Loading [MathJax]/jax/output/HTML-CSS/config.js

0

0
2

文字

分享

0
0
2

保險套比飛機更重要?專訪《老科技的全球史》譯者李尚仁

研之有物│中央研究院_96
・2018/12/05 ・4483字 ・閱讀時間約 9 分鐘 ・SR值 560 ・八年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 採訪編輯|王怡蓁、美術編輯|張語辰

老科技的全球史

一般所認為的「科技」,多指重大的發明、或最新的技術。而關於「科技史」,也多以強調重大發明的方式書寫。然而,中研院歷史語言研究所的李尚仁研究員,翻譯《老科技的全球史》一書提出不尋常的觀點:日常生活中「被大量使用」的物品,更是科技。

《老科技的全球史》強調:真正重要的科技,在於被持續不斷使用的老科技。 資料來源│左岸文化

2017 年 11 月,《老科技的全球史》作者大衛・艾傑頓 (David Edgerton) 應邀來台進行系列演講,本文摘錄部分演講內容,並專訪此書的翻譯者李尚仁,聊聊持續不斷使用的老科技,在歷史上是如何改變生活。

書中導論一開始指出,大多數的科技史是為了特定族群所寫,在上位者宣揚著某種特定的科技理念,將科技與創新綁在一起。大衛甚至在書的一開始便反問讀者:「保險套是否比飛機還重要?」,以不同尋常的科技史詮釋,促進讀者腦筋高速轉動。

在演講的開始,大衛以原子彈舉例,他認為原子彈是可怕的,象徵性地標示第二次世界大戰,但並非同一般所想的是結束戰爭的原因。儘管焦點都放在「創新毀滅性武器」,但事實上那些舊的、廣泛使用的武器:步槍、火炮、坦克,在二次大戰殺死的人數,遠大於轟炸機與原子彈。

-----廣告,請繼續往下閱讀-----

當今最危險的兩件事,莫過於我們自以為知道答案,以及政府自以為知道什麼是最重要的發明。

大衛演講現場再次問大家:「洗衣機是否比核子反應爐重要呢?」他明白這是很難回答的問題,因為不可能有兩三樣發明就足以改變社會,但卻是世上普遍存在的政策與經濟迷思。

他透過這個提問,點出迷思:「更多的創新,將帶來更多的權力與進步嗎?」這聽起來很合理,然而從書中的實際數據來看,許多致力創新的國家,經濟成長的程度與創新的發展卻不成正比。例如力求創新的美國從 1920 年代至今,經濟發展速度已經不是最快的,現今反而是中國取得頭籌。這現象也來自於,發展中的國家可以模仿已開發國家的創新,所以就算不投入創新也可以快速成長。這正是科技史給我們強而有力的警告。

大衛認為人們要做到兩件事:首先是拒絕企業與政府餵養給我們的全盤創新說法,但不是拒絕進步,而是要「勇於質疑」;第二,科技需符合人們的「使用需求」,創新的神話常灌輸人們對於未來是沒有選擇的,很多問題只能透過創新解決,但其實我們有選擇,也有許多運用現行科技就能採取的解方。

20 世紀的生產力毫無疑問是增加了,但科技究竟在其中發揮怎樣的作用,依舊是個謎。接下來透過《老科技的全球史》譯者李尚仁的問答梳理,以書中大衛的角度來觀看老科技的重要性。

-----廣告,請繼續往下閱讀-----
李尚仁現今仍使用 10 年前的 Nokia 手機,儼然是老科技的代言人。
攝影│ 張語辰

我們鮮少關注科技與歷史的關係,科技史的重要性在哪裡?

改變社會的,往往不一定是最知名的科技,像是我們日常衣服食物的廉價大量生產,其普遍供應足以改變社會,就是很重要的科技成果,但大家不會覺得這些生產科技的改良很有名,甚至不會將這些日常現象與「科技」直接產生連結。

我們大多談論的是像奈米、超導體等研發技術,但與生活密切相關的卻很少拿來討論。2017 年 8 月 15 日全台大停電,我們才會發現「供電系統」的技術其實很複雜,才會去討論電力系統的問題,但平常並不會注意到。

 科技史就是討論科技如何形塑人們的生活,並不是去講哪些發明有多麽偉大。

大衛提到多數人把科技視為發明,在台灣也是,為什麼會這樣?

這與教育中如何敘事、還有國族主義有關係。課本或大眾媒體的發明故事,看起來總是比較動人,藉由「戲劇性的發明」來說故事比較吸引人,尤其是發明家從小如何努力奮鬥。

而科技史的寫作,又與塑造民族英雄有關,更能進一步強化國族主義,彰顯該國有哪些偉大的發明以及聰明的人物。

歷史課本介紹了中國三大發明:火藥、指南針與印刷術,但我們卻很少知道火藥從古至今的流變,造紙技術在科技史領域也不是熱門的研究題目,這些題材可能會變成產業史、博物館史,而非科技史。

如何讓大眾認識科技史,就是要讓大眾先看看自己生活周遭的技術。

像是遇到停電,就會想到發電系統,而去關心電力是如何傳輸,有時甚至是透過爭議才會讓大家關心這些議題,例如反核、擁核的論述;火力發電、風力發電跟其他再生能源發電的不同。

另一個例子是我們生病常用到的盤尼西林 (Penicillin)。

盤尼西林的戲劇性故事發生於 1928 年的英國,發明者弗萊明在未洗乾淨、長滿細菌的培養皿中意外發現盤尼西林,在對其治療細菌感染的性質有所了解後,卻無法大量生產。真正大量生產是到了二戰初期的美國。但大家對於盤尼西林的認識,多止於最初如何戲劇性地發現,而在美國如何達成大量生產的過程與努力卻少為人知。大量生產的技術是什麼?在什麼背景下被大量製造?這些其實都是重要的問題。

《老科技的全球史》提醒我們要警惕科技國族主義,應該盡量自行研發所需科技是個迷思。大衛提醒我們看看生活周遭的產品,絕大多數都是其他國家所發明。發明的共享是普遍的歷史現象,也是件好事。

此外,他也認為自給自足的想法常有害社會福祉。大衛這個論點看似違反常理,但我們可以想想今天的汽車、電腦或智慧型手機如何被製造與運輸,這些產品的組裝與製造所需的元件與工具往往來自不同國家。這是為何英國汽車工業將深受脫歐所帶來的負面影響,因為不同的汽車零件來自外國,脫歐後進出口的關稅將大幅增加。

我們生活中其實有許多物品不會被視為科技,我的朋友林崇熙教授研究的「台灣農村拼裝車」便是一個例子。拼裝車在農村有許多用途,但大多人只會覺得拼裝車游走在違法邊緣,甚至是登不了檯面的物品,但其實拼裝車作為一項科技產物,它在台灣農村有許多用途、發揮不少重要功能。

醫學上也有不常被注意的科技嗎?

我本業從事醫學史研究,因此特別有興趣的部分在於醫療技術。在傳教醫療史中,有些醫師因地制宜在中國改良手術台,過去並未受到注意。另外還有「麻醉技術」非常快速地傳入中國,當時第一位來華的傳教士在廣州使用了麻醉技術,雖然中國人第一次看到很訝異,但也很有興趣、並不抗拒。所以我想了解當時中國人接受麻醉技術的原因,會不會與過去的傳說故事或相關藥物有關。我想了解當醫療技術傳入不同文化與國家,為何有些很快被採用,有些卻受到排斥。

我也從事熱帶醫學史的研究,當中有關於「瘧疾」的調查,我想知道他們怎麼研究這些蚊子、怎麼評估這些蚊子,怎麼抓到、怎麼觀察,這些都是很簡單的技術,只是必須知道他們怎麼使用,例如使用什麼圖表紀錄分析。這是我很感興趣的部分,也是接下來會繼續進行的研究。

李尚仁研究萬巴德的醫療史,看見萬巴德建立標準化的圖表。上圖為紀錄瘧疾與病患體溫的關係,下圖為顯微鏡下瘧疾原蟲的分類。
資料來源│《帝國的醫師:萬巴德與英國熱帶醫學的創建》

使用 vs. 創新,這兩種科技有何不同?

「使用中」的科技通常代表「大量使用」,科技必須要被大量使用,才會對社會產生重大影響。如果一項科技被發明後,沒什麼人用,很難產生影響力。

而且通常大量使用的科技,是需要一段時間來流傳、改良。

像是蒸汽機,我們都知道 18 世紀瓦特改良蒸汽機,但蒸汽機在 19 世紀才在人類社會改良地更好用、更重要,但一般的科技史不太會去強調 19 世紀的蒸汽機如何進步。

大多數「創新」的科技發明產物,其實不會被民眾廣泛地使用,因為幾乎每個科技都有替代物品。例如傳輸訊號可以用光纖、也可以用衛星;記帳可以用紙筆,也可以用電腦、手機。被人們最大量使用的科技,可能是稍微好用一點、或是稍微便宜一些。

最創新的科技不一定會被使用,也有些因素是文化或歷史導致。例如台灣地狹人稠的城市,以能源或交通安全層面,使用公共軌道運輸會比每個人開一台車、騎一台機車更有效率。但是,當初先蓋了許多道路,現在突然叫大家不要騎車開車,我們來蓋軌道,就會遭到很多困難與阻力。

最早受到青睞的科技不見得是最適合特定社會的科技,某個科技一旦先有許多人使用,往往讓社會陷入比較不好的科技選擇而難以自拔。

大衛提倡要大家抗拒「創新的迷思」,應如何做到?

《老科技的全球史》作者大衛,他不是抗拒創新,而是提醒不要相信會有創新的科技可以解決所有問題。

「創新的科技可以解決所有問題」,有時這樣的說法是讓人不去面對真正的問題。

例如,有人提出未來一定會有創新的科技可以解決全球暖化的問題,例如碳捕捉技術,但這樣的宣稱,有時反而會阻礙現今不當行為的改變。現在就能做的是共同減碳,提高能源效率、減少私人交通工具、多搭乘大眾運輸,但這樣的改變可能會帶來些不方便,也會跟產業利益相衝突,所以把「創新科技」作為拖延的藉口,把問題留給未來。

翻譯此書的契機?

我跟大衛其實是師生關係,我在英國唸碩班的期間,修了大衛的科技史課程。大衛的想法很特別,不是以「創新」的科技為主,而且指定讀本中有許多經典,像是韋伯、馬克思等社會科學,或是博物館史、文化產業等。主修科技與經濟的大衛很重視「計量」,但通常歷史學科較重視「質性」研究。

大衛自認是個左派,也常刊登文章在《新左評論》,但並不是那種教條式的左派,也會重視右派的意見。他指出左派的人有些幻覺,覺得自己掌握歷史的真理與智慧,右派只是有權勢但蒙昧反動。但他認為右派往往很有創新能力,左派若對此無知而活在自以為獨佔智慧的幻象中,會付出慘痛代價。

會擔任這本書的翻譯是因緣,大衛在 2012 年接受清華大學的邀請訪台,他後來將他的思想寫在一篇史學論文《從創新到使用》,但其用字較為艱澀縝密,讀起來較不容易,後來他便以大眾導向寫了《老科技的全球史》這本書。出版後,上海的出版社有簡體翻譯,但刪除了許多與中國有關的內容,像是大躍進的部分,許多註解也被拿掉。

我認為這本書在台灣特別有參考價值,因為台灣不是以「發明」為名的國家,但卻有許多「使用」的科技。

像我小時候看到介紹十大發明家的書,沒有一個是台灣人,但若從「使用」的角度來看,台灣的拼裝車也是一種代表性的科技。因此,我想翻譯這本書,將「使用」的科技史介紹給台灣的讀者。

延伸閱讀

本文轉載自中央研究院研之有物,原文為保險套是否比飛機更重要?專訪《老科技的全球史》譯者李尚仁,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3693 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
2

文字

分享

0
1
2
科技人才看過來!三門獨家課程 YouTube 免費看!工研院「ITRI lab on-line」特色技術系列數位課程現正放送中
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・2829字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 工研院 委託,泛科學企劃執行。

Hey,未來的千萬年薪人才!來一起深入了解那些正在改變我們生活的科技吧!工研院為你精心準備了三堂超有趣的線上課程:從探索醫學界的 PLGA 微米球技術,到揭秘半導體測試的幕後英雄 ATE,再到讓塑膠也能有身分證的創新方法。這不只是學習,更是一場與科技親密接觸的旅程!

第一門 材料檢測與模擬設計之原理與應用系列學習

精選課程:塑膠也有指紋?如何給塑膠「身分證」來驅動循環經濟,減緩地球暖化?你要知道的光譜分選技術-材料光譜分選技術

這堂課將探討如何透過光譜智慧分選技術,為塑膠材料賦予「身分證」,進而推動循環經濟並減緩地球暖化。塑膠標籤的設置主要是為了方便辨識材質,這對於廢塑膠的回收和再利用至關重要。不同號數的塑膠因其分子組成、結構和排列的差異而有不同的特性和應用領域。

-----廣告,請繼續往下閱讀-----

在光譜智慧分選技術中,首先要理解電磁波的概念。電磁波是一種電場和磁場交互變化的波動現象,其不同波長可以用於不同的應用,如手機訊號、微波爐、家用遙控器、X 光攝影等。在塑膠分選中,光譜技術常用的波長範圍落在近紅外到遠紅外光的區域,即 1 微米到 300 微米。這些波段的電磁波能誘發塑膠分子振動,並吸收散射或入射的電磁波能量,從而造成光譜的變化。科學家利用這種振動光譜的變化來獲得塑膠分子的特徵光譜,從而開發出能辨識不同塑膠分子的技術。

舉例來說,最簡單的雙原子分子,如 C-H、O-H 等,會有特定的振動頻率。當結構更複雜的分子(如水分子)被電磁波誘發振動時,會產生更多的振動模式,每種模式對應不同的特徵光譜。塑膠由多種原子組成,因此其特徵振動光譜相當複雜,但這也使得每種塑膠具有獨特的光譜特徵,類似於條碼或指紋,可用於辨識不同類型的塑膠。

本集介紹的光譜技術主要聚焦於紅外線頻譜區段,其波長範圍在 900-2500 納米。在這一範圍內的紅外光能量正好能引起塑膠分子的振動,並在不同波長上產生吸收。透過紅外線感測裝置掃描塑膠分子,可以快速獲得塑膠的材質信息,這不僅有助於塑膠的分類和回收,也對環境保護和資源再利用具有重要意義。


第二門 半導體IC設計與檢測技術系列學習

精選課程:好的良率就是好的利率!考試交卷前都會再檢查、確認了,IC 生產才不會忘記你-半導體測試簡介

-----廣告,請繼續往下閱讀-----

在這堂課中,我們將探討自動化測試機台(ATE)在半導體測試領域中的關鍵作用。自動化測試機台是一種專為測試集成電路(IC)而設計的設備,它可以大幅降低手動測試的人力需求,並減少測試成本。每種IC根據其規格,都需要特定的測試項目。針對這些項目,專門編寫的測試程式被用於自動化測試機台,以自動檢測和篩選出不合格的 IC。

不同種類的 IC 需要不同的測試機台。例如,數位 IC 需要使用專門的數位測試機台,而記憶體 IC 則需要使用演算法來進行測試。類比 IC 和混合訊號 IC 則涉及電性測試,因為它們不是像數位IC那樣僅依賴固定的 0 和 1。

隨著系統晶片(SoC)的出現,測試機台的複雜性也隨之增加。SoC 整合了數位、記憶體、混合訊號甚至 RF IC 於一個晶片中,因此其測試機台必須同時具備上述所有種類機台的功能。這種SoC測試系統非常昂貴,每台造價可能高達數千萬。

最近,模組化測試系統成為了一種趨勢。這種系統的主要特點是其靈活性,能夠根據不同類型的IC進行不同模組的組裝,以進行測試。例如,對於數位IC,可以使用數位模組;對於類比或混合訊號IC,則可以使用相應的類比測試模組,如示波器或任意波型產生器。對於RFIC,則可以插入RF模組,如VNA等網路分析儀。模組化測試系統通常基於PXIE或LXI這樣的系統,其中PXIE是基於PCIE的擴展,加入了與儀器相關的電路;而LXI則是在LAN基礎上加入儀器相關電路。

-----廣告,請繼續往下閱讀-----

總結來說,自動化測試機台在提高半導體製造過程中的良率和效率方面發揮著不可或缺的作用。無論是傳統的ATE還是新興的模組化測試系統,它們都在確保IC品質和性能方面扮演著關鍵角色。


第三門:解密醫材醫藥產品開發攻略系列學習

精選課程:藥不💊隨便你~但少了「它」,藥就不能發揮最大功效!製劑的分類與開發

在這堂課中,我們將深入探討 PLGA 微米球技術及其在長效針劑開發中的重要性。PLGA,全稱為聚乳酸甘醇酸,是一種被廣泛應用於藥物釋放系統的生物相容性高分子材料。自 1989 年日本武田藥廠開發出第一款使用 PLGA 的產品 Lupron Depot® 以來,這種技術已被用於多種藥物的開發,涵蓋了小分子藥物和胜肽類藥物。

PLGA 的關鍵特性,包括乳酸與甘醇酸的比例、分子量及高分子末端基團,對藥物的釋放速率和持續時間有著顯著影響。在製程技術方面,溶劑揮發法和溶劑萃取法是兩種主要的製備方法,它們對於親水性和疏水性藥物的包覆都至關重要。這些製程不僅決定了微米球的形成,也影響著藥物在微米球內的分布和最終的藥物釋放行為。

-----廣告,請繼續往下閱讀-----

此外,微米球製程的工藝還包括乳化、coacervation 過程、溫度、攪拌速度、微米球固化和乾燥速度等因素,這些都對藥物包覆效率、微米球的粒徑大小分佈及藥物在微米球中的分佈位置產生影響。而不同的製程設計往往會導致藥物釋放行為的顯著差異,這對從實驗室到試量產階段的轉換是一大挑戰。

在台灣,工研院在經濟部的支持下建立了一個無菌製劑試製工廠,該工廠配備了微米球製程設備、高壓均質機、in-line均質機、噴霧乾燥機等關鍵製程設備。這些設備不僅能夠支持微米球的生產,還包括了關鍵的分析儀器,如液相層析儀、氣相層析儀、微米/奈米粒徑分析儀等。工研院的團隊擁有豐富的特殊製劑開發經驗,能夠提供從製劑配方研發、分析方法開發、放大製程開發到客製化產線設計的全方位服務。這些資源和專業知識使得工研院能夠有效地支持新藥的臨床前開發和商業化進程。

總的來說,PLGA 微米球技術在藥物釋放系統的開發中扮演著關鍵角色。透過精確的材料選擇和製程控制,這項技術有望為醫藥界帶來更多創新和有效的長效針劑產品。


還想看更多?不用掏出信用卡,三門線上課都在 ITRI Lab on-line 的 YouTube 頻道獨家放送中,手機打開就能看。但……雖然不用急,但是科技進步也是不等人的,快跟上吧!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
最硬核線上課程來了!工研院不藏私開課的原因是?
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/14 ・1114字 ・閱讀時間約 2 分鐘

本文由 工研院 委託,泛科學企劃執行。

「ITRI Lab on-line」線上學習平台,讓複雜的科技原理簡單學! 圖/envato

你有沒有想過,是什麼驅動著今日產業的創新與變革?答案就在工研院的「ITRI lab on-line」特色技術系列數位課程中!這是一個與眾不同的學習機會,讓你深入了解並參與到台灣產業創新的核心。

首先,來說說「環構計畫」的緣起。這個計畫是為了配合國家創新產業政策而生,它的目標是建置和維護創新技術與服務平台。這不僅幫助企業開發新產品和服務,推動新興產業和新創公司,還能加速創新技術的產業化,促進企業的轉型升級。為此,工研院不斷擴建新研發場域,涉及各主要技術領域,實驗室分為檢測/認驗證、試量產/試營運、軟體與硬體設施服務等類別。

工研院的目標是推動台灣產業的創新優化與轉型,幫助業界把握新契機,布局自主創新和產業韌性所需的基礎設施。為此,工研院提供「ITRI lab on-line」特色技術系列數位課程,這些免費的線上學習資源將幫助你快速掌握產業新趨勢,增強企業技術升級與轉型的意願。

-----廣告,請繼續往下閱讀-----
對於晶片生產來說,必須借助科技力量除錯。 圖/envato

這系列課程包括三大主題:「永續高值材化」、「智能晶片」和「精準健康」。每個主題都有專門的課程,總共22支數位課程影片,涵蓋從技術原理到應用範圍的各方面知識。這些課程不僅介紹了工研院實驗室的專業技術,也為企業提供了學習和轉型的寶貴資源。想先試看嗎?點這裡看看我們推薦的三堂課吧

無論你有興趣的是材料檢測與模擬設計、半導體IC設計與檢測技術,還是醫材醫藥產品開發,這些課程都會給你全新的視角和知識。每個課程都是精心設計,旨在幫助企業和個人掌握關鍵技術,並在低碳化與智慧化的時代中保持領先。

現在,只需點擊下方的連結,就能免費加入這個精彩的學習旅程。快來發掘和學習那些塑造當代產業未來的關鍵技術吧!

材料檢測與模擬設計之原理與應用系列學習
半導體IC設計與檢測技術系列學習
解密醫材醫藥產品開發攻略系列學習

-----廣告,請繼續往下閱讀-----

【ITRI Lab on-line】系列影片可在工研院產業學院YouTube頻道觀看:點我前往

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia