1

10
1

文字

分享

1
10
1

藍眼淚不流淚,守護地球的藍碳

MiTalk
・2019/01/25 ・5192字 ・閱讀時間約 10 分鐘 ・SR值 533 ・七年級

-----廣告,請繼續往下閱讀-----

作者 / 劉少倫
東海大學生命科學系副教授

自從 17 世紀工業革命推動了全球化的工業發展,將原本封存在地底或深海地層中的石化燃料(例如煤、天然氣等),轉化成大量溫室氣體(主要是二氧化碳),釋放到大氣;這些溫室氣體,宛如掙脫地獄枷鎖的惡魔,在人類的貪婪中,以非常快的速度加熱全球氣溫,並加劇全球氣候的改變。

這幾年,我們對極端氣候的感觸似乎更為強烈,聽著以下這些新聞:南歐和東京夏季更久更高溫的熱浪、北極圈創紀錄的夏季高溫、南北極冰川大量的崩解、臺灣五月竟然創下比夏季更高的溫度、澳洲大堡礁珊瑚因高溫白化將在未來死去 60-80% 等。

每一年,新聞媒體都說這些極端氣候打破過去幾百年來的紀錄,非常「異常 (abnorm)」。

但是,隨著每一年這樣的新聞重複的發生,未來的一年又再次創下過去幾百年來的高溫紀錄,這些極端氣候的新聞已經可以說不再異常,甚至可以說這些極端氣候的新聞變成習以為常地「正常 (norm)」。因石化燃料使用及工業發展,在我們享受它們帶來的舒適便利和經濟發展的生活時,其暗黑破壞性猶如喪鐘般替人類末日開始倒數計時。

-----廣告,請繼續往下閱讀-----
各媒體有關極端氣候的報導標題(擷取自各媒體 2018 年網路報導)。圖/作者提供

藍碳是什麼,少年PI的藍眼淚?

在 1990 年,聯合國環境署 (United Nations Environment Programme)、聯合國糧食及農業組織 (Food and Agricultural Organization of the United Nations) 及聯合國教育、科學及文化組織下的政府間海洋學委員會 (Intergovernmental Oceanographic Commission, UNESCO) 共同發表聲明,指出全球海洋有 55% 的初級生產者應被視為「藍碳 (blue carbon)」。

其中,海草、紅樹林和鹽草等沿岸生態系封存大氣二氧化碳的量更遠高於熱帶雨林。但相較於熱帶雨林,這些藍碳生態系卻是以 5-10 倍的速度快速的消失,將對全球暖化狀況雪上加霜。在氣候變遷的威脅下,也因這樣的報告,激起全球政府跟海洋學界一股對這些沿岸藍碳生態系的保育重視跟研究,尤其著重在海草、紅樹林和鹽草等維管束植物為主的生態系。

由於全球暖化的影響,全球對藍碳生態系的保育跟研究更加重視。圖/pixabay

到底藍碳是什麼?海洋中怎樣的初級生產者才可以被視為藍碳?

要回答這個問題,我們首先得了解「碳吸存(carbon sequestration;抑或翻譯成碳匯及碳截存)」。當維管束植物或藻類進行產氧光合作用的同時,能夠將大氣中的二氧化碳固定,使用太陽光能,藉由光合作用化學反應產生葡萄醣(C6H12O6;或6(CH2O))及氧氣(反應式一)。因為葡萄醣主要是以碳為分子骨幹,並由生物合成,故又稱之為有機碳。

-----廣告,請繼續往下閱讀-----

反應式一(光合作用):

CO2 + 2H2O + >8 Photons → CH2O + H2O + O2

由光合作用產生出來的有機碳葡萄醣,能進一步成為主要原料,在維管束植物(例如海草、紅樹林和鹽草)體內用以合成另一種有機碳分子木質素 (lignin),支撐維管束植物生長。當維管束植物死去後,木質素是一種非常難被微生物分解利用的有機碳。

因此,這些不易分解的木質素就好比一個天然的碳吸存裝置,能抵抗微生物分解並最終埋葬於地底沉積物中,不再釋放回大氣中,達到降低大氣二氧化碳的目的,這樣碳吸存的過程我們稱為「碳埋葬 (carbon burial)」。此外,在大洋中生長的小型浮游藻類,死掉後會沉降到微生物作用不活躍的低溫深海,使得微藻殘骸無法被微生物分解而最終埋葬於深海中,這樣的碳吸存方式稱之為「生物幫浦 (biological pump)」。

整體而言,當二氧化碳藉由光合作用固定合成出有機碳後,這些有機碳能夠藉由碳埋葬或生物幫浦方式被長期儲存而不被微生物利用轉化為二氧化碳再度釋放回大氣中,這就是碳吸存的概念。相較於陸域生態系,因為海草、紅樹林、鹽草及大洋小型浮游微藻等生態系身處藍色海洋中,又具備碳吸存的功能,故以藍碳稱之。

眼淚變珍珠,鈣化的藍眼淚

在海洋中,從碳吸存的定義思考,假如初級生產者死後不能夠被碳埋葬(碳封存),或是無法有效降低大氣二氧化碳,我們就不能把它們視為藍碳。生活在海洋中的大型海藻(簡稱海藻),因不具備木質素,又大多生長在岩岸導致殘骸不易被沉積物包埋,也不像小型浮游微藻可藉由生物幫浦方式進行碳吸存,傳統認為它們藻體死亡後會快速被微生物分解,再度以二氧化碳方式釋放回大氣中,所以它們在藍碳科學討論中一直乏人問津。

-----廣告,請繼續往下閱讀-----

但近年來,隨著更多的研究,海洋生物生態學家逐漸體認到沿岸這些大量生長的海藻,其實可以藉由不同的方式具備碳吸存的生態功能,可以說是一個長期被低估的藍碳生態系。在這幾年的研究,到底海洋生物生態學家學到了什麼,讓我們得以重新認識這群默默協助我們降低大氣二氧化碳的功臣?

海藻碳吸存的其中一種方式,就是藉由鈣化作用累積碳酸鈣。在所有海藻中,約有 5% 的物種能進行鈣化作用,於藻體內累積碳酸鈣,泛稱為「鈣化海藻」;其中,以紅藻中的珊瑚藻科藻種佔最大宗且具有最多樣的鈣化海藻,珊瑚藻科的殼狀珊瑚藻更能夠層層推疊,建構與珊瑚礁在規模上不相上下的巨大生物礁體 (super reef),例如臺灣西北海岸的桃園藻礁。

桃園大潭藻礁潮間帶(上圖;劉少倫攝影)退潮後暴露出來的胞石藻屬 (Sporolithon) 的殼狀珊瑚藻(左下圖;劉少倫攝影)和珊瑚藻屬 (Corallina) 的有節珊瑚藻(右下圖;陳品辰攝影)。

在水中,海藻無法像陸上的維管束植物,可藉由氣孔進行氣體交換而獲得源源不絕的二氧化碳。此外,因為海水弱鹼性的環境(約 pH 8.2),當二氧化碳溶於海水中,主要是以碳酸氫根負離子 (HCO3) 形式存在,而非二氧化碳形式。

因此,當海藻進行光合作用時,面臨到二氧化碳取得不易的難題,勢必要有辦法退而求其次的使用碳酸氫根負離子,以供光合作用所需。為了解決這個難題,海藻所演化出的鈣化作用就是一種能夠幫助它本身使用碳酸氫根負離子,以提供光合作用所需的二氧化碳。在鈣化海藻細胞中,可借助細胞膜上的質子鈣反向轉運蛋白(H+/Ca2+ antiporter),將鈣離子濃縮在細胞間隙,產生高鹼度區域,使細胞間隙成為催化碳酸鈣累積的區域(反應式二)。

-----廣告,請繼續往下閱讀-----

反應式二(鈣化作用):

CO+ Ca2+ + H2O → CaCO3 + 2H+

在質子鈣反向轉運蛋白運輸鈣離子到細胞間隙的同時,另一方面則將氫正離子運輸到細胞外產生出高酸性區域,使氫正離子能夠與細胞外海水中的碳酸氫根負離子反應,使鈣化海藻間接使用水中的碳酸氫根負離子,產生出高濃度二氧化碳擴散至細胞內(反應式三)。

反應式三(碳酸氫根負離子使用):

2H+ + 2HCO3 → 2CO2+ 2H2O

希望以上這些複雜的化學反應式在還沒有把你搞得暈頭轉向前,你已看出鈣化海藻利用細胞間隙的碳酸鈣累積的策略,竟然可以協助藻體細胞獲得高濃度的二氧化碳,供光合作用所需。

落碳歸根,化作藻礁護地球

到這裡為止,我們不禁會聯想過去所學的鈣化作用反應,當鈣離子與碳酸氫根負離子反應,除了合成出碳酸鈣,也會釋放出大量的二氧化碳(反應式四)。

反應式四(動物鈣化作用):

Ca2+ + 2HCO3 → CaCO3 + CO2 + H2O

既然如此,那鈣化作用豈不是不能降低大氣中的二氧化碳,反而增加大氣二氧化碳的濃度?沒錯,骨骼形成的確是一種釋放二氧化碳的過程。然而,別忘了,鈣化海藻是能夠行光合作用的生物,雖然藻體因鈣化作用間接使用了水中碳酸氫根負離子,而產生細胞外高濃度二氧化碳,但這些二氧化碳會進一步被藻體的光合作用反應使用殆盡。

-----廣告,請繼續往下閱讀-----

因此,當我們結合反應式一的光合作用、反應式二的鈣化作用和反應式三的碳酸氫根負離子使用,鈣化海藻的光合作用確確實實是一個降低外界二氧化碳,產生碳酸鈣、葡萄醣跟氧氣的化學反應(反應式五)。

反應式五(鈣化海藻光合作用):

Ca2+ + 2HCO3 → CaCO3 + CH2O + O2

想像一下,當殼狀珊瑚藻以約 7500 年的時間,將碳酸鈣層層堆疊建構出如桃園藻礁長達 27 公里的藻礁,這些礁體可以說是一個長期封存大氣二氧化碳的碳吸存裝置。除了殼狀珊瑚藻建構的藻礁,同樣屬於珊瑚藻科的有節珊瑚藻,更在近年被發現竟然也有合成木質素的能力,趨同演化下,以抵抗強浪的拍打。

因此,可以想見珊瑚藻死後的有機碳也能像維管束植物一般,碳埋葬於淺海沉積物中。整合文獻資料,根據粗算,珊瑚藻的有機碳(例如木質素)或無機碳(例如碳酸鈣),全球每年約有 1.6 × 109 公噸的碳可藉由它們的碳埋葬或生物礁體建構被吸存起來。

殼狀藻礁。圖/flickr

把碳封起來,環境救回來

海藻還有另一種進行碳吸存的方式,是藉由將生長在岩岸的海藻藻體,剝落後漂移沉降到能夠碳吸存的環境中被保存下來。舉例來說,許多褐藻(例如昆布、馬尾藻或囊藻)具有氣囊結構,能夠使剝落的藻體在海洋中漂移一段時間。但這些氣囊結構,以馬尾藻為例,實驗指出約在藻體剝落 5 小時以後,就會在洋流外力影響下崩解使得藻體沉降。

-----廣告,請繼續往下閱讀-----

因此,當這些剝落的藻體漂移沉降到淺海沉積物上,在尚未被微生物完全分解前,即已埋葬於這些沉積物中。根據最近研究指出,利用穩定碳同位素分析技術,科學家發現在淺海海草床或紅樹林的沉積物中,約有 50-60% 的碳是來自於海藻或其它非維管束植物之初級生產者,顯示絕大多數海藻雖不具木質素,但其有機碳確實能夠搶在微生物分解前被封存於這些淺海沉積物中。

漂浮在東沙內環礁的亨氏馬尾藻(Sargassum henslowianum;上圖)及羊棲菜馬尾藻(S. fusiforme;左下圖)。白色箭頭為羊棲菜馬尾藻具有氣囊的小葉(右下圖)(劉少倫攝影)。

此外還有個非常類似生物幫浦的機制可以幫助碳封存。生長在沿海岩岸的海藻,如果位於海底峽谷附近,其剝落的藻體很容易由淺海經海底峽谷一路滑落到深海,或漂移到大洋並沉降至深海,使得這些藻體在深海低溫下埋葬於深海沉積物中,不受到微生物分解。由文獻資料粗算得知,藉由海藻有機碳在淺海碳埋葬或深海沉降方式,可貢獻全球每年約有 1.73 × 108 公噸的碳被封存起來。其中,約有 88% 是由深海沉降所貢獻的。

同樣也是粗略估算,在沿海生態系中的維管束植物(海草、紅樹林和鹽草)的有機碳,全球每年約有 1.21 × 108 公噸的碳可藉由淺海碳埋葬封存起來。相較於海藻的碳吸存能力,顯然海藻具有與沿海這些維管束植物相當或更高的碳吸存量。綜合這些研究,我們開始了解到,沿岸海藻可藉由四種不同的方式來達到碳吸存的生態功能,分別為鈣化作用礁體建構、木質素合成、淺海碳埋葬及深海沉降。

海藻碳吸存示意圖。
劉少倫繪

檢視台灣的藍碳生態系

不像沿海生態系中的維管束植物,海藻的碳吸存長期被學界所忽視。有鑑於雨後春筍般的研究證據,Krause-Jensen 等人於 2018 年在國際著名期刊 《Biology Letters 》以藍碳大象來描述海藻在藍碳中的貢獻,並呼籲學界應開始正視海藻在全球藍碳舞台已佔有舉足輕重的地位。

-----廣告,請繼續往下閱讀-----

排除海藻在藍碳的貢獻,好比鴕鳥心態,將無法有效的進一步管理保育這些能夠減輕氣候變遷的藍碳生態系,並可能輕忽並破壞這些藍碳生態系;當這些尚未被好好了解的藍碳生態系消失後,將有可能是全球氣候變遷下壓垮駱駝的最後一根稻草。

舉例來說,臺灣最近鬧得沸沸揚揚的大潭藻礁生態系保育議題,政府希望在這個區域建置第三天然氣接受站,以提高臺灣未來石化燃料天然氣的使用量進行發電。然而,在這樣工程政策的背後,似乎並未意識到大潭這一片藻礁在藍碳中的貢獻,使得臺灣不僅無法遵守全球在 2015 年所簽訂巴黎協議以降低溫室氣體的排放外,可能更進一步摧毀能夠降低溫室氣體的藍碳生態系。

臺灣四周環海,具有多樣的沿海藍碳生態系,包括墾丁的海草生態系、西海岸的紅樹林生態系、西北部的藻礁生態系及東海岸鄰近海底峽谷的海藻生態系。然而,對於臺灣周遭這些藍碳生態系的碳吸存,許多基礎研究資料仍舊不明。在氣候變遷下的臺灣,了解我們四周海域藍碳的價值,是臺灣人身為全球公民一份子責無旁貸的責任。

了解台灣四周海域藍碳的價值,是臺灣人身為全球公民一份子責無旁貸的責任。圖/pixabay

參考文獻

  1. Martone P.T., Estevez J.M., Lu F., Ruel K., Denny M.W., Somerville C., Ralph J. 2009. Discovery of lignin in seaweeds reveals convergent evolution of cell-wall architecture. Current Biology 19: 169-175.
  2. van der Heijden L.H., Kamenos N.A. 2015. Reviews and syntheses: calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12: 6429-6441.
  3. Krause-Jensen D., Duarte C.M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience 9: 737-742.
  4. Krause-Jensen D., Lavery P., Serrano O., Marbà N., Masque P., Duarte C.M. 2018. Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biology Letters 14: 20180236.

本文轉載自MiTalkzine,原文《海洋中默默耕耘的藍碳大象》

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG

文章難易度
MiTalk
10 篇文章 ・ 5 位粉絲
MiTalk 由一群微生物領域的科學家組成,希望能讓更多人喜歡上這些有趣的小生物。MiTalkzine 是我們推出的免費電子科普雜誌,歡迎訂閱

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

3

4
4

文字

分享

3
4
4
使用「藍碳」捕捉二氧化碳的速度比森林快四倍!這個方法可行嗎?——《圖解全球碳年鑑》
商業周刊
・2022/10/05 ・4523字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

沿海濕地中的藻類、海草、紅樹林、鹽沼、和其他植物在生長過程中會吸收和捕獲二氧化碳。沿海和海洋生態系統捕獲和儲存二氧化碳的方式,稱之為「藍碳」。

被封存在海底的碳有一半以上來自這些沿岸的森林,它們捕獲二氧化碳的速度比傳統森林快了 4 倍,因為大部分的碳都進入幾米深的潮濕土壤中。以這種方式捕獲碳可以將之從大氣層中移除,降低空氣中二氧化碳的總含量。

1 公頃的紅樹林每年可以捕獲多達 8 噸的二氧化碳,遠比 1 公頃熱帶森林所能捕獲的量還要多。

在過去半個世紀以來,世界上約 30% 到 50% 的紅樹林遭到破壞

1 公頃的紅樹林每年可以捕獲多達8 噸的二氧化碳,遠比1 公頃熱帶森林所能捕獲的量還要多。圖/商業週刊

土壤的碳儲存方式

土壤是有生命的。當泥土被無數的有機微生物寄居時,就變成了土壤,成為植物生長的重要基質。

土壤還將世界上大量的碳儲存在一種物質當中,也就是所謂的土壤有機質(soil organic matter,SOM)。有機一詞在此並不是指沒有化肥或殺蟲劑,而是指存在大量的碳。通常土壤有機質含有 50% 到 60% 的碳。大多數用於農業的土壤含有 3% 到 6% 的有機質。

-----廣告,請繼續往下閱讀-----

當植物原料(如葉子或莖)凋零掉落到土地上時,會被土壤中的微生物分解,這個過程將植物轉化為碳,並產生有機質。碳被封存在土壤中,不再以二氧化碳的形式釋放到大氣中。

當植物原料凋零掉落到土地上時,會被土壤中的微生物分解,這個過程將植物轉化為碳,並產生有機質。圖/Pixabay

犁田耕作會破壞土壤有機質和碳的儲存。耕地時,會使有機質暴露地表,更容易被微生物利用,迅速消耗土壤有機質,將二氧化碳釋放到大氣層中。每年由於耕作、侵蝕、或與氣候相關的土壤變化(如永久凍土融化),造成儲存在土壤中大約 10 到 20 億噸的碳,以二氧化碳的形式釋放回大氣層中。

土壤有機質可以保留或重建,使得大氣中的二氧化碳返回土壤長期封存。農民在施肥、將植物廢棄物(如玉米秸稈)留在田間進行分解、或種植覆蓋作物時,會增加土壤有機質。覆蓋作物是在生長季節過後、田間空無作物時種植,通常是草或三葉草,根部很深,能穿透土壤。如果在種植新的經濟作物之前讓覆蓋作物在田間分解,能夠顯著增加土壤中的有機質和碳。

最小化耕作(稱為保護性耕作)是另外一種防止土壤有機質流失(或使土壤慢慢再生)的方法。其中所謂的免耕種植,是指利用專門的播種機將種子放入一小塊翻鬆的土壤中,因此無須翻耕整片田地。

-----廣告,請繼續往下閱讀-----

讓土壤恢復健康

泥土並不完全相同,土壤的養分含量會隨著時間根據其處理方式、和所處的環境而發生變化。

世界上三分之一的土壤已經退化到幾乎無法再支持動植物生存的地步。主要的一些原因是:

  • 土壤耕作。
  • 牛群過度放牧。
  • 砍伐和焚燒樹木和植物(砍燒耕作法)。
  • 未在冬季種植覆蓋作物。
  • 覆蓋物不足。

亞洲、歐洲、北美和南美的大型工業化農場,由於大量重植大豆、小麥、大米和玉米等商品,因而加劇了土壤侵蝕。市場和債務的經濟壓力使可持續性農業做法在短期內難以實施。

由於大量重植大豆、小麥、大米和玉米等商品,因而加劇了土壤侵蝕。圖/Pixabay

從生產的食物品質到大氣中的碳含量,土壤健康都具有深遠的影響。土壤很健康時,可以平衡水循環、並發揮避震作用以防止洪水和侵蝕。1930 年代美國西部的沙塵暴侵襲(Dust Bowl)、和 2017 年波多黎各的洪水災害,都是氣候變化的災難性衝擊、和土壤侵蝕造成的自然災害實例。這些變化會對農業產生重大影響。

-----廣告,請繼續往下閱讀-----

根據美國農業部的說法,農民可以透過 4 種方式創造更好的土壤:

盡量減少干擾

  • 限制耕作。
  • 使化學品發揮最大效益。
  • 牲畜輪替。

強化土壤覆蓋

  • 種植覆蓋作物。
  • 使用有機覆蓋物。
  • 保留植物殘留物。

強化生物多樣性

-----廣告,請繼續往下閱讀-----
  • 種植多種不同的覆蓋作物。
  • 利用多樣化的作物輪作。
  • 整合牲畜。

強化活根的存在

  • 減少休耕。
  • 種植覆蓋作物。
  • 利用多樣化的作物輪作。

在地方層面,一般公民可以透過投票支持可持續性農業發展的立法和政策,以及購買可持續性農業經營的產品。

房屋所有者也可以透過全年種植多樣化的植物種類,讓自然生態發展,改善其房產周圍的土壤健康,這樣能強化活躍的根系、並創造生物多樣性。

健康的土壤如何平衡水循環?圖/商業週刊

大規模改變環境的「地球工程」

如果你生起營火、或是隨意處置一台冷氣機,那就是在用個人的行動改變環境。但是,當公司和國家有意大規模改變環境時,這被稱為「地球工程」(geoengineering)。

-----廣告,請繼續往下閱讀-----

地球工程策略聽起來像是科幻電影情節似的:在太空中部署太陽遮屏,以使部分太陽能量反射回太空,或是從大氣中吸取二氧化碳,將之送入地下層變成石頭。科學家們正在探索更多這一類大規模修補地球系統的方法,使地球降溫,但迄今為止,許多方法都成本高昂、存在爭議、也充滿著風險。

以太陽遮屏為例,雖然聽起來像部署固體金屬片,但其實是模擬大規模火山噴發時的情況,在空中噴灑出濃密的灰燼和化學物質,進而阻擋太陽能量。可能在噴氣燃料中加入化學物質,以便高空飛行的噴氣機將之擴散到高層大氣中。

超級計算機預測,以這種方式噴射到平流層的反射硫粒子,可能會產生冷卻效果,當然,也會影響降雨、降雪和季節性溫度。目前還不清楚會到什麼程度,如果天氣變化太過劇烈,就不容易挽回損失,造成人人受苦。即使可以逆轉噴灑,停止這樣的計畫也可能造成危險,因為太陽射線突然少了阻擋而導致全球氣溫和溫室氣體驟升。

至於直接從空氣中吸取二氧化碳,將之儲存在地下岩層中,歐洲和北美已有 19 家工廠做到這一點,每年吸收約1 萬噸的二氧化碳。沒有人知道這種方式可以安全地封存二氧化碳多久。

-----廣告,請繼續往下閱讀-----
直接從空氣中吸取二氧化碳,將之儲存在地下岩層中,歐洲和北美已有19 家工廠做到這一點,每年吸收約1 萬噸的二氧化碳。圖/Pixabay

一旦出現洩漏,土壤、水和空氣可能會受到汙染,而從地下層收集氣體也可能引發微震和地震。不管怎麼說,這個過程若想要成功,也必須得降低成本、提高效率才行(目前每噸的成本高達 600 美元),我們將會需要相當多家的碳捕獲工廠,才可能有辦法消除每年所排放的數千兆噸二氧化碳,以實現 2050 年淨零排放。

不同於將二氧化碳儲存於地下岩層,鐵質施肥(iron fertilization)是以海洋為重點的選擇。這個過程是將硫酸鐵注入海水中,促進藻類大量繁殖以吸收二氧化碳,然後沉入海底。成功率參差不齊,有 5% 到 50% 的藻類增殖,沉入到足以造成封存影響的深海。然而,完全有效可能需要付出代價:過量的藻類或許也會引發有毒浮游植物的生長高峰,而將二氧化碳儲存在海洋可能會加速海水酸化。

將二氧化碳儲存在海洋可能會加速海水酸化。圖/Pixabay

地球工程是一個冒險的賭注,一些科學家表示,這對於全球氣溫的衝擊微乎其微,尤其是考慮到不採取行動造成不良後果的可能性很高。但也有科學家指出,仰賴快速的工業解決方案,可能會使人們和企業忽略對於實際減少碳排放、或停止使用化石燃料應付出的努力。

有無數的公司和國家正在單方面從事地球工程研究。預計這些實驗將在世界各地不同軌道上展開。

-----廣告,請繼續往下閱讀-----

利用二氧化硫進行地球工程

有些工程師提出一種低成本又快速的方法來減緩氣候變化⸺整頓碳房,同時「擺脫困境」。

就像鏡子反射光線、黑色車道在夏日變得炎熱一樣,外層大氣從太陽反射的光熱,也會對全球溫度產生影響。

30 年前,菲律賓的皮納圖博(Mt. Pinatubo)發生了 100 年來最嚴重的一次火山爆發,所噴發的灰燼造成了驚人的影響:一整年地球的平均溫度下降了約 0.5° C。透過使地球大氣層反射陽光,而不是吸收,地球變得比較涼爽。

地球工程學家正專注研究此一概念,在地球外圍創造一個人為的太陽遮屏。利用特殊裝備的大型噴氣式飛機,將不同的化學物質噴灑到高層大氣中,希望能一次改變地球多年的反射率,以人為方式降低地表的平均溫度。

透過地球工程,在大氣中添加懸浮微粒來複製火山噴發的自然效果。平流層氣溶膠注入的作用:

  • 散射太陽光。
  • 讓天空更明亮一些。
  • 反射部分太陽熱量。
  • 讓地球更涼爽一些。
透過地球工程,在大氣中添加懸浮微粒來複製火山噴發的自然效果。平流層氣溶膠注入的作用:讓天空更明亮一些。圖/Pixabay

透過在大氣中注入二氧化硫、鈦、或其他化學或礦物質,可以增加行星反照率(反射率)。

太陽能地球工程透過改變地球的輻射平衡,來治療氣候變化的徵狀,這方面的科學研究稱為「平流層氣溶膠監測」(stratospheric aerosol modification,SAM)。

據估計,這種方法一年成本不到 100 億美元,在大多數的氣候變化因應措施當中只是九牛一毛。一些專家認為,只要動用幾百架飛機即可完成,而且可以比預期更早開始。

研究人員馬克.勞倫斯(Mark Lawrence)2006年指出,「對地球工程可能性的嚴肅科學研究,如克魯岑和西塞隆(Crutzen & Cicerone)發表文章中所討論的,完全沒有得到氣候和大氣化學研究界的包容」,然而,到了 2016 年,他總結道,「在這些文獻發表後的 10 年間,雖然氣候工程仍然是極具爭議性的問題,但是在更廣泛的地球科學研究領域,那種禁忌感基本上已不存在」。

這種方法,還是有許多未經測試的現實問題:

  • 這些化學物質將會使臭氧層出現什麼反應?
  • 該由哪些國家規範這個過程、又該如何決定干預措施的地點和程度?
  • 有什麼辦法能阻止組織和國家單方面進行?若有國家想要暖化加劇、或是有億萬富翁只是想要名利,該如何處理?
  • 這將對人類、動物、植物、和海洋的健康造成什麼影響?
  • 我們準備好長久持續進行了嗎?如果沒有,一旦陷入了相對低成本和快速的解決方案,又該如何下決心停止呢?

——本文摘自《圖解全球碳年鑑:一本揭露所有關於碳的真相,並即時改變之書》,2022 年 9 月,商業周刊,未經同意請勿轉載。

所有討論 3
商業周刊
12 篇文章 ・ 3 位粉絲

2

8
2

文字

分享

2
8
2
海神草堪稱「藍碳製造機」!——海草與細菌的共生,如何幫地球固碳?
陳宜龍_96
・2021/12/03 ・2703字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

聯合國氣候峰會 COP26 剛剛落幕,過程中各國代表持續協商,冀望能達成共識,為降低溫室氣體排放、降低全球氣候變遷風險而努力。除了減少二氧化碳等溫室氣體排放的「減排」措施外,如何增加碳封存的「增匯」機制,也為人所關注。尤其是保護及利用各類天然生態系良好運作,更是諸多方案的首選,因為這些區域不但是野生生物棲息地、生物多樣性的熱點,更是天然碳匯所在。

光合自營作用,能將二氧化碳轉化並固定於生物體中,達到固碳效應,並有機會長期封存。在海洋生態系中,這就是所謂的「藍碳」。沿岸環境裏,藍碳主要供獻來自於紅樹林、珊瑚礁及海草床三大生態系。然而單純提供二氧化碳不足以趨動光合作用,植物生長還需要其它營養物質,例如磷酸鹽及硝酸鹽氮。

近期《自然》(Nature)期刊的研究報告指出,單位面積儲碳量高於陸地森林的海草床,其植株根部的內共生固氮細菌對於海草儲碳的效果功不可沒[1]

被譽為「地中海之肺」的海神草。具備固碳能力強大且長壽的特質。圖/維基百科

海草的固氮能力在「根系」

許多海草生長旺盛的區域,幾乎量測不到含氮營養鹽。過往研究學者都以為海草是從周圍海水及沉積物中吸收其它微生物固氮後的產物。沒想到,來自地中海的海神草(Posidonia oceanica,又譯為大洋海神草)獲取氮源的策略,居然相仿於陸地上豆科植物與根瘤菌間互利共生的夥伴關係。一樣都具備固氮能力,且來自根系內部特定的共生細菌。

-----廣告,請繼續往下閱讀-----

這篇研究[1]從巨觀到微觀,進行多維空間尺度分析;利用不同時間尺度的資訊來闡述過程機制;並採取次世代及三代定序的優勢解晰細菌群落消長,並從總體基因體、比較基因體及轉錄體分析指徵功能基因的變化。多樣化研究手段的結果都支持作者的觀點。

從單一植株根系添加穩定氮同位素的實驗發現,海神草固氮能力在根系,且在 24 小時內,就有高達 20% 的氮從根系轉移到葉片;再者,該植物最高的固氮速率來自夏季植株,此時環境中的無機氮濃度較其它季節低,甚至低於偵測極限。

與細菌的共生,讓海神草可旺盛固氮!

菌相分析的結果顯示,植株部位與周圍沉積物的細菌群落組成不同;有明顯固氮能力時的根系又異於沒固氮時期者,且迥異於與沒此功能的葉部組織。屬於伽瑪變型菌的 Celerinatantimonas 是造成差異最主要分類群。

從 16S 核醣核酸序列相似程度來區分,與此分類群最近似的物種是分離自鹽澤植物根部、具固氮能力的細菌 Celerinatantimonas diazotrophica。因此,作者命名該新種細菌為 Candidatus Celerinatantimonas neptuna (Ca. C. neptuna)。

-----廣告,請繼續往下閱讀-----

作者進一步利用螢光原位雜交法(fluorescence in situ hybridization)這項顯微技術,發現夏季時,海神草根部內的細菌細胞數量,高達 80% 都是 Ca. C. neptuna,並且分布於根部細胞間隙及細胞內部。再搭配 nanoSIMS 這種影像質譜儀對每個樣本的氮同位素比值進行奈米尺度解析。

結果發現,先前穩定氮同位素添加實驗時的同位素訊號,就出現在這新種細菌的細胞內,強烈暗示在夏季時分,海神草旺盛的固氮作用,就是靠這種細菌幫的忙。

Ca. C. neptuna的基因體圖譜。海神草旺盛的固碳作用,得利於共生的固氮細菌Ca. C. neptuna 。圖/Nature

海神草提供「糖」,讓根部細菌頭好壯壯!

除了前面提到生理測試支持「固氮作用由海神草根部共生細菌完成」的論點外,該研究進一步提供基因體及轉錄體的證據。

作者從海神草根部總體基因體序列組裝出 Ca. C. neptuna 的基因體(metagenomic-assembled genome),並在基因註解後發現,該細菌具備固氮作用必要的基因,而且這些基因在海神草顯著固氮時期也有較高的轉錄作用。

-----廣告,請繼續往下閱讀-----

與此同時, 海神草可能提供蔗糖給這類細菌作為碳源及能量所需,因為較高的轉錄作用也反應在細菌的胞外蔗糖分解、糖類運輸蛋白及涉及糖解作用等特定的功能基因。

除了以上直接涉及氮、碳循環外,作者在該細菌基因體及轉錄體中也發現許多與兼性內共生(facultative endophytic symbiont)有關的指標基因。

這些參考指標是基於前人研究陸生植物與內共生細菌的夥伴關係而來。例如:涉及運動及固著的基因(flaAflp)、群體感知(quorum-sensing)調節有關的基因(luxR)、去除過氧化物毒害作用的基因(dps,ahpC/F)。這些基因是跨物種間建立互利關係的指標因子。

Ca. C. neptuna 的共生關係中,海神草可能提供蔗糖作為其碳源及能量所需。圖/Nature

海神草的共生固氮菌是如何獲得?這篇文章並沒有進行相關實驗。從演化觀點來看,海草約在一億年前由陸域開花植物遷移到海洋環境。長期適應、演化的結果,其陸域型根部菌相被海洋微生物所取代。

-----廣告,請繼續往下閱讀-----

從細菌的親緣樹推測,Ca. C. neptuna 的祖先可能來自海岸環境,在缺乏含氮營養鹽下獲得固氮的能力,並與海洋開花植物形成緊密的共生關係。

近期還有一篇文章同樣探討海洋缺氧區域的固氮作用。研究人員的數學模式指出:固氮作用也可發生在海洋的無光區(aphotic ocean),在浮游生物活體和死亡殘體所聚合的顆粒之中,也就是所謂的海洋雪(marine snow particles),其內部的缺氧區2。透過這兩項研究,顯示海洋氮元素循環還有很多值得探究的秘密。

參考資料

  1. Mohr, W., Lehnen, N., Ahmerkamp, S. et al. Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium. Nature (2021). https://doi.org/10.1038/s41586-021-04063-4
  2. Chakraborty, S., Andersen, K.H., Visser, A.W. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat Commun 12, 4085 (2021). https://doi.org/10.1038/s41467-021-23875-6

與此研究題材相關或具特定技術的部分台灣團隊:

  1. 海草床研究:中興大學生命科學系林幸助老師
  2. 運用螢光原位雜交法技術於微生物樣本:
    成功大學環境工程系:吳哲宏老師
    中央研究院生物多樣性研究中心:湯森林老師
  3. nanoSIMS 平台:中央研院院「奈米級二次離子質譜儀實驗室
  4. 總體基因體序列組裝及分析:台北醫學大學醫學資訊研究所吳育瑋老師

所有討論 2
陳宜龍_96
1 篇文章 ・ 4 位粉絲