0

0
0

文字

分享

0
0
0

手機老是沒電,鋰電池續航力怎樣才可以加倍呢?

李赫
・2018/12/21 ・2642字 ・閱讀時間約 5 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

現代人離不開電,除了人人家中都有的電器外,和一般人最貼近的電,就是手機電池了吧!在這個手機沒電就可能變失蹤人口的時代,手機的續航力愈顯得重要。續航力簡單來說就是電池的蓄電量;我們都希望手機續航力越來越強,最好充電一次可以用一輩子,但也不能讓電池笨重到不能攜帶。這……有可能嗎?還是強「電池」所難?

只要我們能提升電池的能量密度,我們就能增加手機的續航力。
圖/pixabay

可能!只要我們能提升電池的能量密度。

能量密度分兩種:體積能量密度 (Wh/L) 和重量能量密度 (Wh/kg)。 前者是單位體積所具有的能量,後者是單位重量所具有的能量。不論哪一種能量密度,只要密度提高,都能夠提升電池的能量。

先來認識鋰電池吧!

鋰電池的基本結構。
圖/Springer Link

手機所用的鋰電池的結構與一般電池相同,包含正極、負極以及電解液 (如上圖)。正極是由三維的晶體結構所組成,負極則是由平面的層狀結構所組成,兩者都具備儲存鋰離子的化學環境。電解液負責攜帶鋰離子在兩極間移動來導通內電路,讓鋰離子在正負極間嵌入/釋出來充放電。

-----廣告,請繼續往下閱讀-----

鋰電池的材料組成則是:
1.正極:金屬氧化物( LiCoO2, LiNiO2, LiMn2O4, LiFePO4, LiNixCoyMnzO2 )。
2.負極:石墨。
3.電解液:環狀/鏈狀酯類之混和物 (鏈狀碳酸酯類、環狀碳酸酯類)以及鋰鹽類。

自 1990 年 Sony 所開發之鋰電池問世以來,鋰電池製程不斷精進,能量密度從剛開始的 190 Wh/L 上升到今日的 650 Wh/L,幾乎成長了三倍,不過現在卻遇到了電池技術發展瓶頸,遲遲無法繼續提升密度。

然而,即便現在能提升量密度,跟著提高的危險性也不容忽視,尤其鋰電池一直擺脫不了燃燒爆炸的疑慮,像是兩年前的三星手機自燃風波,到現在仍讓人記憶深刻。而且不只手機,鋰電池也曾讓走在科技尖端的  Tesla 電動車起火燒毀,因此電池續航力提升的同時,也要確定電池安全無虞,否則光想著伴隨數倍能量而來的數倍爆炸威力,就讓人退避三舍。想做出新世代電池,必須同時改造電池的正極、負極、電解質材料才行。

提高續航力要先解決:鋰電池爆炸

高能量鋰電池由於內部儲存的能量更多,短路瞬間可釋放出之能量也愈多,更像一顆炸彈,所以爆炸的風險一定有。隨著能量加倍,爆炸風險當然升高。攜帶著高能量電池出門就好像攜帶著一顆炸彈一樣。雖然鋰電池本身具有潛在的危險性,但只要我們了解爆炸 (專有名詞為熱失控 Thermal runaway) 的原因就能夠管控風險,將熱失控的可能性降到最低甚至不會發生。

熱失控 (thermal runaway) 所指的情況是,當溫度增高時引發的變化使溫度更進一步的增高,產生惡性循環,因而導致某一種破壞性的結果。
圖/wikipedia

電池內部有複雜的化學反應,熱失控就是電芯短路而造成的連鎖反應。鋰電池在過充、過放的時候,可能因為隔絕正極與負極之隔膜被擊穿,開始內部微短路,接著造成局部加熱、溫度升高,然後受熱的電解液分解產生有機可燃性氣體;受熱的正極釋放出氧氣(正極是金屬氧化物,晶體結構改變導致部分氧原子以氧氣的狀態釋放出),結果電池內便具備了燃燒的三要素:熱源、燃料、氧氣。只要溫度持續急遽上升,就會到達失控邊緣而快速燃燒,進而爆炸。而且爆炸的瞬間溫度可達到攝氏 700℃ 左右。

-----廣告,請繼續往下閱讀-----

熱失控的主要成因,為電池內部電解液的化學組成本來就含有機可燃性。

若要改善安全性,則必須替現行的電解液找到取代方案。

從前述的熱失控發生過程我們可以知道,熱失控的關鍵原因就是電解液分解後的有機可燃性,所以想一面提高蓄電量一面降低燃燒風險,就必須減少,甚至去除內部的可燃物質──電解液的碳酸酯類(鏈狀/環狀碳酸酯類)。

一石二鳥的未來計畫

電解液要幫助離子在正負極間快速移動,因此會使用一般認知中傳導速率最快的液體電解質製作,我們要找到能夠替換、不會燃燒的材料來取代電解液,不會燃燒的固體的無機物如果又能夠傳導離子將是最好的選擇。

相關研究顯示,確實存在具有高離子傳導速率的固體電解質,而這類電解質的傳導速率甚至不會輸給液體,這類的晶體稱為高速離子導體 (Fast ion conductor),其內部存在著特定管道讓離子能夠在內部快速移動而達成離子導通。

-----廣告,請繼續往下閱讀-----
鋰離子在具有可以高速移動管道的晶體內傳遞,讓離子傳導速率超過電解液(此以LLZO 離子傳導晶體圖示作說明)
圖/Phys.org

如果能替換電解液的材料,同時將電池的正極以及負極的材料替換成具有更高電量的材料,整個電池在設計上厚度就能夠降低。相對而言在更小的體積內儲存了更多的能量。由計算結果,顯示這樣的設計之下電池的電容量可以由目前的 650 Wh/L 上升到 > 1200 Wh/L,電容量幾乎是目前的兩倍,電池的續航力比目前更多了一倍。

已經看得到電池續航力的未來

綜上所述,如果將電池的正極以及負極的材料替換成具有更高電量的材料,電池電容量便可以由目前的 650 Wh/L 上升到 > 1200 Wh/L。能量密度提升,電池也就能更加輕薄,而且續航力與現有同體積電池相比,可多上一倍之多。再加上將電解液替換為固態電解質,這種電池就能效能高安全性也高。

固態鋰電池以高速離子傳導晶體作為固體電解質,取代傳統電解液,可以提升電池續航力及安全性。 圖/US Department of Energy

這樣一石二鳥的超棒電池構想吸引了全球研究單位以及廠商爭相投入研究開發,甚至已經有實驗型電池進入測試階段。但製造程序尚有很多問題要克服:電池內部固體電極與固體電解質因為都是固體,在微觀上並未有效接觸,會使離子沒辦法順利傳遞,或是可以傳遞的暢通路徑變少,產生離子傳遞路徑不暢通,而造成電池整體電阻上升的問題。另外大量生產的製造方式與現行的電池的製造方式不同,成本以及良率,也必須詳加度量。不過我們不用灰心,路已找到,只要堅持往前走,科學必定會持續進步。

參考資料:

-----廣告,請繼續往下閱讀-----
  • 文字編輯/翁郁涵
文章難易度
李赫
9 篇文章 ・ 4 位粉絲
中央大學理學博士。為熱愛傳播知識與吸收知識的 作家/教育/研究學者。 對於居家設計與生活時尚亦有高度興趣 (FB作者專頁)。

0

0
0

文字

分享

0
0
0
如何靠溫度控制做出完美的料理?
鳥苷三磷酸 (PanSci Promo)_96
・2024/06/21 ・2705字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 Panasonic 委託,泛科學企劃執行。 

炸雞、牛排讓你食指大動,但別人做的總是比較香、比較好吃?別擔心,只要掌握關鍵參數,你也可以做出完美料理!從炸雞到牛排,烹調的關鍵就在於溫度的掌控。讓我們一起揭開這些美食的神秘面紗,了解如何利用科學的方法,做出讓人垂涎三尺的料理。

美味關鍵 1:正確油溫

炸雞是大家喜愛的美食之一,但要做出外酥內嫩的炸雞,關鍵就在於油溫的掌控。炸雞的油溫必須維持在 160 到 180℃ 之間。當你將炸雞放入熱油中,食物的水分會迅速蒸發,形成氣泡,這些氣泡能夠保證你的炸雞外皮酥脆而內部多汁。

水的沸點是 100℃,當麵衣中的水分接觸到 160℃ 的熱油時,會迅速汽化成水蒸氣。這個過程不僅讓麵衣變得酥脆,也能防止內部的雞肉變得乾柴。

-----廣告,請繼續往下閱讀-----

如果油溫過低,麵衣無法迅速變得酥脆,水分和油脂會滲透到食物中,使炸雞變得油膩。而如果油溫過高,水分會迅速蒸發,使麵衣變得過於硬或甚至燒焦。

油炸時,麵衣水分會快速汽化。 圖/Envato

美味關鍵 2:焦糖化與梅納反應

另一道美味的料理——牛排。無論是煎牛排還是炒菜,高溫烹調都會帶來令人垂涎的香氣,這主要歸功於焦糖化反應和梅納反應。

焦糖化反應是指醣類在高溫下發生的非酵素性褐變反應,這個過程會產生褐色物質和大量的風味分子,讓食物變得更香。而梅納反應則是指醣類與氨基酸在高溫下發生的反應,這個過程會產生複雜的風味分子,使牛排的色澤和香氣更加迷人。

要啟動焦糖化反應和梅納反應的溫度,至少要在 140℃ 以上。如果溫度過低,無法啟動這些反應,食物會顯得平淡無味。

-----廣告,請繼續往下閱讀-----
焦糖化反應


焦糖化反應與梅納反應。圖/截取自泛科學 YT 頻道

油溫與健康

油溫不僅影響食物的風味,也關係到健康。不能一昧地升高油溫,因為每種油都有其特定的發煙點,即開始冒煙並變質的溫度。當油溫超過發煙點,會產生有害物質,如致癌的甲醛、乙醛等。因此,選擇合適的油並控制油溫,是保證烹調健康的關鍵。

說了這麼多,但是要怎麼控制溫度呢?

各類油品發煙點 。圖/截取自泛科學 YT 頻道

科學的溫度控制

傳統電磁爐將溫度計設在爐面下,透過傳導與熱電阻來測溫,Panasonic 的 IH 調理爐則有光火力感應技術,利用紅外線的 IR Sensor 來測溫,不用再等熱慢慢傳導至爐面下的溫度計,而是用紅外線穿透偵測鍋內的溫度,既快速又精準。

而且因為紅外線可以遠距離量測,如果甩鍋炒菜鍋子離開爐面,也能持續追蹤動態。不會立即斷開功率關掉,只要鍋子放回就會繼續加熱,效率不打折。

-----廣告,請繼續往下閱讀-----

好的溫度感測還要搭配好的溫度控制,才能做出一流的料理。日本製的 Panasonic IH 調理爐,將自家最自豪的 ECONAVI 技術放進了 IH 爐中。有 ECONAVI 的冷氣能完美控制你的室溫,有 ECONAVI 的 IH 調理爐則能為你的料理完美控溫。

有 ECONAVI 的 IH 爐不只省能源、和瓦斯爐相比減少碳排放,更為料理加分。前面說了溫度就是一切的關鍵,但是當我們將食材投到熱鍋中,鍋中的溫度就會瞬間下降,打亂物理與化學反應的節奏,阻止我們為料理施加美味魔法。

所以常常有好的廚師會告訴我們食物要分批下,避免溫度產生太大變化。Panasonic IH 調理爐,只要透過 IR Sensor 一偵測到溫度下降,就能馬上知道有食材被投入並立刻加強火力,讓梅納反應與焦糖化反應能持續發揮變化。而當溫度回到設定溫度,Panasonic IH 調理爐也會馬上將火力轉小,透過電腦 AI 的迅速反應,掌握溫度在最完美區間不劇烈起伏。

不僅保證美味關鍵,更不用擔心油溫超過發煙點而導致油品變質,讓美味變得不健康。

-----廣告,請繼續往下閱讀-----
透過 IR Sensor 精準測溫並提升火力。圖/截取自泛科學 YT 頻道
IH 調理爐完美控溫 。圖/截取自泛科學 YT 頻道

舒適的烹飪環境

最後,IH 爐還有一個大優點。相比於瓦斯爐,因為沒有使用明火,加熱都集中在鍋具。料理過程更安全,同時使用者也不會被火焰的熱氣搞得心煩意亂、汗流浹背,在廚房也能過得很舒適。而且因為熱能集中,浪費的能源也更少。

因為沒有使用明火,料理過程安全又舒適。圖/截取自泛科學 YT 頻道
Panasonic IH調理爐火力精準聚集在鍋內。圖/Panasonic提供

為了更多的功能、更好的效能,我們早已逐步從傳統按鍵手機換成智慧型手機。一樣的,在廚房內,如果你想輕鬆做出好料理,同時讓烹飪的過程舒適愉快又安全。試試改用 Panasonic IH 爐,一起享受智慧廚房的新趨勢吧!👉 https://pse.is/649gm5

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
200 篇文章 ・ 306 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

2
1

文字

分享

2
2
1
奠定現代通信基礎的克勞德.香農(Claude Shannon)
數感實驗室_96
・2024/06/06 ・743字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

以前小時候如果調皮不聽話,就會被大人叫去跪算盤,現在的家長家裡沒算盤了,反而會拿出電路板讓小孩跪。

咦?為什麼總是拿算數工具來懲罰小孩呢?

電路板上看似複雜電路板密密麻麻的,是電腦進行邏輯計算的關鍵。這小小的薄片能執行驚人的運算功能,背後的奧秘離不開一位傳奇科學家的貢獻。他不僅奠定了現代通信的基礎,還開創了人工智慧研究,這可不是一般人一生能做到的成就,但克勞德.香農(Claude Shannon)卻一次搞定。

-----廣告,請繼續往下閱讀-----

這位非凡的科學家是如何改變了我們的時代?

他讓我們今天能享受高效的通訊技術和智慧生活。如果你也覺得現在生活離不開手機和電腦,那你應該感謝這位數學和電機工程的天才。

對於 2000 年後出生的人而言,或許覺得用手機傳訊息、用電腦看影片再平常不過。但在 Shannon 出現之前,沒有人能系統性地定義「資訊」和「通訊」。他以其對動手實驗的熱忱,將這些看似無形的概念轉化為實際的理論,為世界帶來了一場資訊革命。

正是因為 Shannon 的卓越貢獻,我們才能享受如此便捷的現代通信技術。他不僅改變了科學的面貌,還深刻地影響了我們的日常生活。

Shannon 的故事也提醒我們,熱愛與好奇心是推動進步的核心力量。他用智慧和創造力,為我們打造現代通信的基礎,並開啟未來的無限可能。

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

所有討論 2
數感實驗室_96
72 篇文章 ・ 46 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

0
0

文字

分享

0
0
0
古人用的超大型手機?從烽火臺到智能手機:通信科技的演進
數感實驗室_96
・2024/05/13 ・883字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

現代人手機普及率極高,你可能正在用手機閱讀這篇文章。

仔細想想,我們每天使用的手機真的很厲害。只需幾下操作,就能傳訊息、視訊通話,還能上網看影片、玩遊戲、使用社群網路等。

你可能知道全世界的第一支手機是 Motorola 在 1973 年 4 月 3 日推出的黑金剛,重達 2 公斤的程度。不過,早在幾千年前,其實已經有「手機」存在了。

-----廣告,請繼續往下閱讀-----

當時的手機不只兩公斤重或兩公升水壺大,甚至是有好幾層樓那麼高,那這些手機的傳輸速率也超級慢,看影片一定是不可能,連打電話聊天都辦不到。超級陽春,基本上只能傳遞「有」或「沒有」這樣的是非題。

應該有些人猜到了,其實就是「烽火臺」。

烽火臺是中國古代為了傳遞軍情所設計的通信系統。一座烽火臺上有幾位士兵,備有大量的稻草與木柴,如果看到敵人侵犯,或是前後的烽火臺燃起狼煙,士兵們就會立刻燃燒乾柴,釋放狼煙,傳遞攸關國家存亡的重要資訊。雖然,烽火臺的尺寸大小與現今我們常用的手機差很多,傳輸能力也差很多,但烽火臺還真是上古時代標準的通信設施哦!

接下來還會推出一系列「通信科技」相關的節目,內容囊括了通信發展的歷史故事、重要的通信科學家、通信相關的技術知識。

-----廣告,請繼續往下閱讀-----

讓你認識新聞報導中,常聽到的一些通信專有名詞,什麼是頻帶、頻寬?現代通信技術如此厲害的關鍵又在哪裡?甚至,這些技術跟我們平常在學校裡學到的各科知識,又有怎樣的連結呢?

這系列將用影片帶領大家進入這個有趣、改變全人類生活的通信世界,敬請期待哦!有更多想法也可以留言分享喔!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

討論功能關閉中。

數感實驗室_96
72 篇文章 ・ 46 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/