0

0
0

文字

分享

0
0
0

近路不走走遠路,喉返神經的奇幻之旅──《人類這個不良品》

天下文化_96
・2019/01/07 ・2181字 ・閱讀時間約 4 分鐘 ・SR值 498 ・六年級

編按:《人類這個不良品》羅列人體的各種缺陷與設計不良之處,但其實這就是演化自然產生的結果。這些不完美成就了獨一無二的我們,也讓我們照見演化的歷史。

一條條軸突傳遞神經訊號

人類神經系統的複雜性和重要性簡直到了驚人的地步。我們有高度發展的腦子,而腦子得透過神經才能發揮功用。

軸突就像一條一條獨立的細小纜線,負責在腦部和身體各處之間來回傳遞神經脈衝,聚集成束的軸突就是神經。好比位於腦部頂端的某些運動神經元就有極長的軸突,這些軸突延伸至腦部以外, 沿著脊髓下行,離開腰椎區,再沿著雙腿往下,最後抵達大腳趾。

神經系統分布全身。圖/wiki

這條路徑雖然漫長,但目的直接又明確。腦神經和脊神經的軸突則有如一張綿密的網,從腦部出發,分布至人體各個肌肉、腺體和器官。

經過大動脈再回到喉頭,繞遠路的喉返神經

在人類的神經系統裡,演化作用同樣留下了古怪的缺失。就拿「喉返神經」(recurrent laryngeal nerve,簡稱RLN)來舉例,先容我在此說明:人體多數神經是成對存在的,左右半身各一條,不過為求敘述方便,姑且就以左半身的喉返神經為例。

喉返神經的軸突從腦部頂端附近起源,並與喉頭的肌肉相連。喉頭肌肉受到神經的指揮,讓我們在說話、悶哼和唱歌時,能夠發出聲音,並加以控制。

始於腦部,終於喉嚨上半部,這條路徑理應很短:經過脊髓, 進入喉嚨,抵達喉頭,大不了幾公分的距離吧?

錯了。喉返神經的軸突包覆在一條更出名的神經—迷走神經(vagus nerve)之內。迷走神經自脊髓往下抵達上胸部,自此喉返神經才從迷走神經中分支出來,從肩胛骨稍下處離開脊髓,接著, 左喉返神經繞經大動脈下方,然後再重新回到頸部,抵達喉頭。

圖中所示為左迷走神經以及自左迷走神經分支出來的神經,包括喉返神經在內。喉返神經繞經胸腔回到頸部的行進路線非常迂迴,可回溯至脊椎動物早期祖先的身體構造,當時連接腦和鰓之間的神經路線非常直接,而且很接近心臟。圖/出版社提供

喉返神經的總長度足足比預定長度多了三倍以上,繞經不需經過的肌肉和組織,和許多心臟大血管互相交纏,是心臟外科醫師替病人手術時,得特別小心注意的一條神經。

都是演化搞的鬼?喉返神經要追溯至古老的魚類

早在古希臘時代,著名的加倫醫生就發現這個古怪之處。如此迂迴的神經行進路線,有什麼功能上的意義嗎?幾乎沒有。事實上,同為支配喉頭肌肉的上喉頭神經(superior laryngeal nerve),行進的路線就完全切中我們的預期。上喉頭神經同樣由更大的迷走神經中分支出來,在腦幹下方就離開脊髓,然後直接抵達喉頭,既簡單又明瞭。

那麼,為什麼喉返神經要選擇這麼一條孤單而漫長的道路呢?答案同樣藏在古老的演化歷史裡。

喉返神經源自於古老的魚類身上,所有現代脊椎動物身上都有這條神經。魚類的喉返神經連接腦和鰓,鰓可謂喉頭的祖先。然而,魚類腦子小,沒有頸部,沒有肺,牠們的心臟比較像一條肌肉軟管,不像人類的心臟有如一顆幫浦。因此,魚的中央循環系統,位置幾乎就在鰓的正後方,這一點跟人類大不相同。

魚類的腦與鰓距離很近。圖/ wiki

魚的喉返神經離開脊髓抵達鰓,走的是一條想當然耳又兼備效率的短路徑。魚的喉返神經在這條路途中,也確實和離開魚心的部分主要血管互相纏繞,這些血管等同哺乳類動物的動脈分支。

在魚身上,神經和血管交織的狀況是合理的,這樣才能在極度局促的空間裡,以最緊密又簡單的方式安置神經和血管。然而,隨著魚類演化出四足類,再演化出人類的過程,這樣的安置方式卻也造就了人體內荒謬的結構設計。

心臟距離腦部愈來愈遠,喉返神經只好愈來愈長

在脊椎動物演化過程中,出現了明顯的頸部和胸部,因此心臟的位置往後移動許多。從魚類到兩棲動物,兩棲動物到爬行動物,再從爬蟲類到人類,心臟的位置距離腦部愈來愈遠,然而鰓的位置並沒有變動。就解剖學的角度而言,人的喉頭之於人腦,就如同魚鰓之於魚腦。

要是喉返神經沒有和心臟血管互相纏繞,行進路線就不會受到心臟位置變動的影響。但是從腦部出發的喉返神經確實和心臟血管交纏,所以脫不了身,想要返回頸部就不得不繞這麼一大圈。顯然,想要從胚胎發育期著手,解開交纏的心臟血管和返喉神經,重新設計神經行進的路線,對演化作用而言不是一件簡單的任務。

人類的喉返神經白白繞了一大圈,經過頸部和上胸部所造成的後果,或許看起來不算太嚴重,畢竟所有四足的脊椎動物都從共同祖先「硬骨魚」那兒承襲了相同的結構設計。

所有脊椎動物的左喉返神經都會繞經大動脈下方。因此,腕龍的喉返神經長度勢必非常驚人。圖/出版社提供

鴕鳥的喉返神經其實只需要行進二至三公分的距離,就可以發揮功用,但鴕鳥喉返神經沿脊髓下行的長度就有一公尺,再返回到頸部又是一公尺的距離。長頸鹿的喉返神經長度高達五公尺!更別提迷惑龍、腕龍,和其他隸屬蜥腳亞目的恐龍,牠們的喉返神經有多長了。這麼一比較,人類似乎應該懂得知足。

 

 

本文摘自《人類這個不良品:從沒用的骨頭到脆弱的基因》,2018 年 12 月,天下文化出版。

文章難易度
天下文化_96
122 篇文章 ・ 604 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
0

文字

分享

0
1
0
心房顫動易忽略,直到中風才發現!症狀提醒與治療解析
careonline_96
・2023/03/28 ・2500字 ・閱讀時間約 5 分鐘

「醫師,我的心臟經常亂跳、心悸,而且我還會喘。」70 歲的老先生摀著胸口抱怨。

亞東紀念醫院心臟血管內科黃姍惠醫師回憶,該名患者經過連續心電圖檢查後發現患有心房顫動,而且一天中有快 7 小時的時間處在心房顫動的狀態。經討論,患者接受了冷凍消融導管治療。

「(手術)隔天老先生開心地說他的症狀消失了,沒有心悸、也不會喘,終於解決長期以來的困擾。」黃姍惠醫師說,「老先生都有持續回門診追蹤,目前也沒有復發的狀況。」

黃醫師表示,心房顫動是相當常見的心律不整,可能會導致腦中風、心肌梗塞、心臟衰竭,且整體死亡風險上升,及早診斷及治療,可以改善生活品質。

心跳過快、不規則,當心心房顫動

心房顫動是最常見的心律不整,黃醫師指出,發生原因主要是心臟左心房肺靜脈出口處有不正常的放電,導致心跳過快、不規則。

黃醫師表示目前台灣的心房顫動的盛行率約 1.5%,若是超過 65 歲以上的族群,則每 100 人裡面可能就有 4 位罹患心房顫動;80 歲以上的族群,大概每 10 人就有一位。隨著社會高齡化,心房顫動的患者越來越多,超過 65 歲以上的民眾是高風險族群,都應該留意是否有心房顫動的症狀或心跳不規則的狀況。

心房顫動亦很容易跟慢性疾病共同存在,例如高血壓、糖尿病、心血管阻塞的病史,還有一些較容易被忽略的病患,包括睡眠呼吸中止症、甲狀腺功能亢進等。若您有這些疾病,也應留意自己是否有心房顫動。

心房顫動可能無症狀,直到中風才發現!

黃醫師進一步說明,心房顫動最常見的症狀是心悸、心臟亂跳的感覺。由於心跳過快,病患有時候會感到胸悶、喘,或因心跳過快導致心肌缺氧引起胸痛,以及心臟輸出量可能不足,而導致頭暈、無力。

值得注意的是,部份心房顫動的病患沒有明顯症狀。黃醫師說,早期的研究統計,無症狀心房顫動的比例約 17%,隨著診斷工具的進步,2022 年發表的研究顯示,無症狀心房顫動的比例高達 25%,這些病患常常是在發生併發症,例如腦中風、肢體中風、甚至心臟衰竭之後,才被檢查出心房顫動。

由於心房顫動發作時,心房無法有效收縮,所以在左心耳可能漸漸形成血栓。黃姍惠醫師解釋,這些血栓若隨著血液流出心臟,就可能在身體各處造成栓塞,流到腦部會導致腦中風、流入冠狀動脈會導致心肌梗塞、流入腎動脈會導致腎臟中風、流入周邊動脈則會導致肢體中風。

此外,有些病患長期處在心房顫動的狀態,會導致心臟擴大,使瓣膜功能逐漸退化,而出現心臟衰竭的症狀。

因為可能出現腦中風、心肌梗塞、心臟衰竭等嚴重併發症,如果沒有積極治療,心房顫動患者比起一般人中風的機率是 5 倍以上、心臟衰竭的機率是 3 倍以上、整體死亡風險是 2 倍以上!不得不慎!

積極治療預防中風

透過心電圖檢查可以診斷出心房顫動,但因為心房顫動可能是陣發性,所以只做一張心電圖未必能夠剛好遇到心房顫動發作。黃姍惠醫師說,這時候就需要做連續式 24 小時心電圖,甚至需要 7 天、14 天的心電圖檢查,才有辦法確定診斷。

心臟科醫師會依據病患的風險,來幫病患決定是否需要抗凝血劑,黃姍惠醫師說,如果是高風險的患者,需要終生服用抗凝血劑;如果是陣發性,或處在持續性心房顫動,有機會做心律的控制,一般會給予抗心律不整的藥物。如果抗心律不整藥物無法改善,就會建議進行導管消融治療。

心房顫動導管消融治療包括「傳統電氣燒灼術」與「冷凍消融術」,黃姍惠醫師解釋,這兩種做法的目的都是要封堵源自肺靜脈的異常電氣訊號,讓亂跳的訊號傳遞不出來,讓心臟維持正常律動。

封堵的方式不同:傳統心導管電氣燒灼手術,是利用熱能在肺靜脈口附近一點一點地燒灼,造成一個點狀的圓圈;而冷凍消融術是將一個球囊,放在肺靜脈出口處,然後將液態笑氣注入球囊中,使球囊溫度降到攝氏 -55 度,來冷凍肺靜脈出口的組織,製造一圈連續的傷痕。

「傳統電氣燒灼術」與「冷凍消融術」都可以藉由 3D 立體定位的輔助,達到導管手術所需要的精準度。黃姍惠醫師說,傳統電氣燒灼術得一點、一點的燒灼把肺靜脈出口圈起來,手術時間大約需要 4 個小時;至於冷凍消融術能夠一次冷凍整圈肺靜脈出口,大幅縮短手術時間至 2 個小時,而且較不會有破裂、心包膜填塞的風險,有助提升安全性。

兩種導管消融術的成功率相當,約 8 成患者的症狀有顯著改善,約 6 成患者不再復發心房顫動。

貼心小提醒

心房顫動是最常見的心律不整,可能會讓人感到心悸、頭暈、無力、胸悶、呼吸急促,但約 25% 的人沒有明顯症狀。黃姍惠醫師強調,由於心房顫動會增加中風、、心肌梗塞、心臟衰竭的風險,所以不管有沒有症狀都要與醫師討論,及時採取合適的治療。

年紀越大,越容易出現心房顫動,超過 65 歲的民眾是高風險族群,都應該要注意自己的狀況,或做心電圖篩檢,才能早期發現、早期治療!

1

4
2

文字

分享

1
4
2
人口有限的古代社會,依然盡量避免近親配對?
寒波_96
・2023/03/28 ・4848字 ・閱讀時間約 10 分鐘

現代台灣社會中,像是堂兄弟姊妹之間的近親結婚,直接受到法律禁止。不過台灣法律的標準並非舉世通用,當今世上許多人的父母,可謂血緣上的親上加親。

近親結婚與近親繁殖,是人類的「常態」嗎?近年蓬勃發展的古代 DNA 研究,讓我們有機會深入探索這些問題。

公元 2010 年時,世界各地近親婚姻的分布狀況。「大中東地區」的比例非常高。圖/Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report

每個人的遺傳組成都大同小異,兩個人的血緣關係愈近,彼此 DNA 的差異愈小。例如街上隨便找兩位台灣人,即使非親非故,台灣人彼此間的血緣差異,要比台灣人與非洲人更小。

一個人的基因組,源自父母各一半。例如第十一號染色體,各有一條來自父母。父母間的血緣關係愈近,小孩的一對染色體之間也愈相似;因此,要判斷一個人的父母是否為近親,不用知道兩人各自的遺傳訊息,只需要小孩的基因組。

也就是說,假如有幸獲得一位三萬年前古人的基因組,只要這個古代基因組殘留的 DNA 訊息夠多,即使完全缺乏其餘的考古脈絡,我們也能判斷他父母的血緣親疏。

最近十年來,各路科學家獲得愈來愈多古代基因組。儘管數量有限,不過目前應該足以做出初步推論:近親繁殖不是智人的天性。

尼安德塔人的父親母親,親上加親?

討論智人以前,先來看看我們的近親尼安德塔人。兩群人的祖先超過 50 萬年前分家後,各自在非洲與歐洲發展,總人口應該都不多。

這兒要先澄清一個概念:「族群人口少」和「近親繁殖」是兩回事。即使全體族群只有兩千人,整群人的遺傳變異加起來很有限,只要每一次配對時刻意選擇,依然能完全避免近親繁殖。相對地,就算總共有 20 萬人,還是有機會大量近親生寶寶。

重現尼安德塔人 DNA 是智人的重大成就,可惜目前為止累積的基因組樣本很少,只有 30 人左右,分散在不同時間點,廣大的地理範圍。

尼安德塔人的古代基因組,地點與數量。圖/參考資料3

如今了解最透徹的尼安德塔人,位於中亞的 Chagyrskaya 洞穴(現今的俄羅斯南部,知名的丹尼索瓦洞穴在附近),估計年代為 5 萬多年。這群人中有 8 位的遺傳訊息比較齊全,比對得知,所有人的父母都是近親!

尼安德塔人主要住在歐洲,中亞的人口極少。近親生寶寶如此普遍,或許是由於能選擇的對象有限。然而也有可能,這就是尼安德塔人一般的習慣。也許尼安德塔人不會刻意避免近親繁殖,不過程度如何並不清楚。

流動的人,流動的DNA

智人約一萬年前開始定居種田以前,生活方式和尼安德塔人一樣,也習慣分為一小群一小群人活動,不長期定居在一個地點。有意思的是,舊石器時代已知少少的智人基因組,都不存在近親繁殖。

依賴採集、狩獵的生產方式下,每一群的人數都不多,近親配對好像很難避免。不過移動性高的人群,應該也常有機會互相交換人口,增加配對選項。從古代 DNA 看來,這是古早智人的普遍行為。

現有證據似乎告訴我們,遠比文明誕生更早以前,智人已經習慣刻意和血親以外的對象配對,或許可稱之為智人的「天性」,但是不清楚能追溯到多早。

智人如今僅有尼安德塔人一種比較對象,而尼安德塔人好像不排斥近親繁殖。有可能兩者的共同祖先已經會避免近親配對,尼安德塔人卻不再在意;也有可能這是智人較新的性擇模式,與尼安德塔人分家以後的某個時候才形成。

捷克的 Moravia 的 Dolní Věstonice 遺址,2.6 萬年前想像畫面。當時智人人口有限,卻會避免近親配對。圖/Dolní Věstonice in Central Europe

這也可以澄清一個疑惑。有個說法是,原始人只知道媽媽,不知道爸爸,因為小孩明確由媽媽生出,爸爸的功能卻不直接。根據古代 DNA 的證據判斷,此說很顯然錯誤。

如果隨機配對,一群人中勢必會有一定比例的人,父母為血緣近親。由結果反推,倘若都沒有的話,表示這群人都會刻意避免近親配對。

假如多數人都不知道爸爸是誰,實在難以想像要怎麼如此徹底的避免近親繁殖。反過來則合理得多:每個人都知道自己的爸爸媽媽是誰,擇偶時才能避開。

定居的人,設法讓 DNA 流動

一萬多年前開始,世界許多地方陸續有人定居下來,改為依靠種田營生。從流動性高的採集狩獵小群體,變成長期住在一處的小農村,人類的生活方式改變很大,這會影響配對習慣嗎?

人人採集狩獵的時期,每一群的人數都不多,但是習慣跑來跑去,有不少機會交換人口。新石器時代定居下來以後,初期的人口還是不多,卻失去流動性,只能從住在附近的有限對象中擇偶。如此一來,近親配對的機率應該會提高?

目前對此問題的探討不多。資訊比較多的案例,來自安那托利亞(現今的土耳其)一萬多年前,人口頂多數百的小農村遺址 Boncuklu、Pınarbaşı。這兒新石器時代初期的居民,多數在本地長大;可是遺傳上看來,都會避免近親繁殖。

新石器時代小型農村,概念圖。圖/Paint The Past

具體狀況不明,本地與否是透過「鍶」的穩定同位素判斷,涵蓋的地理範圍不算太小。幾十公里遠的隔壁村,只要鍶同位素仍屬同一範圍,仍然會辨識為本地人。

不過我想這些線索應該足以支持,安那托利亞的人們邁入定居時代後,依然保持舊日的擇偶習慣,在有限的選項中盡量避免血親。但是近親繁殖也出現了。肥沃月灣西側的 Ba’ja 遺址(現今的約旦),至少有 1 位居民的父母為近親。

要提醒各位讀者,不同地方邁入定居的年代與狀況都不一樣,有時候差異很大,不可一概而論。

從城市到文明

隨著人口增長加上工作分化,漸漸有大型聚落誕生,有些或許可稱之為城市。人類發展可謂來到另一階段。

例如前述 Boncuklu、Pınarbaşı 遺址附近,就形成知名的加泰土丘(Çatalhöyük),數千年來都有數千人口居住。由鍶穩定同位素判斷,這兒多數人是土生土長,也有少量外來移民。

加泰土丘和我們習慣的「城市」有不少差異,卻昭示人類進入大量人口群聚的階段,各地一座又一座城市興起又衰落。長期保持數千人口的城市生活圈中,即使一輩子不出遠門,似乎也不難找到近親以外的異性配對。

大城市人口多,即使一輩子留在一個地方,也有不少機會找到血親以外的結婚對象。圖/IMDB

當然在現代以前,世界各地的大部分人類並不住在人擠人的城市,而是人口密度更低的郊區與鄉村。不過倘若有心避免近親配對,應該不難達成。

目前為止重現於世的古代基因組,不論何時何地,大部分不是近親繁殖的產物。某文化的眾多樣本中,有時候能見到零星幾位,甚至是兄弟姊妹或親子間的極近親,但是都不普遍。

人口有限的海島,近親繁殖好像更容易發生。義大利南方的馬爾他島,在新石器時代確實如此;但是不列顛北部的奧克尼島,青銅時代僅管人口很少,依然能幾乎避免。

是人性的扭曲,還是財富的累積?

至今所知近親繁殖最常見的古代社會,是青銅時代的愛琴世界,也就是希臘及其外島,距今 3000 到 5000 多年前,愛琴海一帶的米諾斯等文化。薩拉米斯島(Salamis)等小島的比例較高,希臘大陸相對低,整體比例約 30% 之高。

取樣一定有偏差,真正的近親比例不好說,但是大概足以判斷青銅時代的愛琴世界,堂表兄弟姊妹等級的近親婚配習以為常,不只少量統治家族,而是全民普及的現象。

愛琴在青銅時代的橄欖種植。圖/Marriage rules in Minoan Crete revealed by ancient DNA analysis

有史以來智人都會避免近親繁殖,為什麼愛琴人改變婚配方式?目前沒有答案。考古學家提出一個可能,種植橄欖之類的經濟作物,最好不要分割土地,而近親配對有助於保留土地,讓產業留在大家族內傳承。這聽起來合理,可惜缺乏更直接的證據。

社會中有人累積土地等資產,是人類發展的趨勢之一,而不論王公貴族或小地主,時常都有集中資產的需求。目前缺乏古代基因組的其他文化,是否也會見到類似愛琴世界的現象?我猜頗有可能,應該是有趣的探索方向。

隨著不同時空的樣本累積,加上容易操作的父母親緣分析軟體,未來「父母是否為近親」也許能成為古代基因組的標準化分析步驟,讓我們更方便認識人類的性擇。

延伸閱讀

參考資料

  1. Scott, E. M., Halees, A., Itan, Y., Spencer, E. G., He, Y., Azab, M. A., … & Gleeson, J. G. (2016). Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature genetics, 48(9), 1071-1076.
  2. Genomic landscape of the Greater Middle East
  3. Skov, L., Peyrégne, S., Popli, D., Iasi, L. N., Devièse, T., Slon, V., … & Peter, B. M. (2022). Genetic insights into the social organization of Neanderthals. Nature, 610(7932), 519-525.
  4. Sikora, M., Seguin-Orlando, A., Sousa, V. C., Albrechtsen, A., Korneliussen, T., Ko, A., … & Willerslev, E. (2017). Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science, 358(6363), 659-662.
  5. Svensson, E., Günther, T., Hoischen, A., Hervella, M., Munters, A. R., Ioana, M., … & Jakobsson, M. (2021). Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 31(14), 2973-2983.
  6. Pearson, J., Evans, J., Lamb, A., Baird, D., Hodder, I., Marciniak, A., … & Fernández-Domínguez, E. (2023). Mobility and kinship in the world’s first village societies. Proceedings of the National Academy of Sciences, 120(4), e2209480119.
  7. Yaka, R., Mapelli, I., Kaptan, D., Doğu, A., Chyleński, M., Erdal, Ö. D., … & Somel, M. (2021). Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Current Biology, 31(11), 2455-2468.
  8. Wang, X., Skourtanioti, E., Benz, M., Gresky, J., Ilgner, J., Lucas, M., … & Stockhammer, P. W. (2023). Isotopic and DNA analyses reveal multiscale PPNB mobility and migration across Southeastern Anatolia and the Southern Levant. Proceedings of the National Academy of Sciences, 120(4), e2210611120.
  9. Cassidy, L. M., Maoldúin, R. Ó., Kador, T., Lynch, A., Jones, C., Woodman, P. C., … & Bradley, D. G. (2020). A dynastic elite in monumental Neolithic society. Nature, 582(7812), 384-388.
  10. Fowler, C., Olalde, I., Cummings, V., Armit, I., Büster, L., Cuthbert, S., … & Reich, D. (2022). A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 601(7894), 584-587.
  11. Rivollat, M., Thomas, A., Ghesquière, E., Rohrlach, A. B., Späth, E., Pemonge, M. H., … & Deguilloux, M. F. (2022). Ancient DNA gives new insights into a Norman Neolithic monumental cemetery dedicated to male elites. Proceedings of the National Academy of Sciences, 119(18), e2120786119.
  12. Dulias, K., Foody, M. G. B., Justeau, P., Silva, M., Martiniano, R., Oteo-García, G., … & Richards, M. B. (2022). Ancient DNA at the edge of the world: Continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proceedings of the National Academy of Sciences, 119(8), e2108001119.
  13. Ariano, B., Mattiangeli, V., Breslin, E. M., Parkinson, E. W., McLaughlin, T. R., Thompson, J. E., … & Bradley, D. G. (2022). Ancient Maltese genomes and the genetic geography of Neolithic Europe. Current Biology, 32(12), 2668-2680.
  14. Freilich, S., Ringbauer, H., Los, D., Novak, M., Pavičić, D. T., Schiffels, S., & Pinhasi, R. (2021). Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Scientific Reports, 11(1), 16729.
  15. Gnecchi-Ruscone, G. A., Szecsenyi-Nagy, A., Koncz, I., Csiky, G., Racz, Z., Rohrlach, A. B., … & Krause, J. (2022). Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 185(8), 1402-1413.
  16. Fernandes, D. M., Sirak, K. A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet, O., … & Reich, D. (2021). A genetic history of the pre-contact Caribbean. Nature, 590(7844), 103-110.
  17. Zhang, F., Ning, C., Scott, A., Fu, Q., Bjørn, R., Li, W., … & Cui, Y. (2021). The genomic origins of the Bronze Age Tarim Basin mummies. Nature, 599(7884), 256-261.
  18. Skourtanioti, E., Ringbauer, H., Gnecchi Ruscone, G. A., Bianco, R. A., Burri, M., Freund, C., … & Stockhammer, P. W. (2023). Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean. Nature Ecology & Evolution, 1-14.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

所有討論 1
寒波_96
181 篇文章 ・ 747 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

2
1

文字

分享

0
2
1
從遺傳基因能發現人類起源?在我們 DNA 上銘刻的故事!——《我們源自何方?》
馬可孛羅_96
・2023/03/17 ・2580字 ・閱讀時間約 5 分鐘

遺傳基因如何記錄歷史

要理解遺傳學為何能協助我們探究人類的過去,必須了解基因組(我們由雙親繼承來的所有遺傳密碼)如何紀錄資訊。

一九五三年,法蘭西斯.克里克(Francis Crick)、羅莎琳.富蘭克林(Rosalind Franklin)、詹姆斯.華生(James Watson)和莫利斯.威爾金斯(Maurice Wilkins)證明,基因組是由大約三十億個化學構件組成的雙長鏈(總共有六十億個單元)。

我們可以把這些構件想成字母,包括腺嘌呤(adenine,A)、胞嘧啶(cytosine,C)、鳥糞嘌呤(guanine,G)和胸腺嘧啶(thymine,T)1。我們所謂的「基因」是由一段段短鏈組成,每段的長度通常是一千個字母左右。

基因的功能是模板,用來合成執行細胞內各項工作的蛋白質。基因之間是非編碼 DNA ,有時稱為垃圾 DNA (junk DNA)。在 DNA 片段上進行化學反應的機器能讀取這些字母指令,在反應沿 DNA 序列行進時放射閃光。

A、C、G、T 等字母進行化學反應時放射的色彩各不相同,所以字母序列能用攝影機掃描後輸入到電腦。

  

現代人演化年表。圖/《我們源自何方?》

絕大多數科學家只留意基因包含的生物訊息,但 DNA 序列之間偶爾也會有些差異。這些差異源自基因組過去複製時出現在某些時刻的隨機誤差(稱為突變〔mutation〕)。這些差異的發生機率大約是一千分之一,基因和垃圾 DNA 都可能出現。遺傳學家探究過去時要研究的正是這些差異。

在這大約三十億個字母中,無關的基因組之間通常有大約三百萬個差異。兩個基因組的片段之間差異密度越高,這兩個片段的共同祖先年代就越久遠,因為突變隨時間增加的速率大約是固定的。所以差異密度就像生物碼表,紀錄了以往發生的重要事件距離現在大約多久。

基因組序列差異/《我們源自何方?》

粒線體夏娃

透過遺傳學研究過往,最令人驚奇的應用途徑是粒線體 DNA 。粒線體 DNA 是基因組中非常微小的一部分(大約只有二十萬分之一),透過母親、女兒和孫女等母系親屬代代相傳。一九八七年,艾倫.威爾森(Allan Wilson)等人採集世界各地多個人種的粒線體 DNA ,定序出數百個字母。他們比較這些序列之間的突變差異,建構母系親屬系統樹。

他們發現,系統樹中最長的分支(也就是最早脫離主幹的分支)現在只出現在撒哈拉以南的非洲人後裔身上,表示現代人的祖先生活在非洲。相反地,現在非洲以外的人全都源自系統樹中年代較晚的分支。

依據一九八○和一九九○年代發現的考古、遺傳和骨骼證據下提出的主流整合結果中,這項發現成為十分重要的部分,支持現代人的祖先數十萬年前曾經生活在非洲的理論。

威爾森等人依據突變累積速率,估算出所有分支的共同祖先中,距離現在最近的粒線體夏娃(Mitochondrial Eve)大約生活在二十萬年前。目前最可靠的估計年代是十六萬年前左右,但我們必須了解,這個數據和大多數遺傳年代一樣不大精確,因為人類突變的實際發生速率並不確定。

科學家藉由基因突變率估計人類共同的祖先約出現在二十萬年前。圖/envatoelements

共同祖先年代距離現在如此之近,相當令人興奮,因為這打破了多區域說(multiregional hypothesis)。根據這個假說,生活在非洲和歐亞大陸許多地區的現代人類大多源自直立人(Homo erectus)早年的擴散(距今至少一百八十萬年)。直立人能製作粗糙的石造工具,腦容量大約是現代人類的三分之二。

多區域說則指出,直立人的後代在非洲和歐亞大陸各地分別演化,形成現在生活在相同地區的族群,因此多區域說預測,現代人類身上有些粒線體 DNA 序列在兩百萬年前左右分化開來,也正是直立人擴散的年代。

人類擴散與文化演變

然而,遺傳資料完全不吻合這個預測。所有現代人類的共同粒線體 DNA 祖先距今只有兩百萬年的十分之一,代表現在的人類大多源自年代晚近許多的擴散,從非洲前往世界各地。

人類學證據指出當時可能的狀況。最古老的「解剖上具有現代人類相同特徵」的人類骨骼(也就是在球狀顱骨和其他表徵方面位於所有現代人類的變異範圍內)年代約為二十∼三十萬年前,而且全部出自非洲。但在非洲和近東地區外,解剖學上的現代人目前還沒有年代早於十萬年前的可信證據,年代早於五萬年前的證據也相當有限。

石造工具種類的考古證據也指出五萬年前開始出現重大改變,西歐亞大陸考古學家稱這個時期為舊石器時代晚期(Upper Paleolithic),非洲考古學家則稱之為石器時代晚期(Later Stone Age)。

這段時期之後,製造石造工具的技術大幅躍進,此後每幾千年改變風格一次,改變步調比冰河還慢。這段時期的人類也開始留下更多展現美學與精神生活的文物:鴕鳥蛋殼串珠、拋光的石質手鐲、以紅色氧化鐵製作的身體塗料,以及全世界最早的具象藝術。

目前已知全世界最古老的小雕像是長毛象牙刻成的獅子人(lionman)雕像,發現於德國的霍倫斯坦—施泰德洞穴(Hohlenstein-Stadel),年代約為四萬年前。法國蕭維岩洞(Chauvet Cave)中的前冰川時期動物畫的年代約為三萬年前,現在仍被認為是傑出的藝術作品。

尼安德塔的骨骼。圖/wikipedia

從大約五萬年前開始,考古紀錄變化大幅加快,同時也反映在族群變化上。尼安德塔人大約四十萬年前出現在歐洲,由於骨骼形狀不在現代人類變異範圍內,所以被視為「古代」人類,於四萬一千年∼三萬九千年前在西歐滅絕,此時現代人類到達西歐只有數千年。

歐亞大陸其他地方也有族群反轉現象,非洲南部也是如此,證據包括某些地點遭到棄置以及石器時代晚期文化突然出現。

這些變化最自然的解釋是解剖上具有現代人類相同特徵的某個人類族群擴散,這個族群的祖先包括擁有先進新文化的「粒線體夏娃」,並且取代了原先居住在這些地方的人類。

——本文摘自《我們源自何方?:古代DNA革命解構人類的起源與未來》,2023 年 3 月,馬可孛羅出版,未經同意請勿轉載。

馬可孛羅_96
22 篇文章 ・ 17 位粉絲
馬可孛羅文化為台灣「城邦文化出版集團」的一個品牌,成立於1998年,經營的書系多元,包含旅行文學、探險經典、文史、社科、文學小說,以及本土華文作品,期望為全球中文讀者提供一個更開闊、可以縱橫古今、和全世界對話的新閱讀空間。