0

0
0

文字

分享

0
0
0

為什麼衛生棉可以做到「超乾爽不外漏」?

李赫
・2019/01/18 ・1905字 ・閱讀時間約 3 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

熟睡的女性要的就是能在生理期好好地睡一覺。圖/pexels

為什麼衛生棉可以「超乾爽不外漏」?

衛生棉是女性的生活必需品,大家一定對「 超強吸水、十倍吸收、超乾爽」這樣的廣告詞耳熟能詳!衛生棉廣告中,也常出現一個橋段──將水直接倒在衛生棉上──用以證明其有超強吸收及保水能力。

圖/pexels

事實上這一點都不誇張,因為在衛生棉內層當中具有極高吸水能力的「吸水性高分子」。吸水性高分子可吸收本身重量 500 倍(本身體積 30-60 倍)含量的水,當然可以超乾爽不外漏。

吸水性高分子本身不溶於水,且具有很高的保水能力。我們印象中的吸水材料如棉、紙、海綿等,是利用毛細管現象將水吸收於材的間隙;與吸水性高分子相較,其吸水能力低、保水能力也不好──受到壓力水就會流出。所以對於衛生棉、紙尿褲而言,尚且不足以把水分鎖住,並不適合作為吸水層主要材料。

「吸水性高分子」除了吸水還有什麼功能?

衛生棉的設計發想源自於土壤保水率材料的研究。圖/pexels

一個能夠用於衛生棉內的吸水材料,不但要有吸水能力,同時還要有保水能力。過去對於吸水能力的產生往往是因為水與纖維質孔隙之分子有作用力而使液體流動,但是如果要使液體不流動,就要想辦法讓水被抓住、被固定住,那麼在材料選擇的思維就不同了。

-----廣告,請繼續往下閱讀-----

而這類吸水性高分子最早並非使用於衛生用品當中。在 1960 年代早期,美國農業部進行改善土壤保水率材料的研究,開發了能夠吸收本身重量 400 多倍水的高分子化合物,而且這類材料不會像纖維基吸收材料那樣釋放水。後來美國農業部將這項技術移轉給一些美國公司,進行進一步開發,逐漸被改良及應用於衛生用品中。

鎖住水分的保水能力,怎麼辦到的?

吸水性高分子最重要的特性是保水性。一個分子要如何擁有保水能力?

就是要有「抓」水的能力。

首先,先來介紹一下化學的基本觀念。水本身是一個分子,它是由氫原子以及氧原子所組成,分子式為 H2O (如下圖(B)所示)。由於氫原子以及氧原子周圍都有電子存在,然而原子本身對於電子的喜好程度不同,形成化學鍵結後,會產生電荷分布不均的現象,並產生所謂的極性(如下圖(A) 所示 )。

氧原子本身對於電子的喜好程度較高,因而較能吸引電子(喜好電子的程度在專業領域上稱之為陰電性);氫原子本身對於電子的喜好程度則較低。當兩者形成化學鍵結合時,會引起電子的局部流動──氧原子的周圍被較多的電子圍繞,氫原子的電子局部流失,形成了帶有正/負兩極的極性狀態(如下圖 (B) 所示)。

所以水本身就是有極性的。那要如何能夠抓住水分子呢?這個答案就很明顯了,就是找一個也有極性的分子, 因為正/負會相吸的簡單原理,就會把水吸引住,水就被「抓」住了。

-----廣告,請繼續往下閱讀-----
(A)水的電子局部流動分佈 (B)水的極性。圖/作者提供

也就是說,如果我們能夠將具有極性特質的分子,固定於在衛生棉材料中,就能有效地將水抓住;而這類分子又不能被水給溶解出,那麼最好的選擇莫過於吸水性高分子了。

聚丙烯酸鈉上之-COO- 與水具有極性吸引力。圖/Edgar181 [Public domain], from wikimedia commons

在此以常用的吸水性高分子聚丙烯酸鈉 (Sodium polyacrylate)來說明:

聚丙烯酸鈉分子式為 [-CH2-CH(COONa)-],而高分子在吸水前,分子的長鏈相互交纏,形成三維度的網目構造,類似交纏的毛線球。由於分子鏈段上的 -COONa 易解離(於水中分解成 –COO 與 Na+ 離子),所以 –COO本身會有極性,會與水分子的極性互相吸引,而將水「抓」住,(如 上圖所示)。

由於 –COO本身帶負電,互相排斥之下,高分子網目擴大,吸水量隨之增加,換句話說,保水性也就提高了!如上面影片,我們可以觀察到其體積的膨脹,吸水前後體積有偌大的差異。

這也就能解釋為何衛生棉具有超強吸收及保水能力了!如今吸水性高分子被廣泛的應用在生活中,衛生棉、紙尿褲、土壤保水劑等都可一窺其蹤跡,具有龐大的商業價值,諸多廠商積極投入開發新材料並申請專利;但不論其結構變得多複雜,基本學理其實就是這樣簡單。

-----廣告,請繼續往下閱讀-----

參考文獻 :

  1. Physics LibreTests: Capacitors and Dielectrics
  2. The Wire: Why Water Along the Surface of a Tank Isn’t Like the Water Inside
  3. Polymers-Osmosis Magic
  • 文字編輯/蔡雨辰
文章難易度
李赫
9 篇文章 ・ 4 位粉絲
中央大學理學博士。為熱愛傳播知識與吸收知識的 作家/教育/研究學者。 對於居家設計與生活時尚亦有高度興趣 (FB作者專頁)。

0

0
0

文字

分享

0
0
0
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
3

文字

分享

0
0
3
妳的月經褲有毒嗎?
胡中行_96
・2023/10/30 ・2799字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「我把『發誓』絕沒穿過的 Lunapads 跟 Thinx 月經褲,寄給聖母大學(University of Notre Dame)的核能科學家 Graham Peaslee 博士。」2020 年 1 月 7 日,美國《Sierra》雜誌專欄作家 Jessian Choy 發表〈我的月經褲有毒〉一文,說 Thinx 的兩款有機月經褲,分別含有 3,264ppm 和 2,053ppm 的全氟/多氟烷化物(per- and polyfluoroalkyl substances, PFAS),並指控廠商刻意添加。[1]Jessian Choy 的說法不完全正確:那些數值其實是氟的濃度,不過的確能代表 PFAS 是否很多[2]

不明廠牌的月經褲。圖/Vulvani on Wikimedia Commons(Edited;CC BY-SA 4.0

全氟/多氟烷化物

PFAS 是一堆化學物質的總稱,其中以全氟辛烷磺酸(perfluorooctane sulfonic acid;PFOS)和全氟辛酸(perfluorooctanoic acid;PFOA)的運用最為廣泛。[3]PFAS 具有耐熱,又防油、水的特性,做出來的塗料,可見於衣物、家具、黏著劑、食物包裝、耐熱不沾黏的廚具,以及絕緣電線等產品。[4]PFOS 與 PFOA更是消防用品水成膜泡沫(Aqueous Film-Forming Foam;AFFF)的主要成份。[3][註1]PFAS 滲透土壤而汙染水源,無法於環境中分解,[4]並在野生動物與人體內累積。[3, 4]

目前 PFAS 對人類產生嚴重影響的證據有限,[3]低濃度環境暴露的傷害也尚不確定。[4]已知可能與高濃度 PFAS 相關的症狀,包括:體內膽固醇含量微升、嬰兒出生體重稍減、兒童對疫苗的反應略降、肝臟酵素和某些荷爾蒙變化,還有增加腎臟癌、睪丸癌,以及孕婦高血壓的風險等。[3, 5]

集體訴訟和解

Thinx 公司分別在麻州和加州被告,後來又整併為集體訴訟。這些健康沒有受到傷害的告訴人,指稱又叫作「永久性化學物質」(forever chemicals)的長鏈 PFAS,雖然逐漸從美國退場;但是廠商卻改用短鏈的PFAS。她們認為Thinx的網站,不該宣稱產品不含有害化學物質。[6]

-----廣告,請繼續往下閱讀-----

2022 年 12 月,此案於紐約達成和解。「和解不代表 Thinx 承認錯誤」,該公司的發言人表示:「我們否認訴訟中的所有指控。」儘管堅持產品的設計從來就不含 PFAS,Thinx 公司同意負擔 5 百萬美金,讓 2016年 11 月 12 日至 2022 年 11 月 28 日間,購買其產品的消費者,在 2023 年 4 月中之前,上網申請退費。每人最多 3 件,每件退美金 7 元;或領取 6.5 折,最高折抵 52.5 元的折價券一張。[6]

他們也承諾繼續確保製作過程不刻意添加 PFAS,同時照常要求原料供應商遵守此規範。另外,還會改變行銷用語,例如:寫明產品經過抗菌處理等。[6]總之,美國 Thinx 公司的事件落幕了。但是消費者從此高枕無憂了嗎?

送驗更多產品

《紐約時報》(The New York Times)旗下的商品評測網站「剪線鉗」(Wirecutter),曾經推薦過 Thinx 的月經褲,所以大概覺得欠讀者一個交代。2023 年,他們一口氣寄了各品牌的衛生棉、衛生棉條、月亮杯、月經褲、失禁褲和漏尿墊等,總共 44 種產品去聖母大學。[2]

那位曾捲入 Thinx 月經褲風波的 Graham Peaslee 博士,這回跟研究生 Alyssa Wicks 等人,針對產品鉅細靡遺地做了超過 200 次氟濃度的檢測。比方說,Wicks 把棉條給支解成棉條本體、繩子、導管和包裝紙;月經褲的布料分層拆開;還從衛生棉的雙面與外包膜取樣,通通分別檢驗。[2]

-----廣告,請繼續往下閱讀-----

結果全部產品都至少有微量的氟:近半應該是受到汙染(> 50 ppm),而其中 8 件則為刻意添加(> 300 ppm)Thinx 的產品在送驗的 10 件月經褲裡,含量最低,只有 26 ppm。另外有個號稱絕對沒有 PFOA 和 PFOS 的廠牌,卻高達兩萬多 ppm。至於多數的衛生棉皆有汙染的現象,而醫療級矽膠月亮杯和棉條的含量則非常低。[2]

月亮杯。圖/Marketing City to Sea on Unsplash

下個月怎麼辦?

不是每個人都喜歡用月亮杯或棉條,更何況臺灣買得到的,未必是那些在美國驗過的廠牌。如果已經習慣了環保又方便的月經褲,下次生理期怎麼辦?「我自己就有還沒扔掉的 Thinx」,加州大學舊金山分校的婦科教授 Marya Zlatnik 說。[2, 7]既然環境裡到處是 PFAS,「對我而言,這不是最重要的一個。」[2]

要是做不到如此灑脫呢?事實上 Thinx、Modibodi、Aisle、Bambody、Selenacare 和 Chantelle 等品牌的月經褲,都持有 OEKO-TEX 認證;[8-10]而臺灣廠牌月亮褲®的產品,則通過 SGS 檢驗。[11]兩者檢測的項目,均包含 PFOS 跟 PFOA 在內的諸多 PFAS。[11-13][註2]如果依然擔心有微量汙染,根據美國化學學會(American Chemical Society)《環境科學及科技》(Environmental Science & Technology)期刊的論文,衣物水洗、晾乾後,PFAS 的濃度會降低。[14]因此,請記得月經褲買來,第一次穿著前一定先要清洗乾淨。

  

-----廣告,請繼續往下閱讀-----

備註

  1. 根據環保團體「看守台灣」的報導,環保署已將 PFOA 和 PFOS 列管,2022 年 12 月 31 日後不得用於消防泡沫中。[15]
  2. 本文列舉的品牌,大概都可以在臺灣的店面或從網購買到。根據《紐約時報》「剪線鉗」網站報導,Thinx 的所有產品都具 OEKO-TEX 認證,[8]但是不曉得有無涵蓋外銷及聯名的部份。筆者發現 Thinx 與 Kotex(靠得住)合作的月經褲,紐澳版盒底確實有註明。不過,類似的商品在臺灣康是美的網站上,似乎沒有特別標榜,[16]還請讀者選購時自行確認。其他像是 Chantelle 和 Selenacare,在臺灣的銷售網站,有提及 OEKO-TEX 認證;[9, 10]月亮褲®則是公佈 SGS 的檢驗報告。[11]

參考資料

  1. Choy J. (07 JAN 2020) ‘My Menstrual Underwear Has Toxic Chemicals in It’. Sierra.
  2. Redd N. (10 AUG 2023) ‘We Had 44 Period and Incontinence Products Tested for Forever Chemicals. Many Were Contaminated.’ Wirecutter, The New York Times.
  3. PFAS Health Study’. Australian National University. (Accessed on 18 OCT 2023)
  4. U.S. Centers for Disease Control and Prevention. (02 MAY 2022) ‘Per- and Polyfluorinated Substances (PFAS) Factsheet’. U.S. National Biomonitoring Program.
  5. What are the health effects of PFAS?’. (01 NOV 2022) Agency for Toxic Substances and Disease Registry, U.S.
  6. Treisman R. (19 JAN 2023) ‘Thinx settled a lawsuit over chemicals in its period underwear. Here’s what to know’. National Public Radio, U.S.
  7. Marya Zlatnik, MD’. UCSF Profiles, U.S. (Accessed on 19 OCT 2023)
  8. Redd N. (11 AUG 2023) ‘The Best Period Underwear’. Wirecutter, The New York Times.
  9. 【Period Panty】 仙黛爾集團創新女性衛生用品」(27 APR 2023)Chantelle
  10. 奧地利SELENACARE月亮可兒-機能經期褲(月經褲)-動感活力款」PChome24h(Accessed on 19 OCT 2023)
  11. 嘉曜醫材有限公司(23 FEB 2023)「【公告:月亮褲®️產品通過 PFAS 檢驗】」月亮褲®
  12. OEKO-TEX® New regulations 2023 press release’. (10 JAN 2023) OEKO-TEX.
  13. OEKO-TEX® Standard 100’. (04 JAN 2023) OEKO-TEX.
  14. van der Veen I, Schellenberger S, Hanning AC, et al. (2022) ‘Fate of Per- and Polyfluoroalkyl Substances from Durable Water-Repellent Clothing during Use’. Environmental Science & Technology, 3;56(9):5886-5897.
  15. 林奕均(10 JAN 2022)〈不沾鍋、消防泡沫和速食包裝袋的祕密〉看守台灣
  16. Kotex靠得住 月經褲M號(包裝隨機出貨)」康是美COSMED(Accessed on 18 OCT 2023)
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

2

21
6

文字

分享

2
21
6
穿著人造皮革才是環保時尚人?從電影《時尚惡女:庫伊拉》看人造皮革對環境的危害
ffr_96
・2021/06/23 ・2661字 ・閱讀時間約 5 分鐘

電影中的庫伊拉,穿著厚重白色皮草,踩著紅色高跟鞋,盛氣凌人的模樣令人印象深刻。在電影《101 忠狗》中,他居然提議要收購 15 隻剛出生的小狗並做成狗皮大衣!

在如今動物保護意識高漲的社會氛圍中,許多時尚品牌都拒絕使用天然皮草作為服飾和配件的原料。除此之外,許多新聞媒體報導,飼養場裡的水獺、銀貂、兔子等動物被豢養在非常惡劣的環境。空間極為狹小,導致四肢無法正常伸展而變形、排泄物都堆積在籠子下方,惡臭無比、長期累積的恐懼讓動物們只要看見有人靠近,便會退縮到角落。

以誇張皮草著稱的迪士尼角色庫伊拉。圖/giphy.com

除此之外,殘忍的取皮過程也讓人頭皮發麻(上網 Google 就知道了,超可怕!晚上會做惡夢!),諸如此類的場景被社會大眾看見後, 便更加鼓吹天然皮草的不正當性,甚至有時尚名模為此喊出「I’d Rather Go Naked Than Wear Fur 」 的口號。逐漸地,隨著時代的推進和觀念的轉變,取而代之的是人造皮革的起飛。

雖然人造皮革的耐用性不比天然皮革,但是仍擁有許多天然皮革沒有的優點,例如:重量較輕、價格便宜、品質均一、花紋以及樣式較為多元等等,讓人造皮革逐漸的在時尚產業佔有一席之地。

人造皮革的發明減少了動物的苦楚,人類的文明也有了一大躍進,似乎解決解決了一大問題。但我們很可能忽略了人造皮革帶來的危害。

-----廣告,請繼續往下閱讀-----

人造皮革是什麼?

人造皮革是一種「高分子材料」,在某些產品的包裝,我們會看到成分標示上寫著「聚 XXXXX」的成分,這些「聚 XXXXX」的成分都能統稱為高分子材料。

從微觀角度來看,高分子(polymer)是非常多個單體(monomer)透過化學反應,聚合在一起所形成的巨大分子。例如,葡萄糖是單體,而澱粉是高分子。葡萄糖透過化學反應形成鍵結,將葡萄糖分子串聯在一起,並形成澱粉。所以,如果把澱粉顆粒放大來看,會發現裡面聚集非常多長鍊的葡萄糖。

高分子材料的分子量可介於幾千到幾百萬,不同原料和不同分子量的高分子在機械性質(例如:硬度、彈性)或者應用範疇上會有所差異。市場上最常見的兩種人工皮革材料,是聚氨脂PU)以及聚氯乙烯PVC)。聚氨脂(PU)的機械強度高、耐磨損性佳,因此經常使用在輪胎、鞋底。而聚氯乙烯(PVC)由於便宜且易於加工,因此產品種類非常多,從保鮮膜、水管、玩具等等都可以藉由聚氯乙烯(PVC)生產而得。透過製程的設計,這兩種原料所合成的皮革,觸感和真皮最為相似,因此被廣泛使用。

用 PVC 材質製作的黑色皮褲。圖/wikimedia

在工業上,單體(monomer)原本是粉末的型態,必須透過一連串的化學反應,才能把單體一個一個串聯起來,把原本粉末的狀態轉變成人造皮革上的樹酯層。工人會將粉末倒入鍋爐、加入化學溶劑,並且根據最終產品的需求,例如:觸感、柔軟度、光澤等等,加入不同的添加劑,形成高分子溶液(樹脂層凝固前的前身),最後再藉由自動化設備進行一連串的製程,完成皮革的製作。而這些添加物與化學溶劑,正是危害環境和人體的主要原因。

-----廣告,請繼續往下閱讀-----

怎麼做出人造皮革?

人造皮革主要是由三個部分組成:基底層、黏著劑以及樹脂層(PU 以及 PVC 等)。工廠所製造的 PU 以及 PVC 是人造皮革的最外層。

在製程的一開始,我們在機台上進行「塗布」,作為皮革的基底層。烘乾後,在基底層上方「上糊」,意即把高分子溶液(單體粉末、化學溶劑、可塑劑(plasticizer)、穩定劑(stabilizer)和黏著劑的混合溶液 )塗在基底層上方,形成皮革最主要的樹脂層,此時的皮革已經完成了大半。接下來,陸續進行再次「烘乾」、「印刷」以及「押花揉紋」等等程序,就完成了人造皮革。在這裡要特別注意的是,幾乎每個步驟都會產生有毒氣體以及殘留有害物質在皮革當中。

那些生產過程中,不可忽視的毒害

舉例來說,無論是濕式或是乾式製程,高分子溶液最常使用的溶劑是二甲基甲醯胺N,N Dimethylformamide, DMF)。對於大量暴露在 DMF 溶劑下的工人來說,可能會造成頭暈、嘔吐等等身體不適的症狀。而且,根據台灣及韓國的學術機構研究,在濕式合成革廠中,有超過三成的工人體內 DMF 的含量是超過法令規範,對於勞工安全造成非常大的威脅。除此之外,極性高的特性使得它難以揮發,必須用大量的清水進行清洗,造成能源的消耗以及廢水的排放,對環境的傷害不可忽視。

另外,可塑劑plasticizer)的添加把原本 PU 和 PVC 從又脆又硬的塑膠轉變成了柔軟的皮革。常見的可塑劑有鄰苯二甲酸二(2 – 乙基己基)酯(Di(2 – ethylhexyl)phthalate, DEHP),許多研究都指出高劑量的 DEHP 對人體的肝臟等器官造成危害。美國衛生與健康服務部(Department  of Health and Human Services, DHHS)也建議 DEHP 可被歸類為人類致癌物質。

-----廣告,請繼續往下閱讀-----
人造皮革的誕生雖然減少了動物的苦痛,卻也衍生出對人體及環境的危害問題。圖/Pexels

在 PVC 皮革中,由於單體的不穩定性,因此必須添加穩定劑stabilizer)來防止皮革受到光線照射後釋出氯自由基,造成皮革的崩解。而常見的穩定劑有鉛、鋅等等的重金屬,對於環境和人體都有一定的影響。最後,當大量 PVC 皮革進入焚化爐,會產生大量 HCl 氣體和戴奧辛(Dioxins),這些物質都會對呼吸道系統等產生一定的傷害。以上提到許多皮革製程對於人體以及環境的威脅,除此之外,PVC 和 PU 等高分子也屬於石化產業,在眼下,如果繼續使用石化原料做為皮革的來源,在未來的日子,當石油能源枯竭後,產業是否受到影響?

人造皮革的利與弊,該如何取捨?

雖然,科技的進步讓皮革的製作成本大幅下降,而且讓動物們免於不人道的虐待,但是,工業的製程卻讓人體和環境暴露在有害物質當中。雖然目前,工業上已推出汙染較低的的製程,但是生產工藝和設備還不夠普及,仍然無法完全取代傳統的生產模式。

在高度工業化的 21 世紀,要讓生產效率、成本、利潤以及人類福祉達到平衡確實是件不容易的任務。希望在未來,工廠所採用的製程把對工人、消費者和環境的傷害降到最低,在這之前,除了企業要秉持社會責任,避免出售有害物質超標的商品,政府機關更應該為民眾嚴格把關。

參考資料

  1. PU、PVC 對人體的威脅
  2. DEHP 應列為致癌物質
所有討論 2
ffr_96
2 篇文章 ・ 4 位粉絲
從小吃貢丸米粉長大,大學以火雞肉飯為主食。過了四年,乘著風回到北部。現在是中央化學所碩一生,喜歡花花草草,期許自己能將生活中的化學介紹給大家。 個人IG連結:https://www.instagram.com/ffrliterature/

0

0
0

文字

分享

0
0
0
為什麼衛生棉可以做到「超乾爽不外漏」?
李赫
・2019/01/18 ・1905字 ・閱讀時間約 3 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

熟睡的女性要的就是能在生理期好好地睡一覺。圖/pexels

為什麼衛生棉可以「超乾爽不外漏」?

衛生棉是女性的生活必需品,大家一定對「 超強吸水、十倍吸收、超乾爽」這樣的廣告詞耳熟能詳!衛生棉廣告中,也常出現一個橋段──將水直接倒在衛生棉上──用以證明其有超強吸收及保水能力。

圖/pexels

事實上這一點都不誇張,因為在衛生棉內層當中具有極高吸水能力的「吸水性高分子」。吸水性高分子可吸收本身重量 500 倍(本身體積 30-60 倍)含量的水,當然可以超乾爽不外漏。

-----廣告,請繼續往下閱讀-----

吸水性高分子本身不溶於水,且具有很高的保水能力。我們印象中的吸水材料如棉、紙、海綿等,是利用毛細管現象將水吸收於材的間隙;與吸水性高分子相較,其吸水能力低、保水能力也不好──受到壓力水就會流出。所以對於衛生棉、紙尿褲而言,尚且不足以把水分鎖住,並不適合作為吸水層主要材料。

「吸水性高分子」除了吸水還有什麼功能?

衛生棉的設計發想源自於土壤保水率材料的研究。圖/pexels

一個能夠用於衛生棉內的吸水材料,不但要有吸水能力,同時還要有保水能力。過去對於吸水能力的產生往往是因為水與纖維質孔隙之分子有作用力而使液體流動,但是如果要使液體不流動,就要想辦法讓水被抓住、被固定住,那麼在材料選擇的思維就不同了。

而這類吸水性高分子最早並非使用於衛生用品當中。在 1960 年代早期,美國農業部進行改善土壤保水率材料的研究,開發了能夠吸收本身重量 400 多倍水的高分子化合物,而且這類材料不會像纖維基吸收材料那樣釋放水。後來美國農業部將這項技術移轉給一些美國公司,進行進一步開發,逐漸被改良及應用於衛生用品中。

-----廣告,請繼續往下閱讀-----

鎖住水分的保水能力,怎麼辦到的?

吸水性高分子最重要的特性是保水性。一個分子要如何擁有保水能力?

就是要有「抓」水的能力。

首先,先來介紹一下化學的基本觀念。水本身是一個分子,它是由氫原子以及氧原子所組成,分子式為 H2O (如下圖(B)所示)。由於氫原子以及氧原子周圍都有電子存在,然而原子本身對於電子的喜好程度不同,形成化學鍵結後,會產生電荷分布不均的現象,並產生所謂的極性(如下圖(A) 所示 )。

氧原子本身對於電子的喜好程度較高,因而較能吸引電子(喜好電子的程度在專業領域上稱之為陰電性);氫原子本身對於電子的喜好程度則較低。當兩者形成化學鍵結合時,會引起電子的局部流動──氧原子的周圍被較多的電子圍繞,氫原子的電子局部流失,形成了帶有正/負兩極的極性狀態(如下圖 (B) 所示)。

所以水本身就是有極性的。那要如何能夠抓住水分子呢?這個答案就很明顯了,就是找一個也有極性的分子, 因為正/負會相吸的簡單原理,就會把水吸引住,水就被「抓」住了。

(A)水的電子局部流動分佈 (B)水的極性。圖/作者提供

-----廣告,請繼續往下閱讀-----

也就是說,如果我們能夠將具有極性特質的分子,固定於在衛生棉材料中,就能有效地將水抓住;而這類分子又不能被水給溶解出,那麼最好的選擇莫過於吸水性高分子了。

聚丙烯酸鈉上之-COO- 與水具有極性吸引力。圖/Edgar181 [Public domain], from wikimedia commons

在此以常用的吸水性高分子聚丙烯酸鈉 (Sodium polyacrylate)來說明:

聚丙烯酸鈉分子式為 [-CH2-CH(COONa)-],而高分子在吸水前,分子的長鏈相互交纏,形成三維度的網目構造,類似交纏的毛線球。由於分子鏈段上的 -COONa 易解離(於水中分解成 –COO 與 Na+ 離子),所以 –COO本身會有極性,會與水分子的極性互相吸引,而將水「抓」住,(如 上圖所示)。

由於 –COO本身帶負電,互相排斥之下,高分子網目擴大,吸水量隨之增加,換句話說,保水性也就提高了!如上面影片,我們可以觀察到其體積的膨脹,吸水前後體積有偌大的差異。

-----廣告,請繼續往下閱讀-----

這也就能解釋為何衛生棉具有超強吸收及保水能力了!如今吸水性高分子被廣泛的應用在生活中,衛生棉、紙尿褲、土壤保水劑等都可一窺其蹤跡,具有龐大的商業價值,諸多廠商積極投入開發新材料並申請專利;但不論其結構變得多複雜,基本學理其實就是這樣簡單。

參考文獻 :

  1. Physics LibreTests: Capacitors and Dielectrics
  2. The Wire: Why Water Along the Surface of a Tank Isn’t Like the Water Inside
  3. Polymers-Osmosis Magic
  • 文字編輯/蔡雨辰
文章難易度
李赫
9 篇文章 ・ 4 位粉絲
中央大學理學博士。為熱愛傳播知識與吸收知識的 作家/教育/研究學者。 對於居家設計與生活時尚亦有高度興趣 (FB作者專頁)。