0

0
0

文字

分享

0
0
0

當娜美還未出生,17 世紀的梅利號要如何抵達台灣?

研之有物│中央研究院_96
・2019/01/22 ・6666字 ・閱讀時間約 13 分鐘 ・SR值 539 ・八年級

  • 執行編輯|林婷嫻 美術編輯|張語辰

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

海洋史研究,讓我們有機會體驗「一日船員」

一日幕僚、一日玉山氣象觀測員,這些網路熱門影片,讓我們看見不同行業的甘苦。但如果回到 17 世紀,成為在中國和臺灣海域航行的荷蘭東印度公司船員,會遇到哪些情況?請先做好心理準備,可能會比在六福村坐了 20 個小時海盜船更要命~

中研院臺灣史研究所的助研究員──鄭維中,帶領我們翻開充滿海洋氣息的檔案,看看 1622-1636 年間荷蘭東印度公司人員忙些什麼。攝影│張語辰

1620 年代的玩命關頭:海上貿易

什麼是世界上最危險的職業?回到 1620 年代,答案可能是──那些從荷蘭出發,航向亞洲的指揮官、船長與水手。

1622 年夏季,荷蘭東印度公司的雷爾松 (Cornelis Reyerszoon) 指揮官率領 6 艘大型帆船和 6 艘中型快船,總計 660 人,前往攻打葡萄牙人在中國居住的澳門失敗後,轉而佔領澎湖,試圖向實施海禁的明朝尋求開放合法貿易。這時的商船艦隊,主要是依靠翻譯成荷文的葡萄牙海圖航行,但常因資訊陳舊或錯誤,而處於「船在人在、船亡人亡」的險境。

你可能有過這個經驗:從嘉義布袋搭乘客輪前往澎湖,短短 80 分鐘的船程,就暈船暈到彷彿窺見西方極樂世界。但當時的荷蘭木造帆船,僅依靠風力和潮流前進,從荷蘭歷經數個月搖晃到亞洲,除了暈船,還會遇上未知的海岸地形、惡劣天候,一不小心真的會航進西方極樂世界,因此要想辦法降低航行風險。

荷蘭商船艦隊降低風險的方法,就是在臺海兩岸進行水文探測,了解哪裡大船會擱淺、哪裡可以躲颱風等等。

1622 年 9 月 29 日,雷爾松指揮官率領的荷蘭東印度公司艦隊,在澎湖收到明朝福建官方否決開放貿易的通知。糟糕的事不只這一件,七天前才有一艘船艦「格羅寧根號」 (Groeningen) 終於找到航路返回澎湖,在此之前,這艘船歷經颱風浩劫,在臺灣海峽漂流了兩個月,如下圖所示:

1622 年 7 月 19 日格羅寧根號從澎湖出發後,遇到颱風而脫離艦隊、漂向北方,花了兩個月才航行回到澎湖。圖片來源│中研院人文社會科學研究中心─地理資訊科學研究專題中心,廖泫銘研究副技師、李玉亭專案經理;圖說重製│林洵安

綜合上述情況,雷爾松指揮官判斷:若要在這片海域完成貿易任務,甚至是武力封鎖明朝沿海的貿易路線,必須要更加了解這片海域。於是不再只依賴以前的葡萄牙海圖,而是要求所有掌舵人員:「船開到某個地方,附近有河流、灣澳、淺灘及小島,都要量測水深、以地圖方式標示,或至少要完整記錄在航海日誌中。」

鄭維中說明,格羅寧根號這些船,是由荷蘭國家或是各個城市共同出資,大家一起出錢才能造船跑那麼遠,耗費相當驚人。荷蘭東印度公司無時無刻都想著如何把這些錢賺回去,但如果船沒了,一切都免談,因此「水文探測」就是基礎且必要的工作。

水文探測的目的,至少要能告訴下一批從荷蘭出發的商船艦隊,中國和臺灣哪些海岸不要太靠近,因為大船會擱淺。或是,當荷蘭商船在陌生的海域遇到暴風,就像去六福村坐海盜船坐了 20 多個小時後,要能讓頭昏眼花的船長判斷自己可能身在何處,保住自己和船員的小命。

1622 年荷蘭東印度公司 6 名船員,在古雷半島南岸附近遇風漂流上岸,和當地居民起衝突。此處背景為銅山灣,左方一艘為維多利亞號,另一艘為 De Haan 或 Sint Nikolaas 號,皆為荷蘭中型船。圖片來源│François Valentijn, Oud en Nieuw Oost- Indiën (Dordrecht: Joannes van Braam), 1726, Vol. 4, Part II, Book 3, p. 45. ,取自國立臺灣歷史博物館藏(登錄號 2003.015.0127

水文探測有三寶,出海乖乖準備好

荷蘭水文探測紀錄包含三樣東西:海圖、海岸描述、航路指引。

荷蘭東印度公司人員,如何運用這些水文探測紀錄來航行?鄭維中舉例說明:有天,媽媽叫小明去買醬油,平常造訪的巷口雜貨店剛好休息,只好去更遠的雜貨店買。但小明不知道路,媽媽就會畫個地圖,或直接跟小明說:「從巷子口繼續直走,遇到第二個紅綠燈右轉就到了,那家雜貨店招牌是黃色的」。

上述這段例子中,地圖就像荷蘭東印度公司人員繪製的「海圖」,媽媽說明的路線就是「海岸描述」與「航路指引」,讓後續出發的荷蘭商船像小明一樣,知道該怎麼走,還有看到什麼景色就是到達目的地。

從荷蘭航向亞洲,商船艦隊要在哪裡等待起風和潮流,這些都要事先告訴船長和水手們。不像現在可以戴上 VR (虛擬實境)眼鏡體驗一遍,在 17 世紀只能依靠前人傳授的經驗。但人算不如天算,有時候航路指引表示會起風的地方,卻沒有起風,船長就得參照海圖隨機應變。

沒有起風是一個難題,風太狂又是另一種修羅場。當荷蘭商船被颱風吹到不知名的海岸,船長會等到太陽升到中午的高度之後,測量自己的緯度在哪,並搭配前人留下的海圖和海岸描述,用測深錘測量水深、觀察海岸景色,找找看自己位於何處。

左邊是測量緯度的航海士,右邊是拿著測深錘的水手。資料來源│NL-HaNA, RVD Eigen Afdrukken, inv.nr. 134-1033.,圖片取自 Het Licht der Zeevaert (航海之光),歐洲北海航海書的封面

「海圖」標有水深,而「海岸描述」的文字內容,包含:水深的描述、港灣可以看到什麼山、海邊有什麼形狀的巨石、海裡的土質等等。航行時,水手除了用測深錘測量水深,也會將測深錘往海底丟,看看錘子底部黏附上來的土質和顏色,是濕黏的黑土、或是有珊瑚礁碎屑的土等等。

綜合以上這些線索,荷蘭東印度公司人員就能推斷自己的大概位置,想辦法進行後續的貿易任務。

與繩同行:尋找看不見的水道

現今船隻運用自動且即時的探測儀(聲納)掌握水深,但回到 17 世紀,當時受雇於荷蘭東印度公司的船長和水手,沒有這個福氣。他們需要手動且費時地一次次將「測深錘」投入海中,量測目前海底有多深,避免讓船隻撞上海底的礁岩或沙丘。

在搖晃的船上,什麼是最方便的度量衡?那就是水手的雙臂長度,也就是 1 噚。一般而言,1 噚約為 6 呎。資料來源│長榮海事博物館。圖說設計│林婷嫻、林洵安
測深錘:鉛錘上繫有水錘繩。有些繩子上有做記號,代表不同的水深;或是水手用雙臂丈量放入海底的繩長,來換算水深。資料來源│長榮海事博物館。圖說設計│林婷嫻、林洵安

雖然爸媽常叮嚀「走路要看路」,但只能依靠測深錘的船長和水手,就算想看路也看不到,因為海床的高低起伏落差,都藏在蔚藍或洶湧的海平面之下。

鄭維中說明,對於當時的荷蘭中型船及大型中式帆船而言,5 噚是安全的水深,才不會因為海浪上下波動,使得船底撞擊海床。一旦進入海圖標示水深 5 噚以內的海域,船隻就要放慢速度,並且水手要與繩同行、不斷投下測深錘,就像蝙蝠用超音波的回音探測前方物件的距離,藉此尋找可以航行的水道。

海圖標示的數字,在海岸外圍是以「噚」來計算。而到了海灣內,水道的高低落差變小,就改以較細緻的「呎」來標記。畫虛線處(紅線標示)是會觸底的沙洲範圍,提醒船隻小心行駛。(編註:本文的呎指「荷呎」,荷呎規格當時並未統一,如萊因呎為 31.4 公分、阿姆斯特丹呎為 28.3 公分,採用何種標準視測量人員手頭工具與偏好而定。)圖片來源│Map of the Western Coast of Taiwan(部分), Johannes Vingboons, Atlas Blaeu, Vol. 41:08, Fol. 54-55. 感謝奧地利國家圖書館 (Österreichische Nationalbibliothek) 授權使用。圖說重製│林婷嫻、林洵安

然而,天有不測風雲。臺灣降雨集中,加上山脈的地勢落差,時而暴漲、時而消停的河水日積月累地改變出海口的深淺,尤其是臺灣西南部沙岸的河流與潟湖出海口外圍,包含潮下沙溝 (subtidal channel) 和潮下沙壩 (subtidal sandbar) 的深度變化。

例如,1634 年夏季,當時任職於臺灣的荷蘭東印度公司普特曼斯長官發現:魍港(現今布袋鎮好美里一帶)入口處的水道深度,由先前海圖標記的 7~8 呎增加到 13 呎,使原先無法進入的中型船隻,能夠駛入水道深水處停泊。

魍港這個水道深度改變,是 1633 年夏季至秋季許多颱風的傑作。颱風帶來的猛烈雨勢讓河水暴漲,強勁的河水沖到出海口後,將海口的水道挖得更深;同時,水道中被河水挖起來的沙土,會在水道周圍堆成高高低低的沙壩,若不先探測水面下的變化,一不小心就會讓船隻擱淺。

為了航行安全,當時緊急重新測繪魍港水道的海圖,並在可以停泊中型船隻的深水區旁,策畫建立「芙列辛根堡」 (Vlissingen,或譯菲力辛根) 來看守海床較深的錨地,也就是泊船區。芙列辛根堡於 1636 年 10 月左右設立,後於 1657 年 6 月因海岸地形變化而倒塌。

1633 年之前測繪的魍港海圖。藍線標示是可以航行的水道,此時水道入口處深度只有 7-8 呎(紅圈處),大型中式帆船不易出入,要小心翼翼地投測深錘前進。
圖片來源│River Matthaw (Pachang, northerly Taoyuan(部分), Johannes Vingboons, Atlas Blaeu, vol. 41:06, fol. 48-49.) 感謝奧地利國家圖書館 (Österreichische Nationalbibliothek) 授權使用。圖說重製│林婷嫻、林洵安
1636 年重新測繪的魍港海圖。此時水道入口變深至 11~12 呎(1634 年夏季一度有 13 呎深),已符合當時航行大型中式帆船的最低要求。而芙列辛根堡看守的水道之內有較深的錨地可供泊船,大約 19~20 呎深。圖片來源│Map of the Western Coast of Taiwan(部分), Johannes Vingboons, Atlas Blaeu, Vol. 41:08, Fol. 54-55. 感謝奧地利國家圖書館(Österreichische Nationalbibliothek) 授權使用。圖說重製│林婷嫻、林洵安

鄭維中接續說明:「搭配海圖,航路指引也會告訴你說,船隻先暫停在什麼地方比較安全,然後移動時,發現船頭和港口的目標(例如城堡、旗竿、樹林等)夾角呈現特定的角度即抵達定位,就可以開始尋找水道,進入港灣停泊」。

有了海圖和航路指引,會不會航行失敗呢?還是會。當時的荷蘭東印度公司人員,若是沒有當地人(沿岸漁民、海商與海盜)帶路,或是海象不佳時,船隻還是有可能卡在淺灘或碰撞礁石。

若想往內陸航行於更淺的河道,例如當時溝通台江內海與魍港水域交通的「漁人水道」,就得換成更小更輕的舢舨船或竹筏。因為漁人水道非常淺,多半只有 0.6-0.9 公尺深,少數最深處也只有 1.5 公尺,萬一擱淺才不會撞壞船體結構,需要時甚至可以把舢舨船扛起來或拖著走。

自己的海圖自己畫:減少船難與商業成本

1620 年代,荷蘭東印度公司人員初來到中國和臺灣海域,是依靠葡萄牙人之前航行的資訊,還有沿岸漁民、明朝水師的協助。到了 1630 年代,基於這些實地航海經驗,荷蘭東印度公司開始修改艦隊船隻的大小與配置,並實驗各種航行路線,也主動測繪自己的海圖。

每次出航,航海日誌會描述所見所聞,有些也會回報船隻運用的問題。

航海日誌的記載,例如:在中國和臺灣海域航行,要考慮西南季風和東北季風的週期,以及颱風季有哪些港灣可作為避風港。船隻運用上,荷蘭大噸位的多桅帆船不易頂風行駛,也不利靠岸停泊,改用可配置火砲的荷蘭中型快船、或中式帆船更適合,因為吃水較淺,也更易於操控、轉向及登陸。

荷蘭東印度公司規定每次的水文探測紀錄和航海日誌要繳回,並於巴達維亞當局經由專人整理,和現有的地圖比對,再整理成新版的「海圖、海岸描述、航路指引」,發給下次要出航的商船艦隊,開啟下一輪航海知識的累積循環。

荷蘭東印度公司人員於 1622-1636 年間,進行水文探測的範圍總和。資料來源│中研院人文社會科學研究中心─地理資訊科學研究專題中心,廖泫銘研究副技師製圖

1622 到 1636 年間,透過商船艦隊一邊貿易、一邊進行水文探測,逐步將「海圖、海岸描述、航路指引」完善化,成為指揮官、船長與水手的謀生兼求生工具。

這時期,荷蘭商船通常是從東南亞載來香料,到日本換銀子,再用銀子跟明朝交換絲綢,也就是拿各地特產相互交換。荷蘭東印度公司高層就能參考這些水文探測資料,謹慎區別不同船隻適合的港灣與航道,並規劃這一個航道應該載運什麼商品,以及擬定後續的造船計畫,藉此減低「船亡人亡」的海運成本。

超「有料」歷史文件:打開還有沙子掉下來?

擅長研讀荷蘭時期史料的鄭維中,先前是就讀臺灣大學社會系。「高中的時候,臺灣亂糟糟的,那時候補習班在中正區南陽街,下課去補習,樓下就有很多抗爭活動,」鄭維中回憶:

那時我就在想:上了大學要多認識一下,到底臺灣發生了什麼事情。

1993 年讀大一時,臺灣大學有別於其他學校,首先開放學生不用必修中國通史、大一英文、國父思想,鄭維中於是改修臺灣史、德文、中華民國憲法與立國精神。在吳密察老師的臺灣史課堂中,鄭維中發現:以前高中的部編本教科書,其實沒提到什麼荷蘭時代的臺灣歷史。

例如,部編本介紹了科學革命大航海時代,這些事件和 17 世紀臺灣的荷蘭時代同期,但教科書卻鮮少介紹這些事件和荷蘭人來到臺灣的關聯性。「在部編本裡,這些和臺灣完全是兩個世界,我就很好奇,想要自己看看為什麼會這樣,因此對於荷蘭時代的歷史產生興趣。」

就讀臺大社會系博士班時,鄭維中獲得教授推薦參加聯合國的 TANAP 計畫,前往荷蘭國家檔案館接受基礎的荷語訓練、識讀古人書寫的花體字,還有學習荷蘭東印度公司的歷史經典、海洋史基礎經典課程。

荷蘭國家檔案館收藏了這批荷蘭東印度公司的檔案,其中不只有荷蘭的歷史,也包含許多亞洲國家的歷史。荷蘭國家檔案館向聯合國申請經費,用以維護這些檔案;同時聯合國也要求檔案館必須訓練亞洲的歷史學者,有能力使用這些荷蘭東印度公司檔案進行研究。換句話說,TANAP 計畫除了推展史料的應用,也能讓來自臺灣、印度、伊朗、新加坡、印尼等地的青年學者互相交流,是讓檔案活化、轉化為知識的方式。

荷蘭商船拿登 (Naarden) 號舵手 Michiel Gerritszoon Boos 於 1663 年 12 月 31 日至 1664 年 1 月 13 日,在澎湖附近海域航行的航海記錄,以花體字書寫。圖片來源│Aanwinsten, 1.11.01.01 inv. nr. 112(1866AIV), fol. 41v-42r.

鄭維中提到,因為荷蘭很寒冷,所以荷蘭東印度公司檔案的保存狀況良好,不會感覺這些是三四百年前的古書。有些檔案文書收藏到檔案館後,就被編目儲存,之後就完全沒有打開過,尤其是亞洲送過來的報告,這種例子比較多。

甚至曾聽說,有些荷蘭東印度公司檔案,打開後會有沙子掉下來,是幾百年前船上的沙子。

在荷蘭國家檔案館,除了鄭維中和亞洲各國的學者,通常還會有當地退休的老先生老太太,在檔案館裡閱讀館藏。「長輩看到我們這些年輕人翻頁太大力,他們很害怕!因為這些古書的年歲大他們好幾輪,老先生老太太會覺得我們是在折磨這些古書。」鄭維中笑說,雖然心裡覺得抱歉,但如果不翻閱古書、古檔案,也就無法找到歷史的種種真相。

現代有些人看到史料,會立刻附加自己的解讀。但鄭維中提醒,應該要帶著同情與理解來閱讀這些古書,也就是不要急著看圖說故事。「因為這些古書怎麼會知道,三四百年之後,有一個跟荷蘭東印度公司沒什麼關係的臺灣人會去讀它,所以它不一定能回答你心裡深深欲求知道的事情。」

因此,在解讀史料時,要先了解為什麼當時的人要寫這些書、編排這些檔案,還有是要寫給誰看。鄭維中說:「先了解當時作者和讀者的脈絡,對這些古代人抱持尊重。這些思考過程累積起來,也就會對我們追尋自己的歷史很有幫助。」

延伸閱讀

  • 鄭維中的個人網頁
  • 鄭維中,2018 年 1 月,〈荷蘭東印度公司人員在台海兩岸間的水文探測活動(1622-1636)〉,劉序楓編,《亞洲海域間的信息傳遞與相互認識》,頁 385-440 ,南港:中研院人文社會科學研究中心。
  • Weichung Cheng, 2016, “Sailing from the China Coast to the Pescadores and Taiwan: A Comparative Study on the Resemblances in Chinese and Dutch Sailing Patterns”, Bulletin de l’École française d’Extrême-Orient (BEFEO), 101, 289-323.
  • 鄭維中, 2006,《製作福爾摩沙──追尋西洋古書中的台灣身影》,台北:如果。
  • 荷蘭國家檔案館地圖網站 Atlas of Mutual Heritage

本文轉載自中央研究院研之有物,原文標題為〈回到 17 世紀福爾摩沙海域,當個荷蘭航海士!〉,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
255 篇文章 ・ 2334 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

11
6

文字

分享

0
11
6
一切都為了快快長大!斑馬魚的「無合成分裂」,「表面」到你難以察覺
研之有物│中央研究院_96
・2022/10/08 ・5419字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

不用合成新 DNA 的細胞分裂——無合成分裂

細胞分裂,想來是再簡單不過的事情:一顆細胞先將遺傳物質複製為兩份,再一分為二,分配給兩顆細胞。然而,由中央研究院細胞與個體生物學研究所的陳振輝助研究員領軍,2022 年 4 月發表在《自然》(Nature)的論文,卻報告了過往未知的一種分裂方式:斑馬魚的皮膚細胞,可以直接一變二,再二變四,過程中不用合成新的 DNA!這項未來將改寫教科書的新知識,當初是如何發現、驗證,未來又有什麼衍生方向呢?中研院「研之有物」專訪陳振輝助研究員,請他和我們仔細分享斑馬魚的「表面功夫」。

陳振輝研究團隊發現斑馬魚表皮細胞有「無合成分裂」現象,研究成果於 2022 年 4 月發表在國際頂級期刊《自然》。圖為陳振輝(右)與第一作者陳潔盈(左)合影。圖/研之有物

將顏色植入斑馬魚的每一個細胞

陳振輝實驗室的研究大多著重於「再生生物學」,新研究算是「發育生物學」的領域。不過了解背後細胞行為調控的機制就會知道,這兩個領域其實是共通的。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。這個研究方法可以用來探究逆境下複雜組織的再生,也能用來研究正常狀況下動物的發育進程,因為這些過程都涉及大量細胞的動態調控。

陳振輝以斑馬魚作為實驗材料,基因改造後讓不同細胞被標記上不同顏色,使得不同細胞的動態行為,能夠被清晰地分辨和追蹤。圖片這隻為斑馬魚的仔魚,年齡為受精之後第 8 天。(另開圖片可放大檢視)圖/陳潔盈、陳振輝

發育生物學是生物學研究的熱門領域,投入者眾,大部分的研究者都針對部分細胞或特定基因作探討,陳振輝團隊的技術讓他們能同時追蹤單一活體動物整個組織裡所有的細胞。這項技術除了用在皮膚組織(方法名為「palmskin」),陳振輝也用類似的方法探索肌肉、肝臟等各式器官的發育、再生過程。

創造色彩繽紛的細胞,原理其實很簡單,就是利用紅色、藍色、綠色的三原色不同比例的組合。具體作法是透過基因改造,將能製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學的工具,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。

舉例來說,其中一個細胞可以表現「3 個紅色螢光蛋白 + 5 個藍色螢光蛋白 + 4 個綠色螢光蛋白」,隔壁細胞可能是「1 紅 + 2 藍 + 6 綠」,鄰近細胞間便能呈現不同顏色,讓長期追蹤所有不同細胞成為可能。

將能夠製造紅、藍、綠色螢光蛋白質的基因組,植入斑馬魚的細胞,利用遺傳學技術,讓表皮、肌肉、肝臟等目標組織的每一顆細胞,隨機表現出不同的顏色組合。圖/研之有物(資料來源/陳振輝

將調色盤植入細胞的原理看似簡單,做起來卻要耗費不少功夫,尋找適合的基因轉殖魚需要半年到一年的時間。陳振輝解釋用斑馬魚當實驗材料的優點:它們容易繁殖,生長的週期不用等太久,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像,進行系統性的量化分析。搭配讓每一顆細胞,從誕生到凋逝都無所遁形的全面「監控」影像平台,才有機會觀察到前人視而不見的細胞分裂方式。

圖片為斑馬魚的仔魚(上圖)和成魚(下圖)的透視圖,仔魚年齡為受精之後第 3~21 天。斑馬魚當實驗材料的優點是:容易繁殖,生長週期不長,體積小,容易操作;更重要的是魚體扁平,容易拍攝大面積、高解析度的細胞影像。圖/研之有物(資料來源/J Clin Invest.

隱藏在「表面之中」的無合成分裂

斑馬魚的皮膚和人類的皮膚基本構造類似。唯一不同是人類的皮膚有角質層覆蓋,斑馬魚皮膚的外層是沒有角質化的活細胞,適合拍照觀察。斑馬魚的另一優點是在顯微鏡下活體觀察時不會傷害到魚體,麻醉後可以直接拍照,再放回水中喚醒;如此才能追蹤同一條魚從出生到長大,身上所有皮膚細胞的動態行為。

研究斑馬魚的學者很多,皮膚發育這回事可謂天天在人們的眼前發生,可是其它人為什麼都視而不見,沒有注意到陳振輝團隊發現的無合成分裂呢?事情其實沒有說起來那麼簡單。

斑馬魚皮膚剖面示意圖,從顯微鏡看到的斑馬魚細胞是最上層的表皮細胞。圖/研之有物(資料來源/陳振輝)

斑馬魚的皮膚分為上中下三層,下層的幹細胞,會分裂產生新的細胞,送到上層成為覆蓋身體最外側的皮膚細胞。其它研究人員如果見到表皮細胞的數目變多,直觀的想法會是下層的幹細胞又送上新的細胞,不會想到是上層既有已分化的細胞可以直接進行分裂。

陳振輝表示,一開始見到表皮細胞的數量增加時,直覺也認為是下層幹細胞產生的新細胞,可是連續追蹤後卻發現不是這麼回事。由於他的技術可以對斑馬魚身上 2,000 到 3,000 顆皮膚細胞進行同時監測,才意外察覺到上層已分化的細胞竟然會不用複製遺傳物質,就直接分裂成兩顆,甚至是四顆細胞!

陳振輝團隊觀察到斑馬魚表皮上層已分化的細胞可以不用複製遺傳物質,直接分裂成兩顆,甚至是四顆細胞。影/陳振輝

顛覆認知:不用合成 DNA 的細胞分裂

外行人聽起來好像沒什麼,上述發現其實開拓了細胞分裂研究的新領域。精子和卵子這類生殖細胞(germline cell),在複製遺傳物質以後會經過 2 次分裂,形成 4 顆細胞,也就是減數分裂(meiosis)。構成身體的體細胞(somatic cell)則會先複製內部的遺傳物質,再分裂 1 次成兩顆細胞,稱為有絲分裂(mitosis)。

還有較少見的狀況,如 DNA 複製後細胞不分裂,變成多套遺傳物質的 1 顆細胞(endoreplication);或是多個細胞融合在一起,成為 1 顆多核細胞(cell-cell fusion,例如骨骼肌細胞)。

然而不管怎麼分裂,過去研究沒有發現不用複製 DNA 就能分裂的細胞!正常細胞分裂的過程有許多監控機制,如果細胞的遺傳物質沒有完整複製,一般情況細胞應該會啟動相關的監控機制,阻止分裂過程的進行。癌症細胞不受控制的分裂,就是相關機制沒有正常運作。

斑馬魚表皮細胞竟然能在沒有複製遺傳物質的情況下,避免細胞凋亡的命運,持續分裂,是一個很特別的例外。

斑馬魚從仔魚到成魚的發育過程中,表皮細胞可以在沒有複製遺傳物質的情況下持續分裂。圖/研之有物

論文投稿到《自然》期刊後,四位同儕審查者一致給予正面評價,但是顛覆認知的新發現仍受到不少質疑,需要陳振輝團隊進行許多額外的實驗來回答。

有沒有觀察失誤的可能?

陳振輝團隊同時標記下層、上層的細胞,證實進行分裂的細胞確實位於上層。為了證明遺傳物質沒有複製,他們進一步測量細胞內 DNA 的量,包覆 DNA 的組蛋白(histone)的量,以及施加阻止 DNA 複製的藥劑。

結果顯示分裂後的細胞,遺傳物質的含量確實有等比下降,分裂過程不受阻止 DNA 複製藥劑的影響。顯然細胞沒有合成新的 DNA 就直接分開,陳振輝稱之為「無合成分裂」(asynthetic fission)。

所以,究竟是怎麼分裂的?

顯微鏡下看來似乎沒有一定的章法,有些表皮細胞會分裂 2 次成 4 顆細胞,有些分裂 1 次成 2 顆細胞,還有些不會分裂,維持 1 顆細胞;也發現有少數細胞可以逆轉分裂過程,形成雙核細胞。

陳振輝團隊現有的研究技術,尚無法辨明胞器的分配,以及每一條染色體的分配模式;團隊預計使用單細胞定序(single cell DNA sequencing),在無合成分裂後,分別定序每一顆細胞分配到的染色體組成,以釐清細胞的遺傳物質是否有特定的拆分方式。

斑馬魚表皮上的無合成分裂(影片箭頭處),還有很多細節尚待研究。陳振輝團隊預計要釐清在無合成分裂之後,細胞的遺傳物質是否有特定的拆分方式。影/陳振輝

一切都是為了節省資源!努力長大的表皮細胞

無合成分裂對斑馬魚有什麼意義呢?斑馬魚由受精卵孵化後,仔魚在前 8 天不用吃東西,成長速度緩慢;第 8 天起開始進食,體型也像吹氣球般迅速膨脹,第 14 天時成長速度達到最快。觀察發現從第 8 天 到 21 天,皮膚細胞會發生無合成分裂,團隊推測此一分裂現象與身體表面積的快速延展息息相關。

斑馬魚的仔魚從受精卵孵化之後的第 8 天到第 21 天,表皮細胞會發生無合成分裂,陳振輝團隊推測此一分裂現象與身體表面積的快速延展息息相關。
圖/研之有物(資料來源/Nature

僅管省略掉複製遺傳物質的階段,細胞進行無合成分裂所花費的時間,卻比一般細胞分裂稍慢,所以其優點並非單純的縮短時間,應該是節省資源。斑馬魚仔魚身體的表面積在特定時間迅速增加,體表需要皮膚細胞的完整覆蓋,團隊發現細胞進行 1 次無合成分裂,表面積能增加 26%,兩次能達到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。

陳振輝團隊發現,斑馬魚表皮細胞進行 1 次無合成分裂,表面積能增加 26%,兩次則能增加到 59%,這些細胞能在斑馬魚體表存活 2 到 3 週的時間。
圖/研之有物(資料來源/陳振輝)

斑馬魚如何啟動無合成分裂呢?目前仍不太清楚,團隊發現其過程受到表面張力變化的影響。皮膚細胞有感應張力變化的特定離子通道,利用藥物影響這些離子通道的活性,無合成分裂也會受到影響,詳細作用機制仍有待更多的研究。

生活數量的密度也會影響斑馬魚長大

另一項十分有趣的發現是,無合成分裂和仔魚生活的密度有關。斑馬魚從仔魚長到成體,最終的體型都差不多,但是生長過程則有很大的差異,個體成長速度有快有慢。假如將許多仔魚養在一起,處於高密度的生活環境,個別仔魚的生長速度會較慢。

奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加又要維持皮膚細胞的完整覆蓋,會導致更多的無合成分裂。斑馬魚如何感知、在生理上反應周遭環境鄰居密度的變化,是另一個有趣的研究方向。

斑馬魚若處於高密度的生活環境,仔魚的生長速度會較慢。奇妙的是,一旦換到低密度的環境,仔魚的成長速度會瞬間暴增,體表面積快速增加,導致更多的無合成分裂。圖/研之有物(資料來源/陳振輝)

進行無合成分裂的細胞缺乏完整的遺傳物質,還能算是有生命的活細胞嗎?陳振輝提醒我們,多細胞生物的生理機能由各式各樣的細胞一起維持,某些特化的細胞還沒有細胞核。例如紅血球的成熟會經過脫核的過程,完全沒有細胞核的紅血球有重要的生理功能也可以存活超過 100 天。在斑馬魚體表進行無合成分裂的皮膚細胞,或許也有它們短暫卻不可或缺的使命。

有可能其它生物的細胞也會無合成分裂嗎?

無合成分裂目前只在斑馬魚表皮的發育過程中觀察到,其它細胞、其它生物、其它情境下是否也存在呢?事實上陳振輝自己也很好奇。

以人體來舉例,體表的皮膚,口腔內膜、消化道組織,時時刻刻都需要大量的表皮細胞覆蓋,而且耗損甚鉅,有不斷補充的需求。這些必須持續維持完整覆蓋表面的情境,或許無合成分裂也參與在其中。

然而,無合成分裂不容易在活體動物直接觀察。例如小鼠的模式,就算能引進三原色調色盤的細胞標誌技術,也不像斑馬魚仔魚那般透明容易拍照。話說回來,知道某個現象有可能發生,就是發現的第一步。假如其它細胞或是生物也存在無合成分裂,在陳振輝團隊邁出第一步以後,未來一定有人能克服相關的技術門檻來進行研究。

發現斑馬魚表皮細胞的無合成分裂,像是開啟一扇新的大門,可以通往過去想像不到的研究方向。會有醫學應用的可能嗎?像癌症是細胞的不正常分裂,任何細胞分裂機制的基礎研究,應該有機會對癌症的治療有所啟發。陳振輝同意這是潛在的研究方向之一,但是他也強調從基礎研究到醫學應用,是很漫長的一段路,科學家能做的就是一步一步踏實前進。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。

對沒預期的發現保持警覺,在探索過程中充分滿足自己的好奇心,將支持陳振輝持續前進,挑戰下一個研究課題。圖/研之有物
研之有物│中央研究院_96
255 篇文章 ・ 2334 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

5
2

文字

分享

1
5
2
低調卻又無所不在:你我身邊熟悉的陌生人,臺灣森林裡的「野生釀酒酵母菌」
研之有物│中央研究院_96
・2022/07/11 ・6154字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/寒波、簡克志
  • 美術設計/蔡宛潔

臺灣「野生釀酒酵母」的多樣性研究

釀酒酵母,一種被人類廣泛利用的微生物,釀酒、做麵包都會用到,此外也被大量用於科學研究。可以說不論在食品或學術上,釀酒酵母早已進入你我的生活。然而,釀酒酵母除了人類常用菌株(strain)是來自原有已知的幾個馴化譜系(domesticated lineage)之外,其實還有非常多野生譜系不為人知。中央研究院「研之有物」專訪院內生物多樣性研究中心蔡怡陞副研究員,他與研究團隊尋覓臺灣野生的釀酒酵母,意外發現臺灣島的面積雖然相比之下較小,野生釀酒酵母的遺傳多樣性卻是世界最高!論文已於 2022 年 3 月 31 日發表於《基因組研究》(Genome Research)。

不管釀酒還是做麵包,都不可或缺的釀酒酵母

釀酒酵母的學名叫作 Saccharomyces cerevisiae(簡稱 S. cerevisiae),它在釀酒或烘焙等食品業中最具代表性,也是最常見的模式生物之一。釀酒酵母作為單細胞真核生物的代表,大量用於學術研究,蔡怡陞團隊的成果即是一例。

至於釀酒酵母的產業應用,例如常見的愛爾(Ale)與拉格(Lager)啤酒來說,前者發酵溫度在 20℃ 左右,菌株就是上述的 S. cerevisiae,味道較濃郁;後者的特色是低溫發酵 10℃ 左右,菌株是人類特別選殖的雜交品系(註 1),味道較清爽。

常溫發酵的愛爾啤酒較濃郁、顏色深,低溫發酵的拉格啤酒較清淡、顏色淺。圖/Pexels

有趣的是,世界各地的人、歷史與文化也許有別,愛酒的心卻都一樣,歐洲培育出發酵啤酒的品系,日本也獨立馴化獲得釀造清酒的酵母菌。

除了釀酒之外,製作麵包也需要釀酒酵母,故 S. cerevisiae 也稱作麵包酵母。仰賴小規模手工業的古時候,麵包師都有自己的獨家酵母,師傅教徒弟時,傳承的不只技術,也包括酵母麵團。

邁入近代社會以後,各行各業都走向標準化,釀酒酵母也不例外。如今不同麵包師大都使用同一種量產酵母。

釀酒酵母不只用於釀酒,烘焙業也常拿來讓麵團發酵,做出好吃的麵包。圖/Unsplash

啤酒與麵包這些案例鮮活地說明,釀酒酵母深受人類影響,這也是大部分酵母菌演化研究關注的主題。

然而蔡怡陞實驗室則不同,他關心的對象是處於人類影響以外、還沒有被馴化的野生釀酒酵母們。這些野生釀酒酵母們和食品業常用的菌株是同一物種(species),學名都是 S. cerevisiae,但是為不同菌株(strain)。

由於釀酒酵母的產業運用和微觀機制探討已經相當成熟,但是人們對於釀酒酵母在生態中的角色依然所知有限,以前人們甚至懷疑過,真的有野生的釀酒酵母嗎?後來才知道不但有,而且多樣性還不小,與人類密切接觸的只是少數幾款。

那麼,蔡怡陞團隊是如何找出低調的臺灣野生釀酒酵母呢?

看不到卻無所不在:臺灣野生釀酒酵母的探尋之旅

蔡怡陞過去就對酵母菌相當有興趣,因為這是他在倫敦帝國學院就讀博士班的起家主題!當時他研究的是釀酒酵母最近的親戚 Saccharomyces paradoxus

回到中研院後,他決定在臺灣再度開啟野生釀酒酵母的研究,與博士生李佳燁、助理劉育菁、柳韋安等人多年奮鬥後,有了出乎意料的發現!如今回首 6 年來的探索過程,並不容易。

要研究野生的釀酒酵母,第一步當然是去野外採集,可是人的眼睛看不見酵母菌,所以沒辦法用視覺辨識直接採樣,要把樣本帶回實驗室,初步處理後浸入培養液,等待兩個星期才能得知結果:釀酒酵母是否存在。

實驗室使用特製培養液,有利於釀酒酵母生長,不利其他微生物。理想上,即使釀酒酵母原本的存在感很低,也能在培養液中放大。

因為酵母菌肉眼不可見,研究團隊需在廣大森林中採樣,並將處理後的樣本浸入培養液長達兩週,之後嘗試分離微生物並鑑定,才能確認是否成功採集到釀酒酵母。圖/研之有物(酵母菌圖源/蔡怡陞提供、腦海工作室製圖)

假如等待一段時間後,培養液長不出酵母菌, 也許是一開始就真的沒有,但是有沒有可能是因為採樣和培養時有缺失,害得酵母菌長不出來?或是釀酒酵母確實存在,卻由於數量太少而無法見到?

蔡怡陞回憶,開始這項計畫的第一年,幾乎一無所獲。根據歐洲與美洲的研究經驗,野生釀酒酵母常常於橡樹表面生長,橡樹屬於殼斗科植物,所以一開始多半以市區外圍森林,如殼斗科的樹皮為目標,卻不斷失敗。

後來往更廣的範圍採樣,並與生多中心研究人員鍾國芳黃仁磐等實驗室合作,這才克服難關,順利從多種植物的果實、樹葉、樹幹、地面、甚至是地衣等來源獲得酵母菌,並且訝異地得知,釀酒酵母在臺灣的森林其實非常普遍。

蔡怡陞歸納出的模式是:臺灣野外森林中,釀酒酵母普遍存在,但是比例非常低,可謂低調卻無所不在。

釀酒酵母在顯微鏡下的照片。釀酒酵母有人類馴化過的菌株,也有野生譜系。野生的釀酒酵母在自然界中普遍存在,但是比例相當低。
圖/Wikimedia

如何歸納出以上結論呢?這要利用如今基因體學的新工具:總體基因體學(metagenomic)。原理是取得環境樣本後,直接定序其中所有 DNA 片段,或是所有物種都有的擴增子(amplicon),再與資料庫對照;如此一來,便能估計目標佔整體的比例,蔡怡陞團隊就是去估算釀酒酵母佔其生長環境中的比例。

從環境採樣培養出釀酒酵母以後,由中研院定序核心實驗室的呂美曄,回頭定序該樣本的擴增子,接著由蔡怡陞實驗室的林渝非分析。野外採集的樣本中,絕大部分是細菌,通常高達至少 99% 之多;剩下多半為真菌(和原生生物等等),其中只有極低比例是釀酒酵母,最多也只佔 0.012%。因此同樣是細菌、真菌等微生物,釀酒酵母的存在感是低於 1% 中的 0.012% 以下,換句話說,不超過百萬分之 12!

透過總體基因體學的分析,能夠量化釀酒酵母在天然環境下的存在感。蔡怡陞也強調培養液很重要,否則無法讓低調的酵母菌現形。抓到目標後就能分離酵母菌,培育建立新的菌株,並且經由團隊成員李昕翰、柯惠棉的定序、組裝獲得完整的基因組。藉此獲得一百多個臺灣各地的菌株及其遺傳訊息,用於進一步研究。

蔡怡陞實驗室中,放入培養液和樣本的 6 支試管。培養液相當重要,負責讓低調但無處不在的釀酒酵母現身。圖/研之有物

釀酒酵母的多樣性,臺灣竟然世界最複雜?

要了解蔡怡陞實驗室新論文的意義,必須先認識別人過去的研究。

2018 年就有研究者從世界各地收集超過一千個釀酒酵母品系,探討親緣關係。分析發現野生釀酒酵母們彼此的變化差異還不小,東亞的中國為最多變之處;將所有酵母菌擺在一起畫演化樹,中國採集到的品系能歸類到不同譜系(lineages),包括與同類最早分家,差異最大的譜系。

演化樹是一種建構親緣關係的工具,所有樣本中,兩個樣本假如有最近的共同祖先,通常遺傳上的差異也會愈少,便會被歸類到一塊;這一批和其次相近的另一批樣本們,又會被歸類到一群,就這樣一直向前回溯(見下圖),形成看似樹狀的關係。而這棵樹上愈早分離的譜系,也就代表差異愈大,愈早和其他樣本分家。

演化樹與地理關係的示意圖,通常有兩種情況,左邊表示不同地點(A,B,C,D)採集的樣本,在演化樹上有明確先後次序,可推論出如何在地理上傳播;右圖表示不同地點(A,B,C,D)採集的樣本,在演化樹上無明確先後次序,傳播路徑交織在一起。圖/研之有物

中國採集的釀酒酵母們,不但有些被歸類到較晚分家的不同群,幾個樣本更自成一群,形成最早分出的演化樹枝。這些證據有力地支持:中國是釀酒酵母的起源地。然而,案情並不單純!

將臺灣的一百多個菌株擺進演化樹,驚奇的事發生了!臺灣存在的釀酒酵母們,竟然也被歸類進各大譜系,並有新的譜系,這表示臺灣的釀酒酵母多樣性,和中國一樣高。而且還有一款進入之前於中國採集到,與同類最早分家的那一群。

驚奇之處在於,擺在全世界的尺度下看,臺灣只是一個很小的島,地處東亞大陸邊緣。中國面積龐大,釀酒酵母具備全世界最高的多樣性並不意外,也被認為很可能是發源地;可是小小的臺灣,竟然也存在一樣高的複雜度。

簡化過的野生釀酒酵母演化樹示意圖,蔡怡陞團隊採集到的臺灣野生釀酒酵母譜系中,發現有一款和先前中國採集樣本都是最早分家的一群(黃框處),地理傳播也交織在一起。這表示臺灣的釀酒酵母多樣性,和中國一樣高,兩者皆為世界第一。圖/研之有物(資料來源/蔡怡陞)

有沒有可能臺灣多變的品系,並非起源自當地,而是被人類無意間帶來的呢?應該不可能,因為根據遺傳差異估計,那些野生譜系們分家後衍生的年代,都早於人類在附近活動的時間;由此可以推論,目前的分佈狀況,非常可能是自然傳播的結果(或許是隨著殼斗科森林)。

所以我們可以說,臺灣是釀酒酵母最初的起源地嗎?不行。符合已知證據,比較合理的解釋是,釀酒酵母於東亞發跡,所以在東亞地區的遺傳多樣性也最高;而臺灣也包含於此一交流範圍之內,從最早的始祖開始,從古至今逐漸分家的釀酒酵母們,可能陸續,或是在同一段交流時期進入臺灣,一直低調默默生存到現在,仍保持原鄉的面貌。

然而,好的研究不只要知道有多少已知,更要知道還有多少未知。蔡怡陞提醒我們,目前研究有個盲區:東南亞地區的取樣仍十分有限。根據已知的樣本,最早與同類分家的酵母菌,它們的後裔位於中國和臺灣,故推論東亞地區是起源地。

可是取樣匱乏的東南亞,會不會住著更早分家前輩的後裔呢?這是目前無法回答的問題。

野生釀酒酵母在中國與臺灣的實際採樣分布,發現臺灣譜系的數量是全世界同尺度地區中最高的。其中 TW1 和 CHN-IX 皆為最早分家的一群,證明了台灣是發跡地之一。小小的臺灣卻擁有如此高的多樣性,就是讓人驚奇之處。圖/研之有物(資料來源/蔡怡陞)
釀酒酵母實際的演化樹,這是從樹狀圖捲曲起來的另一種表達形式,其中 TW1 和 CHN-IX 皆為野生樣本,且是最早分家的一群。圖/研之有物(資料來源/蔡怡陞)

你我所不知道的小世界,野生釀酒酵母的生殖、生態學

總之根據現有的資訊,臺灣釀酒酵母的多樣性在同樣尺度下比較確實為世界最高

大量取樣下還能觀察到,距離非常近的採集地點,竟然同時住著遺傳上差異很大,不同譜系的菌株(甚至在同一棵樹!)。相比之下,中國酵母的多樣性也高,但是分佈並不密集,相近的地理範圍內通常存在遺傳上類似的菌株。

不同研究的手法不同,這會不會是中國研究者採集較為稀疏,取樣方式導致的偏誤呢?蔡怡陞表示,的確無法排除前述可能性;但是他反而認為過去的採集方式,說不定都忽略了微生物近距離的分佈與多樣性,所以更需要反思過往認知微生物的生物地理關係。

不過他也認為中國的釀酒酵母確實住的比較分散;因此差異大的品系住在附近這回事,搞不好真的是臺灣特色,至少是率先在臺灣觀察到。

了調查臺灣野生釀酒酵母的多樣性,蔡怡陞團隊也發現野生的釀酒酵母大部分是採取無性生殖,不同品系之間雖然會有遺傳交流,但是相當有限。圖/研之有物

另一件有趣的發現是遺傳交流。釀酒酵母是單細胞真核生物,實驗室環境下可以無性生殖,自己複製自己;也可以隨時切換成有性生殖,和同類一起生寶寶。利用菌株間的遺傳差異,可以預測自然界的釀酒酵母,大部分時候採行無性生殖(這是蔡怡陞博士班時期努力的主題!)。

既然臺灣存在許多遺傳有別的野生品系,有時候又住的很近,它們之間會遺傳交流嗎?

比對基因組得知,會,不過不常見,大約每幾百到幾萬次無性生殖才有 1 次有性生殖。這證實蔡怡陞對酵母菌生殖的推論,替釀酒酵母生態學新添一分認識。

讓學術研究結合產業應用,找到野生釀酒酵母之後

有趣歸有趣,但是研究臺灣野生釀酒酵母有什麼意義呢?

從學術上來說,蔡怡陞指出,臺灣生態系複雜,本次透過基因體學手法得到量化證據,支持釀酒酵母這種微生物,在臺灣的多樣性很高。這項在臺灣採樣的本土研究,也大幅增進全世界對釀酒酵母的認識,並可更進一步開始探討釀酒酵母在自然界所扮演的角色。

從產業上來說,在蔡怡陞團隊的辛苦調查與記錄之後,未來我們是否可以期待廠商用臺灣在地的野生釀酒酵母做啤酒呢?

釀酒酵母是與人類互動最密切的微生物之一,但是人們對野生的釀酒酵母了解卻很有限,可謂無比熟悉的陌生人。蔡怡陞採集到眾多野生的菌株品系,不論學術研究或產業應用,都可能有進一步發展。

目前實驗室正在把這些菌株「帶」回實驗室,開始量化相關的表現型(phenotypes)。等到時機成熟,他歡迎各界合作,一起探索臺灣自然資源的潛力。

蔡怡陞與實驗室團隊合影,前排由左往右為:李佳燁、柯惠棉;後排由左往右為:蕭禎、劉育菁、蔡怡陞、林渝非。這次論文中公開的眾多野生釀酒酵母菌株,不論學術研究或產業應用,都有相當的發展潛力。圖/研之有物

註解

  1. 拉格啤酒採用的菌株是 Saccharomyces pastorianus,為 S. cerevisiae 及 S. eubayanus 兩者雜交而成。

參考資料

  1. 蔡怡陞(2017)。〈多樣性決定味覺豐富度,釀酒酵母的「萬年傳統全新感受」〉,《環境資訊中心》。
  2. Lee, T. J., Liu, Y.-C., Liu, W.-A., et al. (2022). Extensive sampling of Saccharomyces cerevisiae in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research.
  3. Peter, J., De Chiara, M., Friedrich, A. et al. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556, 339–344.
  4. Duan, S. F., Han, P. J., Wang, Q. M. et al. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun, 9, 2690.
  5. White, C., & Zainasheff, J. (2010). Yeast: The Practical Guide to Beer Fermentation. Brewers Publications.
  6. Tsai, I. J., Bensasson, D., Burt, A., & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. PNAS, 105(12), 4957–4962.

所有討論 1
研之有物│中央研究院_96
255 篇文章 ・ 2334 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

5
0

文字

分享

0
5
0
中國古代的造船與航海——造船大國的海上興衰│環球科學札記(28)
張之傑_96
・2021/05/26 ・2257字 ・閱讀時間約 4 分鐘

  • 作者 / 張之傑

和平號上的活動有很大一部份是「自主企劃」,也就由乘客提出,經過審核,爭取到場地,就可以執行。在船上期間,我曾提出過三次自主企劃,題目依次是中國古代的造船與航海、我的西藏因緣、中國古代的天文。

第一次是六月二日申請的,也就是和平號離開聖米格爾島直趨紐約的第二天。經一位台灣船友介紹,這天上午十一點半到八樓阿古拉廳申請,這才知道自主企劃到底是怎麼一回事。

我有兩個在國家圖書館講過的演講,很適合提出申請:鄭和下西洋記事簿和達爾文小獵犬號環球之旅。無奈存放演講 ppt 的隨身碟沒帶出來,只好不做此想。前幾天那位台灣船友已申請到一個自主企劃,不禁又動了念頭。

我的筆電裡有世新「中國科技史」課程的 ppt,其中一講「中國古代的造船與航海」或許適合提出申請。那位台灣船友給我一份申請單,在阿古拉廳上完「一起與艾莉絲來保養身體」,留在原地等候。一起與艾莉絲來保養身體是日本團員艾莉絲的自主企劃項目,其實就是坐姿瑜珈。

這天申請的是六月五日的活動。十一點二十五分,一組工作人員將一面白板推到前方,寫著各個場地的開放時間。一位女工作人員撕下一條條黏力膠帶,貼在白板下緣,貼了一排。我近前觀看,巴伊亞廳下午有一個半小時,這個廳較為獨立,也較大,決定時間一到,就把寫好的申請單貼上去。十一點半,等候者紛紛把自己的申請單貼到自己希望的場地。申請單包含姓名、題目、房號、場地等。台灣籍的小玄在場做華語翻譯。

讓我吃驚的是,每天都義務上兩堂「日語咖啡」課的 E 將和艾莉絲,也坐在椅子上等候,等著貼申請單,原來她們也得天天申請啊!這樣的恆心毅力與熱心,不能不讓人敬佩。等所有申請者,不下三十人,都貼完了,發現巴伊亞廳貼有五張申請單,換句話說,每人大約只能分配到 25-30 分鐘。我決定不玩了。

台灣籍的小玄得知我不想玩了,問我,阿古拉廳十時至十一時零五分還沒人貼,願不願意移過去?這個廳是個開放空間,不是個好地方,就將就著吧。可是日本籍的工作人員說,要等一會兒,看看有沒有人爭取才能決定。結果等到十二點半才算定案,前後折騰了一個多小時!

六月五日(週三),上午十至十一時零五分,進行我的自主企劃「中國古代的造船和航海」。阿古拉廳坐滿,沒人中途離席。意外的是,Japan Grace 代表、老船長挾間俊也來了,他不懂華語,竟然從頭聽到底,大概是看文案和圖片吧。講完,一位香港人過來對我說,希望多了解些。有位大陸人拷去演講 ppt,又詢問我的書哪裡可以買到?整體來說,反應相當好。

6 月 5 日上午 10:10-11:05 在和平號阿古拉廳演講,講題「中國古代的造船與航海」。圖/吳嘉玲攝

中國不曾成為海權國家,但中國卻是造船大國,從可考的東晉到鄭和下西洋時期,造船一直領先世界各國。中國很早就能建造大船,法顯從斯里蘭卡回國所乘的船,「上可有兩百餘人,後繫一小舶,海行艱險,以備大船毀壞。」西方到了地理大發現時代,海船只能坐幾十人。哥倫布發現新大陸的三艘船,加起來只有九十人!

中國有多項造船與航海的重大發明,諸如指南針、尾軸舵、風帆利用、水密隔艙、槳輪船、船塢等。前三者地理大發現前即已傳到西方,論者咸認,如果沒有羅盤、尾軸舵和桅桿及風帆的改進,地理大發現不可能發生。

宋元時期,海上貿易興盛,元朝時阿拉伯旅行家伊本‧巴杜達從印度西岸的古里搭船到中國,在其遊記中說:往來印度洋的中國船分為三級,自三帆至十二帆不等,大的有船員千人,都有小船隨行。因此鄭和下西洋並非橫空出世,他是踏著宋元以來的航海成果和經驗完成的。

宋代(13世紀)繪畫中的帆船。船尾舵、披水板是中國的重大發明。圖/wikipedia

明永樂三年(1405)鄭和奉詔下西洋,先後共七次。西洋是指馬六甲海峽以西海域。下西洋船隊的船數約兩百至三百艘,出動人員約兩萬八千人。旗艦九桅十二帆,長度可能超過一百公尺,可載六、七百人,甚至千人。

鄭和下西洋是為了特殊目的所執行的航海活動。遙想十五世紀,鄭和及西方探險家先後進軍海洋,鄭和作了七場海上大秀,西方探險家的幾艘小船卻改變了世界政治版圖!

鄭和寶船與哥倫布船之比較,攝於杜拜 Ibn Battuta Mall 中國廳。Lars Plougmann 攝。圖/wikipedia

從明太祖起,就嚴禁人民出海。明成祖防範更嚴,甚至將原有的海船悉數改為平頭船,使其無法遠航。其後海禁愈來愈嚴。明世宗嘉靖四年(1525),下令焚燬海船,逮捕船員。嘉靖三十年(1551),嚴令海船出海,違者視同外國人,以間諜罪重處。

明代中葉,正值地理大發現的高潮,國際貿易興盛,外國人尤其喜歡中國的絲綢和瓷器。但明代實施海禁,於是一些膽子大、有冒險精神的沿海居民,包括一些不得志的知識份子,就冒著殺頭之罪從事走私活動。漸漸地,走梟結集成武裝海商集團,既然在中國不能立足,就依附日本藩主,雇用日本浪人當打手,明目張膽地到沿海港埠做生意,如遭到阻擋,就大肆劫掠,從海商變成海盜。

事實上明代中葉的倭寇以華人為主,首領都是華人。所謂「倭寇」,不過是官府對武裝海商集團的通稱。明代中葉,正是大航海時期,西方的商船大多亦商亦盜。中國平定倭寇,意味著失去了海洋。明清兩朝閉關自守,埋下國勢衰弱的種子。

張之傑_96
69 篇文章 ・ 214 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。