0

12
3

文字

分享

0
12
3

儲能發展的關鍵未來:鋰離子電池的展望與課題——專訪台科大永續續能源發展中心黃炳照主任

科技大觀園_96
・2021/04/14 ・4333字 ・閱讀時間約 9 分鐘 ・SR值 564 ・九年級

-----廣告,請繼續往下閱讀-----

鋰離子電池除了在當今的數位產品中佔有重要的角色,隨著全球氣候變遷、節能減碳的強烈需求,未來的再生能源技術,也需要鋰離子電池發展出足以配合的儲能系統,才能真正帶領我們走向「零碳排」的未來。本次科技大觀園專訪國家講座教授,國立臺灣科技大學永續續能源發展中心黃炳照主任,帶領我們一窺鋰電池技術的發展與未來。

如今,隨處可見各式輕便的電子用品,只要好好充個電,就能用上一段時間,這種習以為常的便利生活,就必須仰賴良好的電池,而 2019 年的諾貝爾化學獎,正是頒給現在最常聽到的「鋰離子電池」。

鋰離子電池除了在當今的數位產品中佔有重要的角色,隨著全球氣候變遷、節能減碳的強烈需求,未來的再生能源技術,也需要鋰離子電池發展出足以配合的儲能系統,才能真正帶領我們走向「零碳排」的未來。本次科技大觀園專訪國家講座教授,國立臺灣科技大學永續續能源發展中心黃炳照主任,帶領我們一窺鋰電池技術的發展與未來。

黃炳照主任。(圖/曹盛威攝影)

剛剛於今 (2021) 年獲得德國宏博研究獎的黃炳照,研究專長為各種能源材料研發,包括鋰離子電池、燃料電池及太陽能電池。他說明,鋰離子電池在設計的精進,已經接近學理上的極限:「鋰離子電池材料的單位體積電容量,從 1991 年生產到今天,其實進步並沒有太多。」如果要繼續發展,重心之一著眼於新電池材料的研發。

用於 iPhone 的鋰離子聚合物電池。(圖/Wikipedia

鋰離子電池的過去

摩爾定律 (Moore’s law) 預測電晶體效能,約在每十八個月會翻倍提升,相較來說,鋰離子電池進步的速度就緩慢許多。鋰離子電池上市至今的三十年間,我們所見越來越小、容量越來越大的電池,多數的進步主要來自於組裝技術,以及附帶組件的壓縮改良。常被簡稱為「鋰電池」的鋰離子電池,電池材料中並非直接有鋰金屬進行氧化還原作用,而是運用鋰離子在正負極間的移動與嵌入,來儲存電能。

-----廣告,請繼續往下閱讀-----

正極半反應:

{\displaystyle \mathrm {Li} _{1-x}\mathrm {CoO_{2}} +x\mathrm {Li^{+}} +x\mathrm {e^{-}} \leftrightarrows \mathrm {LiCoO_{2}} }

負極半反應:

{\displaystyle x\mathrm {LiC_{6}} \leftrightarrows \ x\mathrm {Li^{+}} +x\mathrm {e^{-}} +x\mathrm {C_{6}} }

鋰電池結構可以大致分解為正極、負極、電解液、隔離膜四大部分。所有的電池皆是利用正極與負極間的化學能電位差儲存電能。史丹利·惠廷安 (M. Stanley Whittingham) 在 1970 年代提出充電式鋰離子電池的概念;金屬鋰的反應性高,有機會能較其他使用於負極的金屬儲存更多的能量,可來取代笨重的鉛酸充電電池。惠廷安在早期的實驗中,採用二硫化鈦 (titanium(IV) sulfide; TiS2) 為正極,鋰金屬為負極,能夠產生二伏特的電流,證實了鋰離子電池的構想可行。然而此正極二硫化鈦易與水氣形成劇毒的硫化氫 (H2S),且鋰金屬接觸空氣時的穩定度相當低,由於安全顧慮無法商業應用。而至古迪納夫 (John B. Goodenough) 於 1980 年改採鈷酸鋰 (lithium cobalt oxide; LiCoO2; LCO) 為正極,使鋰離子電池展現了高電位、高電容量密度、低自放電率與循環穩定性高的特性,至今這類材料仍常見於商業產品中。而適用於負極的材料,則在日本時任旭化成株式會社研究人員的吉野彰 (Akira Yoshino),改以石油焦炭製成石墨電極,終成就鋰離子電池能夠上市的重要突破。這三位在鋰離子電池上的貢獻,讓他們於 2019 年獲得諾貝爾化學獎。

吉野彰與 John B. Goodenough、M. Stanley Whittingham 於 2019 年獲得諾貝爾化學獎。(圖/The Nobel Prize

1991 年,首款鋰離子電池正式上市,引發了電子用品革命的起點:可攜帶的筆記型電腦指日可待,即將席捲全世界的 MP3 播放器、智慧型手機與平板電腦也躍躍欲試。由此之後,鋰離子電池的進步不脫材料以及組裝的改良研究,在顧及安全性的前提下,將各種組件輕薄化,盡可能塞入更多的電極材料,提高能量密度。

-----廣告,請繼續往下閱讀-----

鋰電池更具電力的未來

現在的電池技術在能量密度上,大約在 200-250 (Wh/Kg),現階段如特斯拉等廠商希望透過組裝、大數量串連等方法提升至約 300 (Wh/Kg) 左右。黃炳照表示:「因為工程、物理上的限制,再要有突破就需要材料上的革命。」

如果要進一步提高單位體積的能量密度,還可以怎麼做呢?

概念上可以回歸 1970 年代的設想,使用鋰金屬做為電池的負極,運用鋰金屬有超低還原電位的特性,大幅提升能量密度。但該如何克服鋰金屬低穩定度低的缺點,在科技發展追求更高能量密度的同時兼顧安全性?黃炳照為我們介紹了「無負極電池」的概念:生產階段不需要鋰金屬,於電池正極材料中帶有的鋰離子,在完成組裝後充電,才離開正極,嵌入負極還原為鋰金屬。如此設計的電池不需組裝負極,因此理論上製程簡化成本較低,也避免了組裝使用鋰金屬所需的繁複安全措施。

儘管令人期待,但無論是「無負極電池」或是「鋰電池」,仍需要回過頭以現今的材料技術,攻克過去使用鋰金屬於負極容易發生的安全議題。黃炳照挑戰的課題之一,便是鋰金屬負極循環充放電時,沉積不均勻會導致鋰枝晶形成 (Dendrite Formation)。當鋰金屬表面有缺陷,其界面就容易由於電場不均勻而發生鋰枝晶,此類狀況輕則提高電池內部阻抗,減少循環壽命;嚴重則枝晶會穿刺隔離膜,導致電池發生內短路 (Internal Short Circuit) 而失效甚至起火的安全疑慮。

-----廣告,請繼續往下閱讀-----

黃炳照率領團隊從電解液與「固態電解質介面」 (Solid Electrolyte Interface,SEI) 的角度著手。固態電解質介面為電池首次充放電的時候,電極與液態電解質之間會自然形成的特殊隔層,可容鋰離子通過並且保護電極材料。「在這個(負極)石墨表面形成一個『薄紗』,就像一個濾網。沒有這個薄紗就沒有我們今天的鋰離子電池。」

鋰枝晶。(圖/Wikipedia

因此發展最恰當的電解質配方,以形成穩定電解質介面,並抑制鋰枝晶的成長、及降低電解液的分解,最終提昇效率以及電池的循環壽命,即是黃炳照團隊努力的主要目標。

鋰電池的未來發展,還包括許多人期待的「固態電池」研發。將電解液由原本的液態改良為固態,也是許多人矚目的焦點。由於鋰對水的活性極大,因此鋰電池的電解液成分以有機溶劑為主,卻有著易燃的缺點。黃炳照表示,現階段材料科學已發表許多固體的電解質材料,鋰離子在其中的傳導的效率可比在液體中還要快。

「就像提供給鋰離子的高速公路。」黃炳照解說,固態電池將可望取代始終具有一定安全性疑慮的鋰電池,但完成組裝正式商業化,至今仍有許多挑戰需要克服。

-----廣告,請繼續往下閱讀-----

黃炳照研究的主題除了鋰離子電池,主要為創新奈米結構能源材料研發。其中「同步輻射臨場光譜技術」就扮演了重要的角色。以此技術研究電池,就像幫材料照 X 光拍影片,可以即時觀察充電時材料的變化,以了解並優化電池運作的諸多細節。

「同步輻射就像是一個航空母艦,上面的不同光束 (Beamline) 就像戰鬥機群。」黃炳照比喻,相較於同步輻射提供的設施,各校系的貴儀(貴重儀器設施),就像是無人機,所能提供的「火力支援」有所不及。此技術對於各種電池材料,包括鋰離子電池、燃料電池及太陽能電池等未來的發展都極具影響力。

綠色能源的未來:更安全、更便宜、環境友善

臺灣正在走向能源轉型的階段,再生能源佔比將越來越吃重。考慮到綠能天生不穩定的弱點,需要儲能設施做為輔助。未來的儲能設備將著重在哪類的技術呢?黃炳照認為,能源的使用一直都是多元化的,無論是鋰電池、氫能、燃料電池等儲能技術,都各有其特性。重點仍在於發展出適用、更便宜、性能穩定,且對環境友善的技術,支持各種應用場景的需求特性。

舉例來說,交通工具的電動化將是未來的趨勢,但現行以鋰離子電池為主的儲能設備,其馬力跟續航力有一定的關聯性;相對來說燃料電池則有機會如油車採「油箱與引擎」的分開規劃。又或者受限於電池載重,難以發展電池動力飛機,但氫能如能有效應用其能量密度有潛力供綠色航空起飛。

-----廣告,請繼續往下閱讀-----
電動車的充電停車場。(圖/Wikipedia,Epattloamer的作品,CC BY-SA 3.0)

黃炳照表示,環境友善、永續將會越來越重要。未來隨著各國對於環境保護的需求越來越強烈,使用可再生的綠能將不再只是企業自願性可選擇的作為,終將成為是否具備競爭力的重要環節。臺灣身為全球供應鏈的一份子,要保持商業競爭力,積極發展綠能與相關的基礎建設,很快將迫在眉睫。

要做到環境友善,未來電池的回收、循環經濟勢必成為重要的議題。黃炳照認為,首要的關鍵之一,當然在於研發階段就考量到回收需求而做出對應的設計;其次在後端的回收機制上仍有許多研發的空間,待有志之士投入。但環境友善的精神不應只著眼於最終的回收,還需考慮盡可能最大化產品的使用效益。如應用於電動車的電池需要高端品質,淘汰後可應用於儲能系統,而後或可裝置於緊急照明系統等邊緣設施,如此層層重複利用,對於資源的使用才可達到最佳化。

環境永續將會越來越重要。(圖/Wikipedia,Tomasz Sienicki 的作品,CC BY-SA 3.0)

而這樣最大化、共通共用的概念也可以用於儲能基礎設施的規劃,如將公共電網的儲能需求與電動車充電站共用,在支持電網的同時,電動車用戶也有機會透過售電賺取外快。這類綠能基礎設施的設計形式,將考驗未來城市規劃者的創意與巧思。

鋰離子電池的發展,不僅促成不燃燒化石燃料的電動車成真,也讓我們見識到科技正幫助人類邁向節能減碳,甚至是零碳排的未來。未來,在科學家不懈的努力下,「環境友善、永續發展」終有機會不再是個口號,百尺竿頭再進一步,就讓我們一起拭目以待吧!

-----廣告,請繼續往下閱讀-----

資料來源

文章難易度
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

2
0

文字

分享

0
2
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 304 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
地球資源很快就要耗竭?淺談永續生產的「限度」——《成長的極限》
臉譜出版_96
・2024/05/09 ・2905字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

限度:源頭和終點

為了維持或降低資源的成本,我們採用的科技常常需要不斷增加直接與間接燃料的使用量。⋯⋯此種作法耗費甚鉅但實屬必要,我們必須將愈來愈多的國民所得改用於資源加工部門,期能供應相同數量的資源。

——世界環境與發展委員會,1987 年

我們之所以擔心自然界會崩解,並不是因為我們認為地球的能源和原料已經快要耗竭。事實上,World 3 模型中的每一種設想狀況都顯示,到 2100 年,世界仍將保有 1900 年時的大部分資源。我們的擔心是來自於分析 World 3 中的各種推測後的結論:開發地球資源來源(源頭)和利用廢物吸收場所(終點)的成本將愈來愈高。

有關此種成本的資料並不充分。對此一議題的辯論卻非常熱烈。然而,我們依據所獲得的證據可以推論:再生資源開採量在成長中,非再生資源出現耗竭的情形,而且廢物吸收場所已快被填滿,這些現象加總起來,正緩緩地、勢不可擋的提高維持經濟物質流的數量和品質所需的能源和資本的總量。這方面成本的提高,牽涉到自然界、環境與社會相關因素。最後,這種成本會高到讓工業成長無以為繼的程度。當此一情形出現後,原本可擴大物質經濟規模的正回饋圈之運作方向將倒轉過來,造成經濟規模開始萎縮。

非再生資源面臨耗竭,垃圾場也即將被填滿。圖/envato

我們無法證明以上的論斷。我們可以設法使其看起來言之成理,然後提出某些建設性的反應。為達成此一目的,我們在本章內列舉了大量有關資源來源和廢物吸收場所的資料。維持新世紀的世界經濟和人口成長需要各式各樣的資源,我們將概述這些資源的現況及未來的展望。會對經濟發展和人口成長造成影響的因素可說五花八門且不勝枚舉,但我們可將之分成兩大類。

第一類包括用來支持所有生物與工業活動的自然要素,如肥沃的土地、礦物、金屬、能源,以及可吸收廢物並調節氣候的地球生態系統。原則上,這些要素是有形的、可數的,例如可耕地和森林的公頃數、淡水的立方公里、金屬的噸數,和石油的 10 億桶數量。然而,實際上這些要素卻很難加以量化。其總體數量是無法確定的。

這些要素彼此會互動——某些要素可以取代或生成其他要素,因此欲得知相關的確切數據益形困難。此外,有關資源、蘊藏量、消費和生產等名詞的定義都不夠嚴謹;科學本身未臻完備,且官僚體系又經常基於本身的政治和經濟目的而扭曲或隱藏相關數據。另一方面,有關實體世界的資料常常是以經濟指數——如貨幣價格——表達,須知,價格取決於市場,遵循的法則也與支配自然資源的法則大異其趣。儘管有以上的現象存在,我們在本章內仍將焦點集中於自然要素上。

-----廣告,請繼續往下閱讀-----

第二類與成長需求有關的因素包括多項社會要素。即使地球的自然系統有能力支持更龐大、工業化程度更高的人口,但經濟和人口的實際成長,將取決於諸多社會要素:如和平與社會的穩定、公平與個人的安全、誠實且有遠見的領導人、教育和對新觀念的開放、承認錯誤和進行實驗的意願,以及促成穩定而適切的技術進步所需的制度基礎。

這些社會因素很難評估,更不可能進行精確的預測。本書及書中的 World 3 模型都未詳細、明確的探討這些社會因素。因為我們欠缺相關資料及可信手拈來的理論,故無法將這些因素納入正式分析中。但我們瞭解,肥沃的土地、充足的能源、必要的資源以及有益健康的環境,是成長的必要條件,卻不是充分條件。就算這些資源的存量非常豐富、這樣的環境確實存在,但我們想擁有這些要素時,會受到社會問題的阻礙。然而,我們在此處假設,世界是處於最佳的社會狀況中。

人口和資本工廠所使用的原料與能源並非憑空而來,而是我們在地球上開採得來的。原料與能源不會消失:當原料已經沒有經濟上的用處後,會被回收運用或成為廢物與污染物;能源經使用後,會成為沒有價值的熱流而被排放於空氣中。原料與能源會源源不斷地從地球的資源來源經由經濟次系統流向地球的廢物吸收場所(見圖 3-1)。回收利用和更乾淨的生產過程,可以大幅降低每一消費單位的廢物和污染量,但無法完全杜絕。

人們為了成長、維持身體健康、過著具有生產力的生活,及獲取資本和繁衍後代,必須有食物、水、乾淨的空氣、住所,及許多種類的物質。機器和建築物為了生產貨物和提供服務、獲得修理,及建造更多的機器和建築物,必須使用能源、水、空氣,以及各式各樣的金屬、化學原料和生物原料。資源來源生產這些資源流的速度和廢物吸收場處理這些資源流的速度不能超越某種限度,否則將會對人類、經濟或地球本身的自我再生與調節過程造成損害。

這些限度的性質非常複雜,因為資源來源和廢物吸收場所本身就是一個相互關聯的動態系統的一部分,並由地球的生物地質化學循環來維持其運作。限度有短期性的(如提煉完成並儲存於儲油槽中待用的石油數量)和長期性的(如地底下可供開採的原油蘊藏量)。資源來源與廢物吸收場所之間會進行互動,而且某些自然系統可能同時扮演兩者的角色。舉例而言,一塊土地可能既是糧食作物的來源,又是空氣污染所造成的酸雨的吸收場所。這兩種功能的成效存在著相互消長的關係。

-----廣告,請繼續往下閱讀-----

經濟學家赫曼.戴利(Herman Daly)所提出的三項簡單原則,有助於我們定義原料和能源永續生產的限度;這三項原則為 1

  • 就再生資源(土壤、水、森林、魚源)而言,其永續使用率不能大於其來源再生率。(例如,當捕魚率大於剩餘魚群生長率時,則漁獲量將無以為繼。)
  • 就非再生資源(化石燃料、高等級礦產、地下水)而言,其永續使用率不能大於某一再生資源取代其角色的速率。(舉例而言,一處石油蘊藏的永續使用方式是,由它產生的部分利潤能有計畫的投資於風力發電機、太陽電池及造林工作,以便在此一油藏耗竭後仍有另外的再生能源可供使用。)
  • 就污染而言,其永續排放率不能大於其被回收利用、吸收或其於吸收場所轉化為無害物質的速率。(舉例而言,污染能永續排放至河流、湖泊,或地下水層的速率不能比細菌及其他微生物吸收其養分的速率來得快,否則將破壞地下水層的生態系統。)

任何活動若造成再生資源的數量減少,污染物吸收場的範圍擴大,或非再生資源數量減少卻沒有某一再生資源可以取代,則此一活動將無法永續進行。換句話說,此一活動遲早要沒落。在學術界、商界、政府與民間機構針對戴利的三項原則所進行的許多討論中,我們從未聽到有挑戰這些原則的言論(但也幾乎從未發現有人真正用心奉行這些原則)。假如有達成永續性的基本法則存在,那麼這三項原則必然包含在其中。今天的問題不在這些原則正確與否,而在於全球經濟活動是否尊重這些原則,以及果真如此會發生何種結果。

——本文摘自《成長的極限》,2024 年 03 月,臉譜出版,未經同意請勿轉載。

討論功能關閉中。

臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

6
1

文字

分享

0
6
1
綠能當道,敢不談發展電動車嗎?
賴昭正_96
・2024/02/09 ・7388字 ・閱讀時間約 15 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

在我看來,一位只讀報紙和當代作家書籍的人就像一個蔑視眼鏡的極度近視眼人:他完全依賴他那個時代的偏見和時尚,因為他永遠看不到或聽到任何其它東西。

——愛因斯坦(1879-1955)1921 年諾貝爾物理獎

2013 年 7 月,筆者在《科學月刊》之「大家談科學」專欄裡指出:電動車還是需要能量的,因此在考慮發展電動車時,必須同時考慮其能量來源的效率。如果發電廠的發電效率與直接燃燒汽油的汽車效率一樣(見「附錄-熱力學」),那麼發展電動車實質上的優勢只是將環境污染移到鄉下而已。該短文一出現後,立即有讀者分別在《科學月刊》及網際網路上反應,提出電動車的好處,應該發展;為此筆者又寫了兩篇有關發展電動車可能碰到的問題(詳情請參閱《我愛科學》)。

兩年半後(2016 年 2 月 21 日),筆者又在第 1666 期《世界週刊》提出;中國為燃煤發電的大國,要產生同樣的能量,燃煤所排放的二氧化硫、重金屬(水銀、鉛、鎘、及砷等)及懸浮顆粒(現代汽油車的廢氣中已幾乎不再出現)對人體的健康有巨大的負面影響,因此在未改變整個發電結構之前,在中國大量使用電動車不僅不能「減少空氣污染」,反而會對整個環境造成更大的災害。加上可設置私人充電樁的私宅少,電動車不可能普及化,因此「中國不適合發展電動汽車」。同樣地,此短文一出,立即有讀者反駁,謂中國不能落後,必須跟其它國家一樣,積極發展電動車。

中國現在已成為全球最大的電動車製造商及市場;截至今年(2023年)9 月,純電動車佔中國汽車銷量 25%。在全世界到處均在高喊發展電動汽車的此時,顯然筆者是錯了!真的嗎?在回答這問題之前,因為可以幫助我們了解電動車的銷售,讓我們在這裡先來複習一下電動車發展的簡史吧。因本文涉及不少時間點(如今年、現在),請讀者注意本文完稿於 2023 年 12 月 19 日。

電動車的發展

1895年的電動汽車。圖/wikimedia

電動車當然不是一個新概念;事實上早在 1830 年代,第一輛電動車就已經被開發出來。而在台灣,筆者 1975 年暑「放棄高薪」從義大利回到清華化學系時,當時的工學院院長毛高文就已經積極在推動電動車的研發:1974 年首度發表自製電動車「清華一號」,從新竹走省道一路開到台北,開啟了國內電動車研發的先河。然而,由於各種原因,包括豐富的汽油和缺乏可靠的電池,電動車一直沒有商業化。電動車的真正復興發生於 21 世紀初鋰離子電池的發現與成熟 1。下面可以說是全世界電動車普化的兩個轉捩點:

-----廣告,請繼續往下閱讀-----

第一個轉捩點是日本豐田普銳斯(Priuse)的推出。普銳斯於 1997 年在日本發布,成為世界上第一款量產的混合動力電動車(同時使用電池與汽油,完全不用插電,內燃機提供電源;詳情請參考《我愛科學》之「混動車值得發展嗎」);2000 年,普銳斯在全球發布,一推出就獲得了名人的青睞,從而提高了該車的知名度。從那時起,不斷上漲的汽油價格和對碳污染的日益關注,使普銳斯成為全球最暢銷的混合動力車。

另一個幫助重矗電動車的事件是 2006 年矽谷一家小型新創公司。特斯拉(Tesla)汽車公司從美國能源部貸款計畫辦公室獲得了 4.65 億美元的貸款,在加州建立製造工廠;於 2010 年宣布將開始生產一款一次充電可行駛超過 200 英里的豪華電動跑車。此後不久,特斯拉就因其汽車贏得了廣泛讚譽,成為加州最大的汽車行業雇主。特斯拉的成功、日益受到關注的全球氣候溫度上升、加上政府政策的推動與大量金錢補助(特斯拉幾十億及購車者),電動車開始變得更主流,迫使許多大型汽車製造商加速開發自己的電動車,甚至決定放棄傳統汽車的製造!

特斯拉汽車公司的創立

現在一談到電動車,似乎不能不談特斯拉。而一談到特斯拉,似乎便不能不談充滿爭議性、全世界最富有的馬斯克(Elon Musk):相信很多讀者都以為他是特斯拉的創辦人,但事實上他只是提供創辦資金,不是創辦人!

馬斯克(Elon Musk)。圖/wikimedia

現在廣為人知的故事是 2003 年時,艾伯哈德(Martin Eberhard)和塔彭寧(Marc Tarpenning)為了要為他們剛剛成立的新公司收集消費者數據,開車在美國最富有之一郊區、史丹佛大學所在地的帕洛阿爾託(Palo Alto)街道上來回走動,觀察其居民擁有哪些類型的汽車。他們發現在價值 200 萬美元的房屋前,總是停著一輛豪華轎車和一輛當時環保寵兒的普銳斯。因此他們認為環保主義已經來到了富人家門口,可以開始向少數的富人出售電動車,希望最終會滲透到中產階級。他們以塞爾維亞裔美國發明家特斯拉(Nikola Tesla)命名,成立了特斯拉汽車公司。該公司的資金來源中最著名的就是貝寶(PayPal)控股公司聯合創始人馬斯克。馬斯克為這家新企業提供了超過 3000 萬美元的資金,從 2004 年開始擔任該公司董事長;2008 年艾伯哈德和塔彭寧兩人離職後,馬斯克接任執行長。

-----廣告,請繼續往下閱讀-----

特斯拉公司於 2010 年上市;2020 年開始賺錢 2 時,其股票市值首次超過了通用汽車公司和福特汽車的總市值。

炫耀性保護

艾伯哈德和塔彭寧相信因為環保主義的抬頭, 富人會買電動車來展示其綠色美德的現象,經濟學家稱為「炫耀性保護」(conspicuous conservation);他們也相信這最終還是會滲透到中產階級的。果然不錯,富有的愛好者競相排隊購買特斯拉,使得其市值在 2021 年曾經一度超過 1.2 兆美元 3,成為世界上最有價值的公司之一。歲月匆匆,艾伯哈德和塔彭寧所盼望之慢慢普及的時候似乎應該到了,但卻沒有發生!顯然中產階級消費者就是不合作:他們似乎像筆者一樣,對於如何處理收入有自己的想法,他們需要汽車來上班、購物、帶小孩上學、度假、⋯⋯,他們沒有必要、也負擔不起購買一輛昂貴且不實用的電動車來炫耀。

注意電動車發展的讀者應該都已注意到:最近(2023 年 11 月)報章雜誌都開始報導電動車銷量在一年前就已經開始放緩,促使許多電動車製造商大幅降價,並在第一季引發價格戰。電動車的需求雖然還在擴張,但成長速度已大幅放緩。根據《華爾街日報》報道,繼去年上半年全球成長 63% 後,今年同期僅成長了 49%;而與此同时,2023 年混合動力車銷量卻大幅成長(前三季年增 48%)。

圖/envato

汽車製造商終於開始有點頭痛了:第一波富有的環保主義者買家已經購買了他們的電動車後,現在該如何推動到中產階級的手中呢?通用汽車、福特、賓士、日產,甚至特斯拉,都因最近需求放緩發出了危險信號:通用汽車縮減了 2024 年的計劃,並表示將推遲新電動卡車工廠的開幕;福特正在考慮削減其去年非常暢銷的電動卡車工廠的班次;日產正在將更多資源轉移到混合動力汽車而不是電動車;馬賽地-賓士將現在的電動車市場描述為「殘酷」;⋯⋯⋯。曾經自稱將是「特斯拉殺手」的美國豪華跑車和旅行車製造商 Lucid 現在看起來也只是「普通而已」,宣布將生產速度放緩 30%,許多人甚至擔心該公司能否在當前電動汽車行業的低迷中生存下來。

-----廣告,請繼續往下閱讀-----

電動車車主的自述

2023 年 4 月 26 日《洛杉磯時報》社論版的副主編加爾薩(Mariel Garza)在「我已準備好更換我的(純)電動車」一文寫道:

我喜歡我的電動車,我真的喜歡。我喜歡我永遠不需要加汽油;我喜歡它在街上安靜滑行的樣子;我喜歡它有那麼多馬力——如果我願意的話,我真的可以超越汽油動力的跑車;我喜歡貼上可以讓我在高載客量車道上單獨駕駛的貼紙;我喜歡日常維護只不過是旋轉輪胎而已 4。但三年後,我正在認真考慮將其換成插電式混動汽車(見後)。⋯⋯為什麼? 因為儘管我很喜歡我的車,但我討厭我不能在這個引領電動車革命、確信我可以(隨時)在需要時充電的加州旅行。

筆者不相信加爾薩的後悔僅是少數人的意見,例如 2022 年 8 月 19 日《世界日報》就報導:

川渝地區因高溫限電造成大量充電樁暫停營運,使電動車車主感受到前所未有的「充電」壓力 5。有網約車師傅連跑八台充電樁才找到電,也有女性車主半夜 12 時還在外排隊 2 小時以上。充電焦慮讓車主們怕「掛在路上」,大嘆「不是在充電,就是在找充電樁的路上」。⋯⋯公共安全部數據顯示,今年上半年全國新能源汽車保有量已突破 1000 萬大關。高溫限電也引發了新能源汽車充電焦慮,多位網友網上抱怨「還是油車香」、「未來買新能源車要三思了」。

但是在政府及時髦的推動下,有多少人能獨立地三思、不人云亦云呢?

綠色能源

贊成發展電動車的還有一個建立在沙灘上的願景,那就是將來的能源將是綠色的,而不是從發電廠燃燒煤(氣)出來的。為什麼這是建立在沙灘上的希望呢?因為根據台電公司的相關資料,我國在 2021 年的再生能源佔比只有 6% 左右,距離原本政府時程內設下的 20% 目標非常遠。又經濟部今年 6 月 21 日公布最新全國電力資源供需報告,揭露 2023 年至 2029 年用電及供電預估,顯示再生能源建置進度較預期延後:原先預估 2025 年綠電占比要達 20%,重新調整為 15.5%,並謂至少必須等到 2026 年 10 月再生能源才會達到 20% 的目標。讀者相信嗎?

-----廣告,請繼續往下閱讀-----

而上面所提之「川渝地區因高溫限電」正是發生在中國水電第一大城的四川:其水利發電量佔全省發電量的 81.6%!能將日常生活用的電動車能源建立在難以預測與控制的綠能上嗎?由於此一罕見的大旱,北京當局為確保電力供應,宣告擱置優先發展清潔能源計畫,全力擴大煤礦的開採以及增加外國煤炭進口——中國應該發展電動車嗎?美國有線電視(CNN)指出,中國目前對煤炭發電的依賴已超過去年(因為大量使用電動車?),今年 7 月中國煤炭發電環比增加 22%。同樣地,去年歐洲大旱也造成其水利發電量產減少 20%(義大利 40%,西班牙 44%);筆者好像還在報上看到過:為了達成綠色發電量比的目標,有些歐洲國家因之想將天然氣發電改歸屬於綠色發電!這不是「自欺欺人」嗎?

不再需基礎設施配合的混動汽車

現在智慧型手機找充電站已經非常容易,但是想一想:好不容易改道開到充電站,卻發現唯一的充電樁壞了 6,不知道讀者將有何反應,但筆者雖然早已過了兩次四十而不惑,一定還三字經罵個不停!再不然就是所有的充電樁全被佔用了、或有一佔著茅坑不拉屎(已經充電完畢)的車主不知道跑到哪裡去了、……只好五十而知天命了:等吧。

充電停車場。圖/wikimedia

相信有些人會辯稱那是因為充電站不夠多的關係,如果充電站像現在加油站一樣,這問題就不會出現。但簡單的計算告訴我們:這問題還是存在的,因為最快的充電大概也需要 30 分鐘 7,而一般加油的時間只要 5 分鐘左右!事實上這正是筆者在 2013 年 8 月之「混動汽車值得發展值嗎」所指出的:「即使充電站能像加油站一樣普及,除非你多的是時間,否則等充電大概會讓你急得像熱鍋中的螞蟻。因此筆者認為電動車不可能大量取代汽油車,它只能用於日常上、下班或購物用。」

反之,在「混動汽車值得發展嗎」裡,筆者也辯謂:完全不用插電之電池與汽油兩用的混動汽車不但無純電動的缺陷,它的(汽油)能量使用效率已高達汽油汽車的兩倍以上,也不需要大量建造充電站來配合,因此應是將來汽車發展方向的主流。

-----廣告,請繼續往下閱讀-----

在這段期間裡,市面上已經出現了一種可以完全使用汽油(不需要充電)、但是也可以充電的「插電式混動汽車(plug-in hybrid)」:以電池為主、汽油引擎為輔的混動汽車;前者可以在家中車房充電,用於日常上、下班或購物用,後者用於長途旅行(不需要找充電站)。事實上中國的插電式汽車市佔率已經突破 37%,高過純電動車的 25%,估計到今年底,將可能接近 40%。在美國,今年第二季混動汽車的 7.2% 輕型車輛市佔率也超過純電動車的 6.7%,插電式混動汽車則從 2021 年初的不到 1% 上升到 1.7%。

高處不勝寒

豐田汽車雖然在電動發展史上佔了一席非常重要的地位,但其第一款純電動的汽車卻遲滯到 2022 年 5 月才出現 8。在全世界一片發展電動車的時髦下,讀者應該不難想像到其執行長所受的壓力。今年元月,豐田汽車創始人的孫子豐田章男終因緩慢採用電動車,導致其領導能力受到質疑,而決定於 4 月 1 日辭去當了將近 14 年的執行長及總監職。 

在特斯拉 10 月中公佈了災難性的第三季收益,投資者意識到電動車並不是獲利的靈丹妙藥後,當時已改任豐田汽車公司董事長的豐田章男終於喘一口氣,表示銷售放緩事實上證明了他對電動車的抵制是正確的,並補充說:「人們終於看到了(電動車的)現實」。豐田北美業務銷售主管克里斯特(David Christ)11 月 26 日向《華爾街日報》表示:「這是一個異常火爆的市場」,豐田正在盡可能大量生產混合動力車。

豐田 bZ4X。圖/wikimedia

同樣地,平時很少得到讀者的直接反應,但筆者在 2013 年及 2016 發表不贊同發展純電動車的看法時(因為有更好的方案),立即受到一些批評;使得筆者在 2017 年出版之《我愛科學》的自序裡覺得「高處不勝寒」。10 年後的今天,看來或許已經不再那麼冷了?!

-----廣告,請繼續往下閱讀-----

結論

美國環保署今年發布了令人非常沮喪的《2022 年汽車趨勢報告》,謂 2021 年的最終數據顯示,美國在汽車減少二氧化碳排放方面仍然進展甚微,他們說是因為消費者(富人)雖買了電動車,但車房裡停的卻是更浪費汽油、更豪華的大車子。但更可能的解釋不正是筆者所說的「發展電動車未必能減少空氣污染」嗎?

即使在汽車大國的美國,私人汽車所造成的空氣污染佔不到 20%,因此筆者認為發展什麼樣的車子都只是表面的裝飾而已,因為全球加速暖化與空氣污染背後的主要原因是:人類永無止境的慾望。只要人的慾望不降、鼓勵消費的經濟理論不改,世界能量的使用將只會有增無減,否則將被識為「經濟衰退」或「落後國家」!而如「附錄-熱力學」所言,能量大部分都是透過效率最差的熱來產生的,在產生的同時,一定要製造出大量的廢熱,這些廢熱通常消散到大氣、河流、湖泊、甚至海洋等大型水體中,導致水的內部熱量增加。根據 2022 年年底美國太空總署的估計,自 1955 年有記錄以來,百分之九十的全球暖化都發生在海洋中。筆者不知道為什麼我們不談這一更嚴重的問題:掩耳盜鈴?眼不見為淨?不願意面對必須節慾的事實?⋯⋯或正是愛因斯坦所說的「時代的偏見和時尚」?

麥肯錫(McKinsey)2022 年 4 月報告謂;「如果到 2030 年,所有銷售車輛中有一半是零排放車輛(符合美國聯邦目標),我們估計美國到那一年將需要 120 萬個公共電動車充電樁和 2,800 萬個私人電動車充電樁。⋯⋯消耗資本超過 350 億美元。」這巨額開支(台灣 2023 年總生產額的 3% 左右)用來改進現有的基礎設施(如發電效率、增加其二氧化碳的排放回收等)不是更實際有用嗎?

附錄-熱力學

熱也是一種能量,但熱力學告訴我們它是品質最差的一種,我們一旦將其它能量變成熱,就再也不能 100% 地將它改回或改為其它能量形式,所以透過熱來發電是一種非常沒有效率的方法。例如高山上的水,對地面而言具有位能,我們原則上可以將它 100% 的改成電能,這正是水利發電的原理(其效率可以高達 90%);但如果我們讓它掉到地面變成熱,再用這些熱來發電或做功,那麼其效率就受到熱力學的限制,原則上再也不可能 100% 了(實用上均難以達到 50%):在改回其它能量形式的同時,一定要製造出一些廢熱(見圖)。不幸地,這正是內燃機(包括汽車引擎)和發電廠(包括核電廠)的操作方式,因此它們的效率都不高:燃煤電廠與核電廠的平均效率約為 33%,天然氣發電廠大約在 33% 至 43% 之間,內燃機的效率因類型和引擎的不同而變化很大(15%-45%),汽油引擎的效率只有 30% 到 35% 左右。

-----廣告,請繼續往下閱讀-----
圖/作者提供

註解

  1. 吉野彰(Akira Yoshino)、惠廷漢姆(Stanley Whittingham)、和古迪納夫(John Goodenough) 因發展鋰離子電池獲得 2019 年諾貝爾化學獎
  2. 特斯拉在 2020 年公佈了首個全年淨利潤,但這並不是因為向客戶銷售電動車的結果,而是美國有 11 個州要求汽車製造商在 2025 年之前銷售一定比例的零排放汽車,如果達不到,汽車製造商就必須從另一家滿足這些要求的汽車製造商購買「碳信用額(carbon credit)」——只銷售電動車的特斯拉成了這項政府規定的最大贏家。
  3. 現在約為 0.8 兆美元,市盈率高達 80 以上,通用汽車、福特則在 10 以下。
  4. 美國權威《消費者報告》的最新調查顯示,電動車的平均可靠性遠低於汽油動力車、卡車、和運動型多用途車。該調查發現 2021 年至 2023 年車型中的電動車遇到的問題比普通汽車多近 80%。
  5. 在政府大力支持下,中國已擁有地球上最廣泛的電動車充電基礎設施。
  6. 加油站因為有大量的易燃及爆炸的汽油,不能像充電站一樣沒有人守著,因此壞了不知道或不修理的機會應該不多。美國權威數據分析、軟體和消費者情報公司 J.D. Power 今年 5 月的一份報告謂:「截至 2023 年第一季末,使用公共充電樁的電動車駕駛員中有 20.8% 遇到過充電故障或設備故障,導致他們無法為車輛充電。」今年 12 月 3 日《華爾街日報》報導謂:「根據美國處理汽車維修保險索賠的 CCC 智慧解決方案公司的數據,去年發生事故後維修電動車的平均費用為 6,587 美元,而所有車輛的維修費用為 4,215 美元。」
  7. 但大多數需要 1 到 2 小時。充電速度快,將會縮短電池的壽命。
  8. 2023 年豐田 bZ4X 是該汽車製造商的首款量產電動車,也是目前該品牌提供的唯一的一款電動車。

延伸閱讀

我愛科學》(華騰文化有限公司,2017 年 12 月出版):收集筆者自 1970 年元月至 2017 年 8 月在《科學月刊》及少數其它雜誌所發表之文章。內含熱力學與能源利用、電動車值得發展嗎、混動汽車值得發展嗎、再談電動車值得發展嗎、如何有效地儲存電力、台灣應該發展電動車嗎、中國不適合發展電動車等等與本文有關的文章。

討論功能關閉中。

賴昭正_96
42 篇文章 ・ 53 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。