0

12
3

文字

分享

0
12
3

儲能發展的關鍵未來:鋰離子電池的展望與課題——專訪台科大永續續能源發展中心黃炳照主任

科技大觀園_96
・2021/04/14 ・4333字 ・閱讀時間約 9 分鐘 ・SR值 564 ・九年級

鋰離子電池除了在當今的數位產品中佔有重要的角色,隨著全球氣候變遷、節能減碳的強烈需求,未來的再生能源技術,也需要鋰離子電池發展出足以配合的儲能系統,才能真正帶領我們走向「零碳排」的未來。本次科技大觀園專訪國家講座教授,國立臺灣科技大學永續續能源發展中心黃炳照主任,帶領我們一窺鋰電池技術的發展與未來。

如今,隨處可見各式輕便的電子用品,只要好好充個電,就能用上一段時間,這種習以為常的便利生活,就必須仰賴良好的電池,而 2019 年的諾貝爾化學獎,正是頒給現在最常聽到的「鋰離子電池」。

鋰離子電池除了在當今的數位產品中佔有重要的角色,隨著全球氣候變遷、節能減碳的強烈需求,未來的再生能源技術,也需要鋰離子電池發展出足以配合的儲能系統,才能真正帶領我們走向「零碳排」的未來。本次科技大觀園專訪國家講座教授,國立臺灣科技大學永續續能源發展中心黃炳照主任,帶領我們一窺鋰電池技術的發展與未來。

黃炳照主任。(圖/曹盛威攝影)

剛剛於今 (2021) 年獲得德國宏博研究獎的黃炳照,研究專長為各種能源材料研發,包括鋰離子電池、燃料電池及太陽能電池。他說明,鋰離子電池在設計的精進,已經接近學理上的極限:「鋰離子電池材料的單位體積電容量,從 1991 年生產到今天,其實進步並沒有太多。」如果要繼續發展,重心之一著眼於新電池材料的研發。

用於 iPhone 的鋰離子聚合物電池。(圖/Wikipedia

鋰離子電池的過去

摩爾定律 (Moore’s law) 預測電晶體效能,約在每十八個月會翻倍提升,相較來說,鋰離子電池進步的速度就緩慢許多。鋰離子電池上市至今的三十年間,我們所見越來越小、容量越來越大的電池,多數的進步主要來自於組裝技術,以及附帶組件的壓縮改良。常被簡稱為「鋰電池」的鋰離子電池,電池材料中並非直接有鋰金屬進行氧化還原作用,而是運用鋰離子在正負極間的移動與嵌入,來儲存電能。

-----廣告,請繼續往下閱讀-----

正極半反應:

{\displaystyle \mathrm {Li} _{1-x}\mathrm {CoO_{2}} +x\mathrm {Li^{+}} +x\mathrm {e^{-}} \leftrightarrows \mathrm {LiCoO_{2}} }

負極半反應:

{\displaystyle x\mathrm {LiC_{6}} \leftrightarrows \ x\mathrm {Li^{+}} +x\mathrm {e^{-}} +x\mathrm {C_{6}} }

鋰電池結構可以大致分解為正極、負極、電解液、隔離膜四大部分。所有的電池皆是利用正極與負極間的化學能電位差儲存電能。史丹利·惠廷安 (M. Stanley Whittingham) 在 1970 年代提出充電式鋰離子電池的概念;金屬鋰的反應性高,有機會能較其他使用於負極的金屬儲存更多的能量,可來取代笨重的鉛酸充電電池。惠廷安在早期的實驗中,採用二硫化鈦 (titanium(IV) sulfide; TiS2) 為正極,鋰金屬為負極,能夠產生二伏特的電流,證實了鋰離子電池的構想可行。然而此正極二硫化鈦易與水氣形成劇毒的硫化氫 (H2S),且鋰金屬接觸空氣時的穩定度相當低,由於安全顧慮無法商業應用。而至古迪納夫 (John B. Goodenough) 於 1980 年改採鈷酸鋰 (lithium cobalt oxide; LiCoO2; LCO) 為正極,使鋰離子電池展現了高電位、高電容量密度、低自放電率與循環穩定性高的特性,至今這類材料仍常見於商業產品中。而適用於負極的材料,則在日本時任旭化成株式會社研究人員的吉野彰 (Akira Yoshino),改以石油焦炭製成石墨電極,終成就鋰離子電池能夠上市的重要突破。這三位在鋰離子電池上的貢獻,讓他們於 2019 年獲得諾貝爾化學獎。

吉野彰與 John B. Goodenough、M. Stanley Whittingham 於 2019 年獲得諾貝爾化學獎。(圖/The Nobel Prize

1991 年,首款鋰離子電池正式上市,引發了電子用品革命的起點:可攜帶的筆記型電腦指日可待,即將席捲全世界的 MP3 播放器、智慧型手機與平板電腦也躍躍欲試。由此之後,鋰離子電池的進步不脫材料以及組裝的改良研究,在顧及安全性的前提下,將各種組件輕薄化,盡可能塞入更多的電極材料,提高能量密度。

-----廣告,請繼續往下閱讀-----

鋰電池更具電力的未來

現在的電池技術在能量密度上,大約在 200-250 (Wh/Kg),現階段如特斯拉等廠商希望透過組裝、大數量串連等方法提升至約 300 (Wh/Kg) 左右。黃炳照表示:「因為工程、物理上的限制,再要有突破就需要材料上的革命。」

如果要進一步提高單位體積的能量密度,還可以怎麼做呢?

概念上可以回歸 1970 年代的設想,使用鋰金屬做為電池的負極,運用鋰金屬有超低還原電位的特性,大幅提升能量密度。但該如何克服鋰金屬低穩定度低的缺點,在科技發展追求更高能量密度的同時兼顧安全性?黃炳照為我們介紹了「無負極電池」的概念:生產階段不需要鋰金屬,於電池正極材料中帶有的鋰離子,在完成組裝後充電,才離開正極,嵌入負極還原為鋰金屬。如此設計的電池不需組裝負極,因此理論上製程簡化成本較低,也避免了組裝使用鋰金屬所需的繁複安全措施。

儘管令人期待,但無論是「無負極電池」或是「鋰電池」,仍需要回過頭以現今的材料技術,攻克過去使用鋰金屬於負極容易發生的安全議題。黃炳照挑戰的課題之一,便是鋰金屬負極循環充放電時,沉積不均勻會導致鋰枝晶形成 (Dendrite Formation)。當鋰金屬表面有缺陷,其界面就容易由於電場不均勻而發生鋰枝晶,此類狀況輕則提高電池內部阻抗,減少循環壽命;嚴重則枝晶會穿刺隔離膜,導致電池發生內短路 (Internal Short Circuit) 而失效甚至起火的安全疑慮。

-----廣告,請繼續往下閱讀-----

黃炳照率領團隊從電解液與「固態電解質介面」 (Solid Electrolyte Interface,SEI) 的角度著手。固態電解質介面為電池首次充放電的時候,電極與液態電解質之間會自然形成的特殊隔層,可容鋰離子通過並且保護電極材料。「在這個(負極)石墨表面形成一個『薄紗』,就像一個濾網。沒有這個薄紗就沒有我們今天的鋰離子電池。」

鋰枝晶。(圖/Wikipedia

因此發展最恰當的電解質配方,以形成穩定電解質介面,並抑制鋰枝晶的成長、及降低電解液的分解,最終提昇效率以及電池的循環壽命,即是黃炳照團隊努力的主要目標。

鋰電池的未來發展,還包括許多人期待的「固態電池」研發。將電解液由原本的液態改良為固態,也是許多人矚目的焦點。由於鋰對水的活性極大,因此鋰電池的電解液成分以有機溶劑為主,卻有著易燃的缺點。黃炳照表示,現階段材料科學已發表許多固體的電解質材料,鋰離子在其中的傳導的效率可比在液體中還要快。

「就像提供給鋰離子的高速公路。」黃炳照解說,固態電池將可望取代始終具有一定安全性疑慮的鋰電池,但完成組裝正式商業化,至今仍有許多挑戰需要克服。

-----廣告,請繼續往下閱讀-----

黃炳照研究的主題除了鋰離子電池,主要為創新奈米結構能源材料研發。其中「同步輻射臨場光譜技術」就扮演了重要的角色。以此技術研究電池,就像幫材料照 X 光拍影片,可以即時觀察充電時材料的變化,以了解並優化電池運作的諸多細節。

「同步輻射就像是一個航空母艦,上面的不同光束 (Beamline) 就像戰鬥機群。」黃炳照比喻,相較於同步輻射提供的設施,各校系的貴儀(貴重儀器設施),就像是無人機,所能提供的「火力支援」有所不及。此技術對於各種電池材料,包括鋰離子電池、燃料電池及太陽能電池等未來的發展都極具影響力。

綠色能源的未來:更安全、更便宜、環境友善

臺灣正在走向能源轉型的階段,再生能源佔比將越來越吃重。考慮到綠能天生不穩定的弱點,需要儲能設施做為輔助。未來的儲能設備將著重在哪類的技術呢?黃炳照認為,能源的使用一直都是多元化的,無論是鋰電池、氫能、燃料電池等儲能技術,都各有其特性。重點仍在於發展出適用、更便宜、性能穩定,且對環境友善的技術,支持各種應用場景的需求特性。

舉例來說,交通工具的電動化將是未來的趨勢,但現行以鋰離子電池為主的儲能設備,其馬力跟續航力有一定的關聯性;相對來說燃料電池則有機會如油車採「油箱與引擎」的分開規劃。又或者受限於電池載重,難以發展電池動力飛機,但氫能如能有效應用其能量密度有潛力供綠色航空起飛。

-----廣告,請繼續往下閱讀-----
電動車的充電停車場。(圖/Wikipedia,Epattloamer的作品,CC BY-SA 3.0)

黃炳照表示,環境友善、永續將會越來越重要。未來隨著各國對於環境保護的需求越來越強烈,使用可再生的綠能將不再只是企業自願性可選擇的作為,終將成為是否具備競爭力的重要環節。臺灣身為全球供應鏈的一份子,要保持商業競爭力,積極發展綠能與相關的基礎建設,很快將迫在眉睫。

要做到環境友善,未來電池的回收、循環經濟勢必成為重要的議題。黃炳照認為,首要的關鍵之一,當然在於研發階段就考量到回收需求而做出對應的設計;其次在後端的回收機制上仍有許多研發的空間,待有志之士投入。但環境友善的精神不應只著眼於最終的回收,還需考慮盡可能最大化產品的使用效益。如應用於電動車的電池需要高端品質,淘汰後可應用於儲能系統,而後或可裝置於緊急照明系統等邊緣設施,如此層層重複利用,對於資源的使用才可達到最佳化。

環境永續將會越來越重要。(圖/Wikipedia,Tomasz Sienicki 的作品,CC BY-SA 3.0)

而這樣最大化、共通共用的概念也可以用於儲能基礎設施的規劃,如將公共電網的儲能需求與電動車充電站共用,在支持電網的同時,電動車用戶也有機會透過售電賺取外快。這類綠能基礎設施的設計形式,將考驗未來城市規劃者的創意與巧思。

鋰離子電池的發展,不僅促成不燃燒化石燃料的電動車成真,也讓我們見識到科技正幫助人類邁向節能減碳,甚至是零碳排的未來。未來,在科學家不懈的努力下,「環境友善、永續發展」終有機會不再是個口號,百尺竿頭再進一步,就讓我們一起拭目以待吧!

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
AI × 綠能:下一波新創浪潮,從新北起跑
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/12 ・2319字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

本文與 新北市青年局 合作,泛科學 協助刊登

前言

「2025 VentureStar新北新創之星挑戰賽」以競賽結合輔導,扶植並激發青年的創業能量,為期半年的賽事歷程,決賽獲勝的3組團隊獲得為期三個月的「創投陪跑」機會。創投導師變身為「指導教練」,給予公司發展、商業模式和募資規劃等具體建議,幫助團隊接軌市場,把夢想變現。

延續首屆「新北新創之星」競賽,今年邁入第二屆,新北市青年局局長邱兆梅表示,雖然活動以「競賽」為名,但過程反而更像是為新創團隊串接資源,成為創業加速的起點。有鑑於全球數位轉型與氣候變遷趨勢,2025新北新創之星聚焦AI與綠能,鼓勵青年創業者以新北為基地,有了政府資源的挹注,無後顧之憂開發新技術、推動產業升級,並建構台灣新創生態系。

-----廣告,請繼續往下閱讀-----
侯友宜市長與三組獲勝團隊合影。(左起:第二名「應援科技」、第一名「歐姆佳科技」、第三名「恰口科研」)/ 圖片提供:新北市青年局

「台灣有很好的科技人才,我們觀察到許多技術創業者都先累積了一些工作經驗、在市場上看見某些未解的問題,於是在30多、40歲選擇創業,自己打造一個創新產品或服務來解決他看見的問題。」邱兆梅說,科技創業必須從初期就思考規模化,必須透過持續與產業鏈合作來驗證產品、更新技術,擴展影響力,而規模化的關鍵就是「投資」。因此,去年起,新北市政府青年局與創投公會合作舉辦「新北新創之星挑戰賽」,實際練兵把募資流程搬上舞台。

「這個計畫正是我們推動加速新創落地、獲得資金的重要方式。」邱兆梅指出,有別於傳統競賽的形式,挑戰賽模擬真實創投情境的設計,讓新創團隊真正接觸到創投與市場的需求。除了獎金之外,另邀請頂尖創投專家,進行一對一實體輔導,可針對痛點、盲點即時回饋,解決創業難題。創投陪跑機制可協助團隊在實戰中學習與提升,而且競賽全程陪跑,一路手把手的陪伴,協助團隊更快「接地氣」進入市場。

新北新創之星的比賽原型借鏡新加坡,有效連結相關資源,對新創產業發展帶來極大助益,未來將一步步升級為具國際影響力的平台。邱兆梅說,從首屆賽事到今年第二屆,建置新創生態系,進而啟動創業再到陪伴團隊成長,過程真的非常難得。今年以最火紅的「AI人工智慧」與「綠能永續」兩大概念為主題,號召全台具潛力的新創團隊參賽,共吸引全台72組新創團隊參賽。經過層層考驗,「歐姆佳科技」獲得評審青睞奪得冠軍!

第一名「歐姆佳科技」/ 圖片提供:新北市青年局

第一名「歐姆佳科技」

-----廣告,請繼續往下閱讀-----

聚焦於半導體與通訊領域的量測、校正與測試服務,其「陣列快速校正演算法」核心技術可大幅縮短測試時間,從過去的數小時壓縮至數分鐘。這項技術的關鍵在於利用AI演算法自動比對多組感測數據並預測誤差分佈,再透過機器學習修正量測模型,讓設備能自行完成高精度校正。這樣的自動化流程,不僅能節省人力與能源,也呼應「綠色製造」的趨勢──以智慧化取代耗能式的反覆測試,讓產線更有效率、更環保。歐姆佳科技以實驗室研發出身,展現了AI在硬體產業鏈的實際應用:AI不僅生成內容,也能優化製造。

第二名「應援科技」/ 圖片提供:新北市青年局

第二名「應援科技」

打造一站式金流雲端平台的「應援科技」,協助各式組織與個人整合捐款贊助、活動報名售票與周邊商品銷售,大幅降低政黨、宗教、演唱會等公眾活動的經營模式,可省下高昂的行政、法遵及行銷成本,並進一步優化營運流程管理。

這個平台的背後,是一套AI交易風險偵測與自動化金流監控系統,可即時比對交易異常行為,預防詐騙與帳務錯誤。此外,他們也導入「碳足跡計算模組」,讓大型活動的金流資料能反向轉換成能源消耗與碳排估算,提供主辦單位「綠色帳本」參考。這樣的AI+Fintech結合,示範出數位金流如何跨入永續領域,成為新創中最具社會創新的典範之一。

-----廣告,請繼續往下閱讀-----
第三名為「恰口科研」/ 圖片提供:新北市青年局

第三名為「恰口科研」

致力於食農與事業廢棄物循環加值的「恰口科研」,以微生物發酵與AI監測技術處理農業與食品廢棄物,將其轉化為高值化肥料與生質材料。團隊研發的感測系統能即時監控發酵槽內的溫度、pH與氣體濃度,讓AI演算法調整曝氣量與養分比例,達成最佳化分解效率。這樣的智慧循環系統,不僅減少廢棄物焚化造成的碳排,也能讓農友用上低成本、環境友善的改良土壤資材。恰口科研的模式體現了「AI+綠能=農業再生的下一步」。

包括獲獎的3組團隊在內,入圍的10組團隊都含括了AI與永續兩大主題。邱兆梅表示,新北市擁有超過26萬家中小企業及百萬青年人口,青年更是城市的核心力量。這次賽事與創投公會合作,從徵件開跑、Pitch Day、10堂輔導課程及一對一實體訪視,希望解決新創產業的業務開發與溝通痛點。「得獎不是目的,而是實際將輔導過程中獲得的經驗實際運用。」許多去年獲獎的新創團隊,發展都已超出參賽預期,這也是新北市的新創能量的循環。

無論是半導體AI校正、智慧金流管理,還是生質循環材料,這三組新創都從AI與綠能交會點出發,實踐科技落地與永續的雙重願景。這不只是創業競賽的亮點,更象徵AI正在滲透製造、金融、農業等多元領域,為新北的新創能量注入「知識密度」與「綠色韌性」。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
243 篇文章 ・ 318 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

12
3

文字

分享

0
12
3
儲能發展的關鍵未來:鋰離子電池的展望與課題——專訪台科大永續續能源發展中心黃炳照主任
科技大觀園_96
・2021/04/14 ・4333字 ・閱讀時間約 9 分鐘 ・SR值 564 ・九年級

鋰離子電池除了在當今的數位產品中佔有重要的角色,隨著全球氣候變遷、節能減碳的強烈需求,未來的再生能源技術,也需要鋰離子電池發展出足以配合的儲能系統,才能真正帶領我們走向「零碳排」的未來。本次科技大觀園專訪國家講座教授,國立臺灣科技大學永續續能源發展中心黃炳照主任,帶領我們一窺鋰電池技術的發展與未來。

如今,隨處可見各式輕便的電子用品,只要好好充個電,就能用上一段時間,這種習以為常的便利生活,就必須仰賴良好的電池,而 2019 年的諾貝爾化學獎,正是頒給現在最常聽到的「鋰離子電池」。

鋰離子電池除了在當今的數位產品中佔有重要的角色,隨著全球氣候變遷、節能減碳的強烈需求,未來的再生能源技術,也需要鋰離子電池發展出足以配合的儲能系統,才能真正帶領我們走向「零碳排」的未來。本次科技大觀園專訪國家講座教授,國立臺灣科技大學永續續能源發展中心黃炳照主任,帶領我們一窺鋰電池技術的發展與未來。

黃炳照主任。(圖/曹盛威攝影)

剛剛於今 (2021) 年獲得德國宏博研究獎的黃炳照,研究專長為各種能源材料研發,包括鋰離子電池、燃料電池及太陽能電池。他說明,鋰離子電池在設計的精進,已經接近學理上的極限:「鋰離子電池材料的單位體積電容量,從 1991 年生產到今天,其實進步並沒有太多。」如果要繼續發展,重心之一著眼於新電池材料的研發。

用於 iPhone 的鋰離子聚合物電池。(圖/Wikipedia

鋰離子電池的過去

摩爾定律 (Moore’s law) 預測電晶體效能,約在每十八個月會翻倍提升,相較來說,鋰離子電池進步的速度就緩慢許多。鋰離子電池上市至今的三十年間,我們所見越來越小、容量越來越大的電池,多數的進步主要來自於組裝技術,以及附帶組件的壓縮改良。常被簡稱為「鋰電池」的鋰離子電池,電池材料中並非直接有鋰金屬進行氧化還原作用,而是運用鋰離子在正負極間的移動與嵌入,來儲存電能。

-----廣告,請繼續往下閱讀-----

正極半反應:

{\displaystyle \mathrm {Li} _{1-x}\mathrm {CoO_{2}} +x\mathrm {Li^{+}} +x\mathrm {e^{-}} \leftrightarrows \mathrm {LiCoO_{2}} }

負極半反應:

{\displaystyle x\mathrm {LiC_{6}} \leftrightarrows \ x\mathrm {Li^{+}} +x\mathrm {e^{-}} +x\mathrm {C_{6}} }

鋰電池結構可以大致分解為正極、負極、電解液、隔離膜四大部分。所有的電池皆是利用正極與負極間的化學能電位差儲存電能。史丹利·惠廷安 (M. Stanley Whittingham) 在 1970 年代提出充電式鋰離子電池的概念;金屬鋰的反應性高,有機會能較其他使用於負極的金屬儲存更多的能量,可來取代笨重的鉛酸充電電池。惠廷安在早期的實驗中,採用二硫化鈦 (titanium(IV) sulfide; TiS2) 為正極,鋰金屬為負極,能夠產生二伏特的電流,證實了鋰離子電池的構想可行。然而此正極二硫化鈦易與水氣形成劇毒的硫化氫 (H2S),且鋰金屬接觸空氣時的穩定度相當低,由於安全顧慮無法商業應用。而至古迪納夫 (John B. Goodenough) 於 1980 年改採鈷酸鋰 (lithium cobalt oxide; LiCoO2; LCO) 為正極,使鋰離子電池展現了高電位、高電容量密度、低自放電率與循環穩定性高的特性,至今這類材料仍常見於商業產品中。而適用於負極的材料,則在日本時任旭化成株式會社研究人員的吉野彰 (Akira Yoshino),改以石油焦炭製成石墨電極,終成就鋰離子電池能夠上市的重要突破。這三位在鋰離子電池上的貢獻,讓他們於 2019 年獲得諾貝爾化學獎。

吉野彰與 John B. Goodenough、M. Stanley Whittingham 於 2019 年獲得諾貝爾化學獎。(圖/The Nobel Prize

1991 年,首款鋰離子電池正式上市,引發了電子用品革命的起點:可攜帶的筆記型電腦指日可待,即將席捲全世界的 MP3 播放器、智慧型手機與平板電腦也躍躍欲試。由此之後,鋰離子電池的進步不脫材料以及組裝的改良研究,在顧及安全性的前提下,將各種組件輕薄化,盡可能塞入更多的電極材料,提高能量密度。

-----廣告,請繼續往下閱讀-----

鋰電池更具電力的未來

現在的電池技術在能量密度上,大約在 200-250 (Wh/Kg),現階段如特斯拉等廠商希望透過組裝、大數量串連等方法提升至約 300 (Wh/Kg) 左右。黃炳照表示:「因為工程、物理上的限制,再要有突破就需要材料上的革命。」

如果要進一步提高單位體積的能量密度,還可以怎麼做呢?

概念上可以回歸 1970 年代的設想,使用鋰金屬做為電池的負極,運用鋰金屬有超低還原電位的特性,大幅提升能量密度。但該如何克服鋰金屬低穩定度低的缺點,在科技發展追求更高能量密度的同時兼顧安全性?黃炳照為我們介紹了「無負極電池」的概念:生產階段不需要鋰金屬,於電池正極材料中帶有的鋰離子,在完成組裝後充電,才離開正極,嵌入負極還原為鋰金屬。如此設計的電池不需組裝負極,因此理論上製程簡化成本較低,也避免了組裝使用鋰金屬所需的繁複安全措施。

儘管令人期待,但無論是「無負極電池」或是「鋰電池」,仍需要回過頭以現今的材料技術,攻克過去使用鋰金屬於負極容易發生的安全議題。黃炳照挑戰的課題之一,便是鋰金屬負極循環充放電時,沉積不均勻會導致鋰枝晶形成 (Dendrite Formation)。當鋰金屬表面有缺陷,其界面就容易由於電場不均勻而發生鋰枝晶,此類狀況輕則提高電池內部阻抗,減少循環壽命;嚴重則枝晶會穿刺隔離膜,導致電池發生內短路 (Internal Short Circuit) 而失效甚至起火的安全疑慮。

-----廣告,請繼續往下閱讀-----

黃炳照率領團隊從電解液與「固態電解質介面」 (Solid Electrolyte Interface,SEI) 的角度著手。固態電解質介面為電池首次充放電的時候,電極與液態電解質之間會自然形成的特殊隔層,可容鋰離子通過並且保護電極材料。「在這個(負極)石墨表面形成一個『薄紗』,就像一個濾網。沒有這個薄紗就沒有我們今天的鋰離子電池。」

鋰枝晶。(圖/Wikipedia

因此發展最恰當的電解質配方,以形成穩定電解質介面,並抑制鋰枝晶的成長、及降低電解液的分解,最終提昇效率以及電池的循環壽命,即是黃炳照團隊努力的主要目標。

鋰電池的未來發展,還包括許多人期待的「固態電池」研發。將電解液由原本的液態改良為固態,也是許多人矚目的焦點。由於鋰對水的活性極大,因此鋰電池的電解液成分以有機溶劑為主,卻有著易燃的缺點。黃炳照表示,現階段材料科學已發表許多固體的電解質材料,鋰離子在其中的傳導的效率可比在液體中還要快。

「就像提供給鋰離子的高速公路。」黃炳照解說,固態電池將可望取代始終具有一定安全性疑慮的鋰電池,但完成組裝正式商業化,至今仍有許多挑戰需要克服。

-----廣告,請繼續往下閱讀-----

黃炳照研究的主題除了鋰離子電池,主要為創新奈米結構能源材料研發。其中「同步輻射臨場光譜技術」就扮演了重要的角色。以此技術研究電池,就像幫材料照 X 光拍影片,可以即時觀察充電時材料的變化,以了解並優化電池運作的諸多細節。

「同步輻射就像是一個航空母艦,上面的不同光束 (Beamline) 就像戰鬥機群。」黃炳照比喻,相較於同步輻射提供的設施,各校系的貴儀(貴重儀器設施),就像是無人機,所能提供的「火力支援」有所不及。此技術對於各種電池材料,包括鋰離子電池、燃料電池及太陽能電池等未來的發展都極具影響力。

綠色能源的未來:更安全、更便宜、環境友善

臺灣正在走向能源轉型的階段,再生能源佔比將越來越吃重。考慮到綠能天生不穩定的弱點,需要儲能設施做為輔助。未來的儲能設備將著重在哪類的技術呢?黃炳照認為,能源的使用一直都是多元化的,無論是鋰電池、氫能、燃料電池等儲能技術,都各有其特性。重點仍在於發展出適用、更便宜、性能穩定,且對環境友善的技術,支持各種應用場景的需求特性。

舉例來說,交通工具的電動化將是未來的趨勢,但現行以鋰離子電池為主的儲能設備,其馬力跟續航力有一定的關聯性;相對來說燃料電池則有機會如油車採「油箱與引擎」的分開規劃。又或者受限於電池載重,難以發展電池動力飛機,但氫能如能有效應用其能量密度有潛力供綠色航空起飛。

-----廣告,請繼續往下閱讀-----
電動車的充電停車場。(圖/Wikipedia,Epattloamer的作品,CC BY-SA 3.0)

黃炳照表示,環境友善、永續將會越來越重要。未來隨著各國對於環境保護的需求越來越強烈,使用可再生的綠能將不再只是企業自願性可選擇的作為,終將成為是否具備競爭力的重要環節。臺灣身為全球供應鏈的一份子,要保持商業競爭力,積極發展綠能與相關的基礎建設,很快將迫在眉睫。

要做到環境友善,未來電池的回收、循環經濟勢必成為重要的議題。黃炳照認為,首要的關鍵之一,當然在於研發階段就考量到回收需求而做出對應的設計;其次在後端的回收機制上仍有許多研發的空間,待有志之士投入。但環境友善的精神不應只著眼於最終的回收,還需考慮盡可能最大化產品的使用效益。如應用於電動車的電池需要高端品質,淘汰後可應用於儲能系統,而後或可裝置於緊急照明系統等邊緣設施,如此層層重複利用,對於資源的使用才可達到最佳化。

環境永續將會越來越重要。(圖/Wikipedia,Tomasz Sienicki 的作品,CC BY-SA 3.0)

而這樣最大化、共通共用的概念也可以用於儲能基礎設施的規劃,如將公共電網的儲能需求與電動車充電站共用,在支持電網的同時,電動車用戶也有機會透過售電賺取外快。這類綠能基礎設施的設計形式,將考驗未來城市規劃者的創意與巧思。

鋰離子電池的發展,不僅促成不燃燒化石燃料的電動車成真,也讓我們見識到科技正幫助人類邁向節能減碳,甚至是零碳排的未來。未來,在科學家不懈的努力下,「環境友善、永續發展」終有機會不再是個口號,百尺竿頭再進一步,就讓我們一起拭目以待吧!

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----
文章難易度
科技大觀園_96
82 篇文章 ・ 1126 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

3
1

文字

分享

0
3
1
地球資源很快就要耗竭?淺談永續生產的「限度」——《成長的極限》
臉譜出版_96
・2024/05/09 ・2905字 ・閱讀時間約 6 分鐘

限度:源頭和終點

為了維持或降低資源的成本,我們採用的科技常常需要不斷增加直接與間接燃料的使用量。⋯⋯此種作法耗費甚鉅但實屬必要,我們必須將愈來愈多的國民所得改用於資源加工部門,期能供應相同數量的資源。

——世界環境與發展委員會,1987 年

我們之所以擔心自然界會崩解,並不是因為我們認為地球的能源和原料已經快要耗竭。事實上,World 3 模型中的每一種設想狀況都顯示,到 2100 年,世界仍將保有 1900 年時的大部分資源。我們的擔心是來自於分析 World 3 中的各種推測後的結論:開發地球資源來源(源頭)和利用廢物吸收場所(終點)的成本將愈來愈高。

有關此種成本的資料並不充分。對此一議題的辯論卻非常熱烈。然而,我們依據所獲得的證據可以推論:再生資源開採量在成長中,非再生資源出現耗竭的情形,而且廢物吸收場所已快被填滿,這些現象加總起來,正緩緩地、勢不可擋的提高維持經濟物質流的數量和品質所需的能源和資本的總量。這方面成本的提高,牽涉到自然界、環境與社會相關因素。最後,這種成本會高到讓工業成長無以為繼的程度。當此一情形出現後,原本可擴大物質經濟規模的正回饋圈之運作方向將倒轉過來,造成經濟規模開始萎縮。

非再生資源面臨耗竭,垃圾場也即將被填滿。圖/envato

我們無法證明以上的論斷。我們可以設法使其看起來言之成理,然後提出某些建設性的反應。為達成此一目的,我們在本章內列舉了大量有關資源來源和廢物吸收場所的資料。維持新世紀的世界經濟和人口成長需要各式各樣的資源,我們將概述這些資源的現況及未來的展望。會對經濟發展和人口成長造成影響的因素可說五花八門且不勝枚舉,但我們可將之分成兩大類。

第一類包括用來支持所有生物與工業活動的自然要素,如肥沃的土地、礦物、金屬、能源,以及可吸收廢物並調節氣候的地球生態系統。原則上,這些要素是有形的、可數的,例如可耕地和森林的公頃數、淡水的立方公里、金屬的噸數,和石油的 10 億桶數量。然而,實際上這些要素卻很難加以量化。其總體數量是無法確定的。

這些要素彼此會互動——某些要素可以取代或生成其他要素,因此欲得知相關的確切數據益形困難。此外,有關資源、蘊藏量、消費和生產等名詞的定義都不夠嚴謹;科學本身未臻完備,且官僚體系又經常基於本身的政治和經濟目的而扭曲或隱藏相關數據。另一方面,有關實體世界的資料常常是以經濟指數——如貨幣價格——表達,須知,價格取決於市場,遵循的法則也與支配自然資源的法則大異其趣。儘管有以上的現象存在,我們在本章內仍將焦點集中於自然要素上。

-----廣告,請繼續往下閱讀-----

第二類與成長需求有關的因素包括多項社會要素。即使地球的自然系統有能力支持更龐大、工業化程度更高的人口,但經濟和人口的實際成長,將取決於諸多社會要素:如和平與社會的穩定、公平與個人的安全、誠實且有遠見的領導人、教育和對新觀念的開放、承認錯誤和進行實驗的意願,以及促成穩定而適切的技術進步所需的制度基礎。

這些社會因素很難評估,更不可能進行精確的預測。本書及書中的 World 3 模型都未詳細、明確的探討這些社會因素。因為我們欠缺相關資料及可信手拈來的理論,故無法將這些因素納入正式分析中。但我們瞭解,肥沃的土地、充足的能源、必要的資源以及有益健康的環境,是成長的必要條件,卻不是充分條件。就算這些資源的存量非常豐富、這樣的環境確實存在,但我們想擁有這些要素時,會受到社會問題的阻礙。然而,我們在此處假設,世界是處於最佳的社會狀況中。

人口和資本工廠所使用的原料與能源並非憑空而來,而是我們在地球上開採得來的。原料與能源不會消失:當原料已經沒有經濟上的用處後,會被回收運用或成為廢物與污染物;能源經使用後,會成為沒有價值的熱流而被排放於空氣中。原料與能源會源源不斷地從地球的資源來源經由經濟次系統流向地球的廢物吸收場所(見圖 3-1)。回收利用和更乾淨的生產過程,可以大幅降低每一消費單位的廢物和污染量,但無法完全杜絕。

人們為了成長、維持身體健康、過著具有生產力的生活,及獲取資本和繁衍後代,必須有食物、水、乾淨的空氣、住所,及許多種類的物質。機器和建築物為了生產貨物和提供服務、獲得修理,及建造更多的機器和建築物,必須使用能源、水、空氣,以及各式各樣的金屬、化學原料和生物原料。資源來源生產這些資源流的速度和廢物吸收場處理這些資源流的速度不能超越某種限度,否則將會對人類、經濟或地球本身的自我再生與調節過程造成損害。

這些限度的性質非常複雜,因為資源來源和廢物吸收場所本身就是一個相互關聯的動態系統的一部分,並由地球的生物地質化學循環來維持其運作。限度有短期性的(如提煉完成並儲存於儲油槽中待用的石油數量)和長期性的(如地底下可供開採的原油蘊藏量)。資源來源與廢物吸收場所之間會進行互動,而且某些自然系統可能同時扮演兩者的角色。舉例而言,一塊土地可能既是糧食作物的來源,又是空氣污染所造成的酸雨的吸收場所。這兩種功能的成效存在著相互消長的關係。

-----廣告,請繼續往下閱讀-----

經濟學家赫曼.戴利(Herman Daly)所提出的三項簡單原則,有助於我們定義原料和能源永續生產的限度;這三項原則為 1

  • 就再生資源(土壤、水、森林、魚源)而言,其永續使用率不能大於其來源再生率。(例如,當捕魚率大於剩餘魚群生長率時,則漁獲量將無以為繼。)
  • 就非再生資源(化石燃料、高等級礦產、地下水)而言,其永續使用率不能大於某一再生資源取代其角色的速率。(舉例而言,一處石油蘊藏的永續使用方式是,由它產生的部分利潤能有計畫的投資於風力發電機、太陽電池及造林工作,以便在此一油藏耗竭後仍有另外的再生能源可供使用。)
  • 就污染而言,其永續排放率不能大於其被回收利用、吸收或其於吸收場所轉化為無害物質的速率。(舉例而言,污染能永續排放至河流、湖泊,或地下水層的速率不能比細菌及其他微生物吸收其養分的速率來得快,否則將破壞地下水層的生態系統。)

任何活動若造成再生資源的數量減少,污染物吸收場的範圍擴大,或非再生資源數量減少卻沒有某一再生資源可以取代,則此一活動將無法永續進行。換句話說,此一活動遲早要沒落。在學術界、商界、政府與民間機構針對戴利的三項原則所進行的許多討論中,我們從未聽到有挑戰這些原則的言論(但也幾乎從未發現有人真正用心奉行這些原則)。假如有達成永續性的基本法則存在,那麼這三項原則必然包含在其中。今天的問題不在這些原則正確與否,而在於全球經濟活動是否尊重這些原則,以及果真如此會發生何種結果。

——本文摘自《成長的極限》,2024 年 03 月,臉譜出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。