12O6;或6(CH2O))及氧氣(反應式一)。因為葡萄醣主要是以碳為分子骨幹,並由生物合成,故又稱之為有機碳。

-----廣告,請繼續往下閱讀-----

反應式一(光合作用):

CO2 + 2H2O + >8 Photons → CH2O + H2O + O2

由光合作用產生出來的有機碳葡萄醣,能進一步成為主要原料,在維管束植物(例如海草、紅樹林和鹽草)體內用以合成另一種有機碳分子木質素 (lignin),支撐維管束植物生長。當維管束植物死去後,木質素是一種非常難被微生物分解利用的有機碳。

因此,這些不易分解的木質素就好比一個天然的碳吸存裝置,能抵抗微生物分解並最終埋葬於地底沉積物中,不再釋放回大氣中,達到降低大氣二氧化碳的目的,這樣碳吸存的過程我們稱為「碳埋葬 (carbon burial)」。此外,在大洋中生長的小型浮游藻類,死掉後會沉降到微生物作用不活躍的低溫深海,使得微藻殘骸無法被微生物分解而最終埋葬於深海中,這樣的碳吸存方式稱之為「生物幫浦 (biological pump)」。

整體而言,當二氧化碳藉由光合作用固定合成出有機碳後,這些有機碳能夠藉由碳埋葬或生物幫浦方式被長期儲存而不被微生物利用轉化為二氧化碳再度釋放回大氣中,這就是碳吸存的概念。相較於陸域生態系,因為海草、紅樹林、鹽草及大洋小型浮游微藻等生態系身處藍色海洋中,又具備碳吸存的功能,故以藍碳稱之。

眼淚變珍珠,鈣化的藍眼淚

在海洋中,從碳吸存的定義思考,假如初級生產者死後不能夠被碳埋葬(碳封存),或是無法有效降低大氣二氧化碳,我們就不能把它們視為藍碳。生活在海洋中的大型海藻(簡稱海藻),因不具備木質素,又大多生長在岩岸導致殘骸不易被沉積物包埋,也不像小型浮游微藻可藉由生物幫浦方式進行碳吸存,傳統認為它們藻體死亡後會快速被微生物分解,再度以二氧化碳方式釋放回大氣中,所以它們在藍碳科學討論中一直乏人問津。

-----廣告,請繼續往下閱讀-----

但近年來,隨著更多的研究,海洋生物生態學家逐漸體認到沿岸這些大量生長的海藻,其實可以藉由不同的方式具備碳吸存的生態功能,可以說是一個長期被低估的藍碳生態系。在這幾年的研究,到底海洋生物生態學家學到了什麼,讓我們得以重新認識這群默默協助我們降低大氣二氧化碳的功臣?

海藻碳吸存的其中一種方式,就是藉由鈣化作用累積碳酸鈣。在所有海藻中,約有 5% 的物種能進行鈣化作用,於藻體內累積碳酸鈣,泛稱為「鈣化海藻」;其中,以紅藻中的珊瑚藻科藻種佔最大宗且具有最多樣的鈣化海藻,珊瑚藻科的殼狀珊瑚藻更能夠層層推疊,建構與珊瑚礁在規模上不相上下的巨大生物礁體 (super reef),例如臺灣西北海岸的桃園藻礁。

桃園大潭藻礁潮間帶(上圖;劉少倫攝影)退潮後暴露出來的胞石藻屬 (Sporolithon) 的殼狀珊瑚藻(左下圖;劉少倫攝影)和珊瑚藻屬 (Corallina) 的有節珊瑚藻(右下圖;陳品辰攝影)。

在水中,海藻無法像陸上的維管束植物,可藉由氣孔進行氣體交換而獲得源源不絕的二氧化碳。此外,因為海水弱鹼性的環境(約 pH 8.2),當二氧化碳溶於海水中,主要是以碳酸氫根負離子 (HCO3) 形式存在,而非二氧化碳形式。

因此,當海藻進行光合作用時,面臨到二氧化碳取得不易的難題,勢必要有辦法退而求其次的使用碳酸氫根負離子,以供光合作用所需。為了解決這個難題,海藻所演化出的鈣化作用就是一種能夠幫助它本身使用碳酸氫根負離子,以提供光合作用所需的二氧化碳。在鈣化海藻細胞中,可借助細胞膜上的質子鈣反向轉運蛋白(H+/Ca2+ antiporter),將鈣離子濃縮在細胞間隙,產生高鹼度區域,使細胞間隙成為催化碳酸鈣累積的區域(反應式二)。

-----廣告,請繼續往下閱讀-----

反應式二(鈣化作用):

CO+ Ca2+ + H2O → CaCO3 + 2H+

在質子鈣反向轉運蛋白運輸鈣離子到細胞間隙的同時,另一方面則將氫正離子運輸到細胞外產生出高酸性區域,使氫正離子能夠與細胞外海水中的碳酸氫根負離子反應,使鈣化海藻間接使用水中的碳酸氫根負離子,產生出高濃度二氧化碳擴散至細胞內(反應式三)。

反應式三(碳酸氫根負離子使用):

2H+ + 2HCO3 → 2CO2+ 2H2O

希望以上這些複雜的化學反應式在還沒有把你搞得暈頭轉向前,你已看出鈣化海藻利用細胞間隙的碳酸鈣累積的策略,竟然可以協助藻體細胞獲得高濃度的二氧化碳,供光合作用所需。

落碳歸根,化作藻礁護地球

到這裡為止,我們不禁會聯想過去所學的鈣化作用反應,當鈣離子與碳酸氫根負離子反應,除了合成出碳酸鈣,也會釋放出大量的二氧化碳(反應式四)。

反應式四(動物鈣化作用):

Ca2+ + 2HCO3 → CaCO3 + CO2 + H2O

既然如此,那鈣化作用豈不是不能降低大氣中的二氧化碳,反而增加大氣二氧化碳的濃度?沒錯,骨骼形成的確是一種釋放二氧化碳的過程。然而,別忘了,鈣化海藻是能夠行光合作用的生物,雖然藻體因鈣化作用間接使用了水中碳酸氫根負離子,而產生細胞外高濃度二氧化碳,但這些二氧化碳會進一步被藻體的光合作用反應使用殆盡。

-----廣告,請繼續往下閱讀-----

因此,當我們結合反應式一的光合作用、反應式二的鈣化作用和反應式三的碳酸氫根負離子使用,鈣化海藻的光合作用確確實實是一個降低外界二氧化碳,產生碳酸鈣、葡萄醣跟氧氣的化學反應(反應式五)。

反應式五(鈣化海藻光合作用):

Ca2+ + 2HCO3 → CaCO3 + CH2O + O2

想像一下,當殼狀珊瑚藻以約 7500 年的時間,將碳酸鈣層層堆疊建構出如桃園藻礁長達 27 公里的藻礁,這些礁體可以說是一個長期封存大氣二氧化碳的碳吸存裝置。除了殼狀珊瑚藻建構的藻礁,同樣屬於珊瑚藻科的有節珊瑚藻,更在近年被發現竟然也有合成木質素的能力,趨同演化下,以抵抗強浪的拍打。

因此,可以想見珊瑚藻死後的有機碳也能像維管束植物一般,碳埋葬於淺海沉積物中。整合文獻資料,根據粗算,珊瑚藻的有機碳(例如木質素)或無機碳(例如碳酸鈣),全球每年約有 1.6 × 109 公噸的碳可藉由它們的碳埋葬或生物礁體建構被吸存起來。

殼狀藻礁。圖/flickr

把碳封起來,環境救回來

海藻還有另一種進行碳吸存的方式,是藉由將生長在岩岸的海藻藻體,剝落後漂移沉降到能夠碳吸存的環境中被保存下來。舉例來說,許多褐藻(例如昆布、馬尾藻或囊藻)具有氣囊結構,能夠使剝落的藻體在海洋中漂移一段時間。但這些氣囊結構,以馬尾藻為例,實驗指出約在藻體剝落 5 小時以後,就會在洋流外力影響下崩解使得藻體沉降。

-----廣告,請繼續往下閱讀-----

因此,當這些剝落的藻體漂移沉降到淺海沉積物上,在尚未被微生物完全分解前,即已埋葬於這些沉積物中。根據最近研究指出,利用穩定碳同位素分析技術,科學家發現在淺海海草床或紅樹林的沉積物中,約有 50-60% 的碳是來自於海藻或其它非維管束植物之初級生產者,顯示絕大多數海藻雖不具木質素,但其有機碳確實能夠搶在微生物分解前被封存於這些淺海沉積物中。

漂浮在東沙內環礁的亨氏馬尾藻(Sargassum henslowianum;上圖)及羊棲菜馬尾藻(S. fusiforme;左下圖)。白色箭頭為羊棲菜馬尾藻具有氣囊的小葉(右下圖)(劉少倫攝影)。

此外還有個非常類似生物幫浦的機制可以幫助碳封存。生長在沿海岩岸的海藻,如果位於海底峽谷附近,其剝落的藻體很容易由淺海經海底峽谷一路滑落到深海,或漂移到大洋並沉降至深海,使得這些藻體在深海低溫下埋葬於深海沉積物中,不受到微生物分解。由文獻資料粗算得知,藉由海藻有機碳在淺海碳埋葬或深海沉降方式,可貢獻全球每年約有 1.73 × 108 公噸的碳被封存起來。其中,約有 88% 是由深海沉降所貢獻的。

同樣也是粗略估算,在沿海生態系中的維管束植物(海草、紅樹林和鹽草)的有機碳,全球每年約有 1.21 × 108 公噸的碳可藉由淺海碳埋葬封存起來。相較於海藻的碳吸存能力,顯然海藻具有與沿海這些維管束植物相當或更高的碳吸存量。綜合這些研究,我們開始了解到,沿岸海藻可藉由四種不同的方式來達到碳吸存的生態功能,分別為鈣化作用礁體建構、木質素合成、淺海碳埋葬及深海沉降。

海藻碳吸存示意圖。
劉少倫繪

檢視台灣的藍碳生態系

不像沿海生態系中的維管束植物,海藻的碳吸存長期被學界所忽視。有鑑於雨後春筍般的研究證據,Krause-Jensen 等人於 2018 年在國際著名期刊 《Biology Letters 》以藍碳大象來描述海藻在藍碳中的貢獻,並呼籲學界應開始正視海藻在全球藍碳舞台已佔有舉足輕重的地位。

-----廣告,請繼續往下閱讀-----

排除海藻在藍碳的貢獻,好比鴕鳥心態,將無法有效的進一步管理保育這些能夠減輕氣候變遷的藍碳生態系,並可能輕忽並破壞這些藍碳生態系;當這些尚未被好好了解的藍碳生態系消失後,將有可能是全球氣候變遷下壓垮駱駝的最後一根稻草。

舉例來說,臺灣最近鬧得沸沸揚揚的大潭藻礁生態系保育議題,政府希望在這個區域建置第三天然氣接受站,以提高臺灣未來石化燃料天然氣的使用量進行發電。然而,在這樣工程政策的背後,似乎並未意識到大潭這一片藻礁在藍碳中的貢獻,使得臺灣不僅無法遵守全球在 2015 年所簽訂巴黎協議以降低溫室氣體的排放外,可能更進一步摧毀能夠降低溫室氣體的藍碳生態系。

臺灣四周環海,具有多樣的沿海藍碳生態系,包括墾丁的海草生態系、西海岸的紅樹林生態系、西北部的藻礁生態系及東海岸鄰近海底峽谷的海藻生態系。然而,對於臺灣周遭這些藍碳生態系的碳吸存,許多基礎研究資料仍舊不明。在氣候變遷下的臺灣,了解我們四周海域藍碳的價值,是臺灣人身為全球公民一份子責無旁貸的責任。

了解台灣四周海域藍碳的價值,是臺灣人身為全球公民一份子責無旁貸的責任。圖/pixabay

參考文獻

  1. Martone P.T., Estevez J.M., Lu F., Ruel K., Denny M.W., Somerville C., Ralph J. 2009. Discovery of lignin in seaweeds reveals convergent evolution of cell-wall architecture. Current Biology 19: 169-175.
  2. van der Heijden L.H., Kamenos N.A. 2015. Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12: 6429-6441.
  3. Krause-Jensen D., Duarte C.M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience 9: 737-742.
  4. Krause-Jensen D., Lavery P., Serrano O., Marbà N., Masque P., Duarte C.M. 2018. Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biology Letters 14: 20180236.

本文轉載自MiTalkzine,原文《海洋中默默耕耘的藍碳大象》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

3

4
6

文字

分享

3
4
6
使用「藍碳」捕捉二氧化碳的速度比森林快四倍!這個方法可行嗎?——《圖解全球碳年鑑》
商業周刊
・2022/10/05 ・4523字 ・閱讀時間約 9 分鐘

沿海濕地中的藻類、海草、紅樹林、鹽沼、和其他植物在生長過程中會吸收和捕獲二氧化碳。沿海和海洋生態系統捕獲和儲存二氧化碳的方式,稱之為「藍碳」。

被封存在海底的碳有一半以上來自這些沿岸的森林,它們捕獲二氧化碳的速度比傳統森林快了 4 倍,因為大部分的碳都進入幾米深的潮濕土壤中。以這種方式捕獲碳可以將之從大氣層中移除,降低空氣中二氧化碳的總含量。

1 公頃的紅樹林每年可以捕獲多達 8 噸的二氧化碳,遠比 1 公頃熱帶森林所能捕獲的量還要多。

在過去半個世紀以來,世界上約 30% 到 50% 的紅樹林遭到破壞

1 公頃的紅樹林每年可以捕獲多達8 噸的二氧化碳,遠比1 公頃熱帶森林所能捕獲的量還要多。圖/商業週刊

土壤的碳儲存方式

土壤是有生命的。當泥土被無數的有機微生物寄居時,就變成了土壤,成為植物生長的重要基質。

土壤還將世界上大量的碳儲存在一種物質當中,也就是所謂的土壤有機質(soil organic matter,SOM)。有機一詞在此並不是指沒有化肥或殺蟲劑,而是指存在大量的碳。通常土壤有機質含有 50% 到 60% 的碳。大多數用於農業的土壤含有 3% 到 6% 的有機質。

-----廣告,請繼續往下閱讀-----

當植物原料(如葉子或莖)凋零掉落到土地上時,會被土壤中的微生物分解,這個過程將植物轉化為碳,並產生有機質。碳被封存在土壤中,不再以二氧化碳的形式釋放到大氣中。

當植物原料凋零掉落到土地上時,會被土壤中的微生物分解,這個過程將植物轉化為碳,並產生有機質。圖/Pixabay

犁田耕作會破壞土壤有機質和碳的儲存。耕地時,會使有機質暴露地表,更容易被微生物利用,迅速消耗土壤有機質,將二氧化碳釋放到大氣層中。每年由於耕作、侵蝕、或與氣候相關的土壤變化(如永久凍土融化),造成儲存在土壤中大約 10 到 20 億噸的碳,以二氧化碳的形式釋放回大氣層中。

土壤有機質可以保留或重建,使得大氣中的二氧化碳返回土壤長期封存。農民在施肥、將植物廢棄物(如玉米秸稈)留在田間進行分解、或種植覆蓋作物時,會增加土壤有機質。覆蓋作物是在生長季節過後、田間空無作物時種植,通常是草或三葉草,根部很深,能穿透土壤。如果在種植新的經濟作物之前讓覆蓋作物在田間分解,能夠顯著增加土壤中的有機質和碳。

最小化耕作(稱為保護性耕作)是另外一種防止土壤有機質流失(或使土壤慢慢再生)的方法。其中所謂的免耕種植,是指利用專門的播種機將種子放入一小塊翻鬆的土壤中,因此無須翻耕整片田地。

-----廣告,請繼續往下閱讀-----

讓土壤恢復健康

泥土並不完全相同,土壤的養分含量會隨著時間根據其處理方式、和所處的環境而發生變化。

世界上三分之一的土壤已經退化到幾乎無法再支持動植物生存的地步。主要的一些原因是:

  • 土壤耕作。
  • 牛群過度放牧。
  • 砍伐和焚燒樹木和植物(砍燒耕作法)。
  • 未在冬季種植覆蓋作物。
  • 覆蓋物不足。

亞洲、歐洲、北美和南美的大型工業化農場,由於大量重植大豆、小麥、大米和玉米等商品,因而加劇了土壤侵蝕。市場和債務的經濟壓力使可持續性農業做法在短期內難以實施。

由於大量重植大豆、小麥、大米和玉米等商品,因而加劇了土壤侵蝕。圖/Pixabay

從生產的食物品質到大氣中的碳含量,土壤健康都具有深遠的影響。土壤很健康時,可以平衡水循環、並發揮避震作用以防止洪水和侵蝕。1930 年代美國西部的沙塵暴侵襲(Dust Bowl)、和 2017 年波多黎各的洪水災害,都是氣候變化的災難性衝擊、和土壤侵蝕造成的自然災害實例。這些變化會對農業產生重大影響。

-----廣告,請繼續往下閱讀-----

根據美國農業部的說法,農民可以透過 4 種方式創造更好的土壤:

盡量減少干擾

  • 限制耕作。
  • 使化學品發揮最大效益。
  • 牲畜輪替。

強化土壤覆蓋

  • 種植覆蓋作物。
  • 使用有機覆蓋物。
  • 保留植物殘留物。

強化生物多樣性

-----廣告,請繼續往下閱讀-----
  • 種植多種不同的覆蓋作物。
  • 利用多樣化的作物輪作。
  • 整合牲畜。

強化活根的存在

  • 減少休耕。
  • 種植覆蓋作物。
  • 利用多樣化的作物輪作。

在地方層面,一般公民可以透過投票支持可持續性農業發展的立法和政策,以及購買可持續性農業經營的產品。

房屋所有者也可以透過全年種植多樣化的植物種類,讓自然生態發展,改善其房產周圍的土壤健康,這樣能強化活躍的根系、並創造生物多樣性。

健康的土壤如何平衡水循環?圖/商業週刊

大規模改變環境的「地球工程」

如果你生起營火、或是隨意處置一台冷氣機,那就是在用個人的行動改變環境。但是,當公司和國家有意大規模改變環境時,這被稱為「地球工程」(geoengineering)。

-----廣告,請繼續往下閱讀-----

地球工程策略聽起來像是科幻電影情節似的:在太空中部署太陽遮屏,以使部分太陽能量反射回太空,或是從大氣中吸取二氧化碳,將之送入地下層變成石頭。科學家們正在探索更多這一類大規模修補地球系統的方法,使地球降溫,但迄今為止,許多方法都成本高昂、存在爭議、也充滿著風險。

以太陽遮屏為例,雖然聽起來像部署固體金屬片,但其實是模擬大規模火山噴發時的情況,在空中噴灑出濃密的灰燼和化學物質,進而阻擋太陽能量。可能在噴氣燃料中加入化學物質,以便高空飛行的噴氣機將之擴散到高層大氣中。

超級計算機預測,以這種方式噴射到平流層的反射硫粒子,可能會產生冷卻效果,當然,也會影響降雨、降雪和季節性溫度。目前還不清楚會到什麼程度,如果天氣變化太過劇烈,就不容易挽回損失,造成人人受苦。即使可以逆轉噴灑,停止這樣的計畫也可能造成危險,因為太陽射線突然少了阻擋而導致全球氣溫和溫室氣體驟升。

至於直接從空氣中吸取二氧化碳,將之儲存在地下岩層中,歐洲和北美已有 19 家工廠做到這一點,每年吸收約1 萬噸的二氧化碳。沒有人知道這種方式可以安全地封存二氧化碳多久。

-----廣告,請繼續往下閱讀-----
直接從空氣中吸取二氧化碳,將之儲存在地下岩層中,歐洲和北美已有19 家工廠做到這一點,每年吸收約1 萬噸的二氧化碳。圖/Pixabay

一旦出現洩漏,土壤、水和空氣可能會受到汙染,而從地下層收集氣體也可能引發微震和地震。不管怎麼說,這個過程若想要成功,也必須得降低成本、提高效率才行(目前每噸的成本高達 600 美元),我們將會需要相當多家的碳捕獲工廠,才可能有辦法消除每年所排放的數千兆噸二氧化碳,以實現 2050 年淨零排放。

不同於將二氧化碳儲存於地下岩層,鐵質施肥(iron fertilization)是以海洋為重點的選擇。這個過程是將硫酸鐵注入海水中,促進藻類大量繁殖以吸收二氧化碳,然後沉入海底。成功率參差不齊,有 5% 到 50% 的藻類增殖,沉入到足以造成封存影響的深海。然而,完全有效可能需要付出代價:過量的藻類或許也會引發有毒浮游植物的生長高峰,而將二氧化碳儲存在海洋可能會加速海水酸化。

將二氧化碳儲存在海洋可能會加速海水酸化。圖/Pixabay

地球工程是一個冒險的賭注,一些科學家表示,這對於全球氣溫的衝擊微乎其微,尤其是考慮到不採取行動造成不良後果的可能性很高。但也有科學家指出,仰賴快速的工業解決方案,可能會使人們和企業忽略對於實際減少碳排放、或停止使用化石燃料應付出的努力。

有無數的公司和國家正在單方面從事地球工程研究。預計這些實驗將在世界各地不同軌道上展開。

-----廣告,請繼續往下閱讀-----

利用二氧化硫進行地球工程

有些工程師提出一種低成本又快速的方法來減緩氣候變化⸺整頓碳房,同時「擺脫困境」。

就像鏡子反射光線、黑色車道在夏日變得炎熱一樣,外層大氣從太陽反射的光熱,也會對全球溫度產生影響。

30 年前,菲律賓的皮納圖博(Mt. Pinatubo)發生了 100 年來最嚴重的一次火山爆發,所噴發的灰燼造成了驚人的影響:一整年地球的平均溫度下降了約 0.5° C。透過使地球大氣層反射陽光,而不是吸收,地球變得比較涼爽。

地球工程學家正專注研究此一概念,在地球外圍創造一個人為的太陽遮屏。利用特殊裝備的大型噴氣式飛機,將不同的化學物質噴灑到高層大氣中,希望能一次改變地球多年的反射率,以人為方式降低地表的平均溫度。

透過地球工程,在大氣中添加懸浮微粒來複製火山噴發的自然效果。平流層氣溶膠注入的作用:

  • 散射太陽光。
  • 讓天空更明亮一些。
  • 反射部分太陽熱量。
  • 讓地球更涼爽一些。
透過地球工程,在大氣中添加懸浮微粒來複製火山噴發的自然效果。平流層氣溶膠注入的作用:讓天空更明亮一些。圖/Pixabay

透過在大氣中注入二氧化硫、鈦、或其他化學或礦物質,可以增加行星反照率(反射率)。

太陽能地球工程透過改變地球的輻射平衡,來治療氣候變化的徵狀,這方面的科學研究稱為「平流層氣溶膠監測」(stratospheric aerosol modification,SAM)。

據估計,這種方法一年成本不到 100 億美元,在大多數的氣候變化因應措施當中只是九牛一毛。一些專家認為,只要動用幾百架飛機即可完成,而且可以比預期更早開始。

研究人員馬克.勞倫斯(Mark Lawrence)2006年指出,「對地球工程可能性的嚴肅科學研究,如克魯岑和西塞隆(Crutzen & Cicerone)發表文章中所討論的,完全沒有得到氣候和大氣化學研究界的包容」,然而,到了 2016 年,他總結道,「在這些文獻發表後的 10 年間,雖然氣候工程仍然是極具爭議性的問題,但是在更廣泛的地球科學研究領域,那種禁忌感基本上已不存在」。

這種方法,還是有許多未經測試的現實問題:

  • 這些化學物質將會使臭氧層出現什麼反應?
  • 該由哪些國家規範這個過程、又該如何決定干預措施的地點和程度?
  • 有什麼辦法能阻止組織和國家單方面進行?若有國家想要暖化加劇、或是有億萬富翁只是想要名利,該如何處理?
  • 這將對人類、動物、植物、和海洋的健康造成什麼影響?
  • 我們準備好長久持續進行了嗎?如果沒有,一旦陷入了相對低成本和快速的解決方案,又該如何下決心停止呢?

——本文摘自《圖解全球碳年鑑:一本揭露所有關於碳的真相,並即時改變之書》,2022 年 9 月,商業周刊,未經同意請勿轉載。

所有討論 3

2

8
2

文字

分享

2
8
2
海神草堪稱「藍碳製造機」!——海草與細菌的共生,如何幫地球固碳?
陳宜龍_96
・2021/12/03 ・2703字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

聯合國氣候峰會 COP26 剛剛落幕,過程中各國代表持續協商,冀望能達成共識,為降低溫室氣體排放、降低全球氣候變遷風險而努力。除了減少二氧化碳等溫室氣體排放的「減排」措施外,如何增加碳封存的「增匯」機制,也為人所關注。尤其是保護及利用各類天然生態系良好運作,更是諸多方案的首選,因為這些區域不但是野生生物棲息地、生物多樣性的熱點,更是天然碳匯所在。

光合自營作用,能將二氧化碳轉化並固定於生物體中,達到固碳效應,並有機會長期封存。在海洋生態系中,這就是所謂的「藍碳」。沿岸環境裏,藍碳主要供獻來自於紅樹林、珊瑚礁及海草床三大生態系。然而單純提供二氧化碳不足以趨動光合作用,植物生長還需要其它營養物質,例如磷酸鹽及硝酸鹽氮。

近期《自然》(Nature)期刊的研究報告指出,單位面積儲碳量高於陸地森林的海草床,其植株根部的內共生固氮細菌對於海草儲碳的效果功不可沒[1]

被譽為「地中海之肺」的海神草。具備固碳能力強大且長壽的特質。圖/維基百科

海草的固氮能力在「根系」

許多海草生長旺盛的區域,幾乎量測不到含氮營養鹽。過往研究學者都以為海草是從周圍海水及沉積物中吸收其它微生物固氮後的產物。沒想到,來自地中海的海神草(Posidonia oceanica,又譯為大洋海神草)獲取氮源的策略,居然相仿於陸地上豆科植物與根瘤菌間互利共生的夥伴關係。一樣都具備固氮能力,且來自根系內部特定的共生細菌。

-----廣告,請繼續往下閱讀-----

這篇研究[1]從巨觀到微觀,進行多維空間尺度分析;利用不同時間尺度的資訊來闡述過程機制;並採取次世代及三代定序的優勢解晰細菌群落消長,並從總體基因體、比較基因體及轉錄體分析指徵功能基因的變化。多樣化研究手段的結果都支持作者的觀點。

從單一植株根系添加穩定氮同位素的實驗發現,海神草固氮能力在根系,且在 24 小時內,就有高達 20% 的氮從根系轉移到葉片;再者,該植物最高的固氮速率來自夏季植株,此時環境中的無機氮濃度較其它季節低,甚至低於偵測極限。

與細菌的共生,讓海神草可旺盛固氮!

菌相分析的結果顯示,植株部位與周圍沉積物的細菌群落組成不同;有明顯固氮能力時的根系又異於沒固氮時期者,且迥異於與沒此功能的葉部組織。屬於伽瑪變型菌的 Celerinatantimonas 是造成差異最主要分類群。

從 16S 核醣核酸序列相似程度來區分,與此分類群最近似的物種是分離自鹽澤植物根部、具固氮能力的細菌 Celerinatantimonas diazotrophica。因此,作者命名該新種細菌為 Candidatus Celerinatantimonas neptuna (Ca. C. neptuna)。

-----廣告,請繼續往下閱讀-----

作者進一步利用螢光原位雜交法(fluorescence in situ hybridization)這項顯微技術,發現夏季時,海神草根部內的細菌細胞數量,高達 80% 都是 Ca. C. neptuna,並且分布於根部細胞間隙及細胞內部。再搭配 nanoSIMS 這種影像質譜儀對每個樣本的氮同位素比值進行奈米尺度解析。

結果發現,先前穩定氮同位素添加實驗時的同位素訊號,就出現在這新種細菌的細胞內,強烈暗示在夏季時分,海神草旺盛的固氮作用,就是靠這種細菌幫的忙。

Ca. C. neptuna的基因體圖譜。海神草旺盛的固碳作用,得利於共生的固氮細菌Ca. C. neptuna 。圖/Nature

海神草提供「糖」,讓根部細菌頭好壯壯!

除了前面提到生理測試支持「固氮作用由海神草根部共生細菌完成」的論點外,該研究進一步提供基因體及轉錄體的證據。

作者從海神草根部總體基因體序列組裝出 Ca. C. neptuna 的基因體(metagenomic-assembled genome),並在基因註解後發現,該細菌具備固氮作用必要的基因,而且這些基因在海神草顯著固氮時期也有較高的轉錄作用。

-----廣告,請繼續往下閱讀-----

與此同時, 海神草可能提供蔗糖給這類細菌作為碳源及能量所需,因為較高的轉錄作用也反應在細菌的胞外蔗糖分解、糖類運輸蛋白及涉及糖解作用等特定的功能基因。

除了以上直接涉及氮、碳循環外,作者在該細菌基因體及轉錄體中也發現許多與兼性內共生(facultative endophytic symbiont)有關的指標基因。

這些參考指標是基於前人研究陸生植物與內共生細菌的夥伴關係而來。例如:涉及運動及固著的基因(flaAflp)、群體感知(quorum-sensing)調節有關的基因(luxR)、去除過氧化物毒害作用的基因(dps,ahpC/F)。這些基因是跨物種間建立互利關係的指標因子。

Ca. C. neptuna 的共生關係中,海神草可能提供蔗糖作為其碳源及能量所需。圖/Nature

海神草的共生固氮菌是如何獲得?這篇文章並沒有進行相關實驗。從演化觀點來看,海草約在一億年前由陸域開花植物遷移到海洋環境。長期適應、演化的結果,其陸域型根部菌相被海洋微生物所取代。

-----廣告,請繼續往下閱讀-----

從細菌的親緣樹推測,Ca. C. neptuna 的祖先可能來自海岸環境,在缺乏含氮營養鹽下獲得固氮的能力,並與海洋開花植物形成緊密的共生關係。

近期還有一篇文章同樣探討海洋缺氧區域的固氮作用。研究人員的數學模式指出:固氮作用也可發生在海洋的無光區(aphotic ocean),在浮游生物活體和死亡殘體所聚合的顆粒之中,也就是所謂的海洋雪(marine snow particles),其內部的缺氧區2。透過這兩項研究,顯示海洋氮元素循環還有很多值得探究的秘密。

參考資料

  1. Mohr, W., Lehnen, N., Ahmerkamp, S. et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature (2021). https://doi.org/10.1038/s41586-021-04063-4
  2. Chakraborty, S., Andersen, K.H., Visser, A.W. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat Commun 12, 4085 (2021). https://doi.org/10.1038/s41467-021-23875-6

與此研究題材相關或具特定技術的部分台灣團隊:

  1. 海草床研究:中興大學生命科學系林幸助老師
  2. 運用螢光原位雜交法技術於微生物樣本:
    成功大學環境工程系:吳哲宏老師
    中央研究院生物多樣性研究中心:湯森林老師
  3. nanoSIMS 平台:中央研院院「奈米級二次離子質譜儀實驗室
  4. 總體基因體序列組裝及分析:台北醫學大學醫學資訊研究所吳育瑋老師

所有討論 2

0

3
1

文字

分享

0
3
1
絕美的海岸線——彰化沿海的鷸鴴景觀
自然保育季刊_96
・2021/07/02 ・5447字 ・閱讀時間約 11 分鐘

  • 本文轉載自特有生物研究保育中心,《自然保育季刊》第 113 期
  • 作者 / 蔡芷怡|社團法人中華民國野鳥學會環境計畫專員、丁宗蘇|國立臺灣大學森林環境暨資源學系教授、林佳祈|國立臺灣大學森林環境暨資源學系碩士生、沈芳伃|國立臺灣大學森林環境暨資源學系碩士生

夏季來到彰化海岸,迎面而來便是熾熱的陽光和強勁的海風。王功漁港的街道飄出陣陣海鮮的香氣。 芳苑的灘地上,溫厚的黃牛拉著車,踏著悠閒地腳步,載著觀光客到灘地採蚵,而這些黃牛就被暱稱為「海牛」。大朋友小朋友興奮地拿著鏟子和水桶,在漢寶溼地的泥灘中挖掘各色的貝類;同時,招潮蟹揮舞著大螯,彈塗魚扭動著身子,點綴整個畫面。 但您是否有注意過,在灘地上也有一群保護色極佳的小小鳥兒,用多樣形狀的鳥喙,勤懇地捕食泥灘中的貝類、蠕蟲、螃蟹……等生物,牠們是鷸和鴴,靜靜地生存在這片食物豐富的彰化海濱,是我 (本文第一作者,下同) 非常著迷的鳥類類群。

傍晚的彰化海岸風情。圖/鍾上瑋攝

過去許多蚵農和牛一起到泥灘地幫忙運蚵,現在只有在彰化海岸比較容易看到「海牛耕蚵田」 這樣的場景。許多海牛們也轉型為觀光,載著遊客們下海挖蚵、欣賞風景。讀者們有興趣可以來看看可愛的海牛,但是蚵農們年紀越來越大,也希望有後輩能繼承這個文化。

是什麼?

一般賞鳥人說到的鷸鴴鳥類,通常指鴴形目 (Scolopacidae) 下,鷸科(Scolopacidae)、鴴科 (Charadriidae) 、長腳鷸科 (Recurvirostridae) 及蠣鷸科 (Haematopodidae) 等水鳥。這些鳥有比例較長的腳和鳥喙,方便牠們在淺水中涉水覓食。不同的鷸鴴,多樣的鳥喙擺在一起看,就像是一組設備齊全的工具箱,處理不同的底棲生物。東方環頸鴴 (Charadrius alexandrines) 筆直的短喙追逐灘地表面的小蟲;同樣有著強健短喙的翻石鷸 (Arenaria interpres) 就如牠的名字,頂開灘地上的石頭,找尋躲藏其中的小動物。

反嘴鴴用上翹的嘴搜尋淺水中的小生物。圖/鍾上瑋攝

反嘴鴴 (Recurvirostra avosetta) 用上翹的纖細嘴喙撩動水體,捕捉水中小生物。蠣鴴 (Haematopus ostralegus) 用長而銳利的喙,專挑貝類和螺類,撬開後大快朵頤。中杓鷸 (Numenius phaeopus) 與大杓鷸 (N. arquata) 長而下彎的喙,鑽出泥灘中深層的生物。嘴喙從短到長,有筆直、上翹、下彎的形狀,還有或堅硬或柔軟的質地,全方位處理泥灘地中不同的生物,讓人不得不讚嘆自然的奧妙,透過不同的形狀區隔獵物,也可以避免彼此間的競爭。

彎嘴濱鷸換上橘紅色的繁殖羽。圖/蔡芷怡攝

鷸鴴大多屬於候鳥,會隨著季節遷徙,臺灣對牠們來說,是一個南來北往的中繼站。在秋冬時期,樸素的灰褐色讓牠們不容易被發現,但進入繁殖期後,會換上亮麗的羽衣 (plumage)。彎嘴濱鷸 (Calidris ferruginea) 換上一身橘紅色的外衣,大濱鷸 (C. tenuirostris) 也以橘紅色調挑染原本灰褐的羽毛。黑腹濱鷸 (C. alpine) 將腹部的羽毛繪成一幅黑色的水墨。太平洋金斑鴴 (Pluvialis fulva) 也打底了黑色的腹面,背側刷上絢麗的金色。入春後 (大約3、4月) 去尋找這些鳥兒,就有機會看到牠們換上精緻美麗的彩羽。

-----廣告,請繼續往下閱讀-----
太平洋金斑鴴換上黑配金的繁殖羽。圖/鍾上瑋攝

在沿海地帶——鷸鴴的棲地

沿海地區依植物組成可以概分為草澤 (marsh) 和林澤 (swamp)。在臺灣,草澤常見的優勢植物有蘆葦 (Phragmites communis) 或一些禾本科 (Poaceae)、莎草科 (Cyperaceae) 植物,例如以雲林莞草 (Bolboschoenus planiculmis) 為主的高美溼地。林澤則以紅樹林 (mangrove) 為主,如關渡的水筆仔 (Kandelia obovata) 紅樹林;芳苑溼地的海茄苳林 (Avicennia marina),部分地區有水筆仔混生;四草野生動物保護區以海茄苳為主,散生部分欖李 (Lumnitzera racemosa)。這些沿海植物形成不同的底棲結構,孕育不同的底棲生物相,也影響著鷸鴴棲息與否。彰化的沿海地貌主要為大面積的泥灘地 (mudflat),部分區域有紅樹林生長 (國家重要濕地保育計畫─彰化海岸永續整體規劃成果報告 2017)。

三趾濱鷸 ( Calidris alba ) (左二) 和翻石鷸 ( 左一與右一 ) 尋找著淺層泥灘地中的食物。
圖/蔡芷怡攝

根據上述報告,芳苑鄉的紅樹林總面積有 22 公頃,其中漢寶溪、後港溪與二林溪之溪口為紅樹林覆蓋度較高的區域。另外,在彰化沿海也有部分草澤,面積最大的草澤在大城溼地,一些分布於線西鄉、漢寶溼地,主要植被為外來種的互花米草 (Spartina alterniflora)。互花米草已經入侵多處的海岸環境,改變了泥灘地的底棲生物相。互花米草的地下根莖深且密,其根系也容易吸附重金屬 (Chen and Ma 2017),影響底棲生物的生存 (Chen 2007),許多國家都面臨相同的問題。貧乏的灘地也讓鷸鴴大大降低了造訪的意願,我在 2018 年進行的鳥類調查幾乎沒有在互花米草草澤中觀察到鷸鴴。臺中高美溼地互花米草的擴散情況較嚴重,互花米草生長快速,為了保護原生雲林莞草的生長空間,持續進行著移除的工程。

紅樹林生態系孕育了許多生物,鳥類的物種和數量也相當多。彰化沿海都生長著紅樹林,從小苗、 1 – 3 公尺高零星的植株,到樹高 5 – 7 公尺的茂密紅樹林皆有分布。福寶溼地的吉安水道、芳苑溼地的二林溪口幾乎都是 5 公尺以上的高大海茄苳占據。在彰化,不同的鳥類利用紅樹林的方式有所差異,對麻雀 (Passer montanus) 、白頭翁 (Pycnonotus sinensis)、綠繡眼(Zosterops simplex)等陸棲型鳥類來說,生長茂密的紅樹林就像是一個林地。

黃頭鷺在樹上休息。圖/鍾上瑋攝

臺灣的紅樹林種類不會產生鳥兒愛吃的香甜水果、種子,理論上應該不會有很多鳥棲息;而在西部平地,許多地區都開發為農田、魚塭和建築物,紅樹林就像是另一個庇護所,讓鳥兒在樹上躲藏、休息。海岸農地的區域,也可以觀察到常在農田中覓食的棕扇尾鶯 (Cisticola juncidis)、褐頭鷦鶯 (Prinia inornata)、斑文鳥(Lonchura punctulate) 們飛進紅樹林中休息、高唱。我也在沒有受潮汐影響的紅樹林中找到鳥巢,可以推測這類小型雀形目 (Passeriformes) 鳥類也把紅樹林當作棲所使用。另一類也常在海邊活動的鳥——鷺鷥,對於矮小紅樹林不屑一顧,但生長在海邊高大的紅樹林就像防風林般,是非常適合鷺鷥作為休息處和夜棲的處所 (夜晚鳥兒會群聚休息的區域) 。從觀察這些鳥類中,我們可以知道紅樹林除了是招潮蟹、彈塗魚,以及多種無脊椎動物的重要棲地外,對於陸鳥和鷺鷥來說,是可以代替陸域灌叢和樹林的補償棲地。紅樹林涵養的豐富底棲生物,是提供遠道而來的遷徙性水鳥們吃不盡的食物來源。

-----廣告,請繼續往下閱讀-----

彰化泥灘地的重要性

臺灣位在鳥類的東亞澳遷徙線 (East Asian Australasian Flyway, EAAF) 上,此路線由阿拉斯加、西伯利亞的候鳥繁殖地,延伸至澳洲、紐西蘭的度冬地,中間經過東亞、東南亞的各個國家。東亞澳遷徙線上有 492 種遷徙性鳥類,其中 64 種為國際自然保護聯盟瀕危物種紅色名錄 (The IUCN Red List of Threatened Species) 評定的受威脅鳥種 (Lin et al. 2019) 。對於長途飛行的鳥類,臺灣是一個重要的休息站 (stopover site)。大部分的遷徙性鳥類類群為鷸鴴、鷗、鷺鷥、雁鴨等,具有國際性保育地位的水鳥——黑面琵鷺 (Platalea minor) 也屬於此類。因此保留合適的棲地,在全球的水鳥保育上有著重要的地位。

在漢寶、芳苑地區可以常常看到黑嘴鷗的身影。圖/蔡芷怡攝

中部海岸在海流和潮汐的影響下,有相當大的潮差,大潮時可以達到 3.5 – 4 公尺 (交通部中央氣象局),反覆地將海中的營養物質帶到泥灘,彰化又有著中臺灣最大片的天然泥灘地,每年都吸引大量的鷸鴴來此過境與度冬。彰化的水鳥們退潮時在裸露的泥灘地中覓食,漲潮時則會飛至內陸放乾的魚塭休息,或是到農田中覓食。如果想要來看看這些可愛的過客,不妨注意潮汐的時間,也要注意海水的深度,別讓自己困在漲潮時的海中!

位於彰化的大肚溪口、漢寶溼地、芳苑溼地、濁水溪口溼地由國際鳥盟 (Bird Life International) 評定為臺灣的重要野鳥棲地 (Important Bird and Biodiversity Area, IBA),為臺灣水鳥三大熱點之一(Lin et al. 2020)。IUCN 評定為易危等級 (Vulnerable) 的黑嘴鷗 (Chroicocephalus saundersi) 在此區域穩定度冬,還有許多瀕臨絕種、珍貴稀有鳥類,如黑面琵鷺、琵嘴鷸 (Calidris pygmaea) 也曾在此棲息。不同環境因子交錯影響下,才能造就出如此美麗的野鳥天堂。

彰化泥灘地目前面臨的威脅

大肚溪口原本是中部鳥類多樣性居冠的重要棲地,無論在鳥隻數和鳥種數皆是如此。但是,在 1987 年北岸興建火力發電廠時,可能是築堤防影響了水流方向,使上游的泥沙覆蓋淤積,影響底棲生物生存。大肚溪口曾經是全臺大杓鷸數量最多的區域,2008 年卻發現分布地明顯改變,轉而停留在芳苑地區的泥灘地 (臺灣重要野鳥棲地手冊第二版) 。另一個案例為延宕建設了 20 年的台 61 線王功到芳苑段的道路工程。由於直接貼著海岸線興建道路,截斷了水鳥前往灘地和內陸的路線,因此受到環境保育人士的關切與抗爭。當初若重新規劃路線會造成工程的延遲,為了鳥類更動路線受到當地居民的反對。經過雙方的抗爭與妥協後,決定將道路在福寶溼地至王功段向內陸後退,建造在多為廢棄魚塭及廢棄農田的土地上,並在芳苑溼地段道路架設隔音牆,減少車輛噪音。鷸鴴對於噪音和震動的容忍程度還沒有確切的定論,如此修正是否能減少對鳥類的干擾,還需進一步的評估。

-----廣告,請繼續往下閱讀-----
大杓鷸現在棲息在芳苑一帶,有非常長的喙,捕捉躲在深處的無脊椎生物。圖/鍾上瑋攝

任何一個工程建設的衝擊,對環境來說可能都是無法挽回的。人類做的每一個決策,都應該被仔細評估,而工程結束後的生態監測也是相當重要的。

彰化泥灘地面臨的問題——紅樹林過度生長

紅樹林對於海岸有減緩海岸侵蝕、提供棲地、固碳等功效。但紅樹林長得越多、越大片就越好嗎? 關渡自然公園內,曾經有許多雁鴨和鷸鴴漫步在這片泥灘平原。園區內設置許多賞鳥牆,可以在不驚嚇動物的情況下,觀察水鳥、招潮蟹與彈塗魚。偶爾會看到園區內的員工—水牛懶懶地在草地上休息,空中偶有黑翅鳶 (Elanus caeruleus) 、黑鳶 (Milvus migrans) 或魚鷹 (Pandion haliaetus) 等猛禽飛過。豐富的溼地景觀與水鳥讓這塊灘地依據《文化資產保存法》 被劃設為自然保留區。但隨著水筆仔擴張,覆蓋了整個溪口,泥灘地漸漸陸化。這些水鳥生活在紅樹林生態系中,而其食物資源 (昆蟲、蟹類、貝類、蠕蟲等無脊椎動物) 卻以生活在泥灘地為主,若泥灘地完全被覆蓋,不利於水鳥們停棲、覓食,也會改變底質結構,使灘地逐漸陸化。

彰化地區高密度紅樹林分布之區域。圖/Esri 地圖服務:Landsat 衛星影像

2012 年在淡水河流域的研究已證實,在長滿紅樹林的淡水河流域,以大型機具挖掉紅樹林,製造一塊泥灘地,鷸鴴的數量就有明顯的增加 (Huang et al. 2012)。從關渡的案例可以看出,密度高、覆蓋度高的紅樹林對生物不一定是好的棲地,而彰化也有紅樹林擴張的區域。早年紅樹林都被認為是優良的沿海地景,政府鼓勵栽植,因此彰化沿海也有人為種植的水筆仔、海茄苳。種植的方式是沿著海堤進行條狀栽植,因此紅樹林是以平行海岸的方向擴散。目前覆蓋度最高的灘地位於後港溪口與二林溪口,以海茄苳為主要樹種。後港溪口周圍就是著名的觀光區王功漁港;二林溪口位於芳苑普天宮,現在是大杓鷸在彰化的主要棲地,這兩個區域樹多的地方幾乎沒有鷸鴴利用。2018 年的鳥類調查 (蔡芷怡 2019) 可以看出陸化的紅樹林中,鳥類組成差異甚大,紅樹林覆蓋度高的鳥類以麻雀、白頭翁為主,覆蓋度低及沒有樹的泥灘地,鳥種以鷸鴴為主。

為什麼鷸鴴都選擇在空曠的泥灘地呢? 目前回顧文獻的其中一個原因,與他們的避敵策略有關 (Dekker and Ydenberg 2004)。鷸鴴的避敵方式通常傾向在空曠的地方,能夠早一步發現掠食者。透過群聚覓食,當其中一隻看到敵人時便會群體驚飛。也有研究指出黑腹濱鷸越靠近海岸線 (沿岸植物生長處) ,被遊隼 (Falco peregrinus) 捕食的機率越高,可以看出跟陸域的鳥喜歡躲在隱蔽處的策略有所不同。第二個原因可能很單純地,這些區域的無脊椎動物豐富度高,自然吸引許多鷸鴴來覓食。

-----廣告,請繼續往下閱讀-----
每年的過境期、度冬期,都有相當大量的鷸鴴在漲潮時停在魚塭休息,非常壯觀。圖/蔡芷怡攝

由於彰化的泥灘地範圍非常大,幾塊覆蓋度高的紅樹林尚未覆蓋整個沿海地區的泥灘地,但若有持續大範圍生長,可能就需要專家評估是否影響水鳥的生存。

彰化地區的沿海泥灘地並未列在《濕地保育法》中定義之國家級溼地,但是其溼地之功能、無脊椎動物,以及鳥類的資源都是非常豐富且無法取代的。若企業和政府要利用土地發展工業,以及近期的新興綠能產業─離岸風機與光電板的架設,很大的可能會選擇這塊溼地為目標。希望讀者們能夠共同來重視這塊土地的價值,留給這些水鳥們一個好的庇護所。

自然保育季刊_96
15 篇文章 ・ 12 位粉絲
自然保育季刊為推廣性刊物,以推廣自然教育為宗旨,收錄相關之資源調查研究、保育政策、經營管理及生態教育等成果,希望傳達自然科普知識並和大家一起關注自然!